
www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

EWD 1036 
On the cruelty of really teaching computing science 

The second part of this talk pursues some of the scientific and educational consequences of the assumption that 
computers represent a radical novelty. In order to give this assumption clear contents, we have to be much more 
precise as to what we mean in this context by the adjective "radical". We shall do so in the first part of this talk, 
in which we shall furthermore supply evidence in support of our assumption.

The usual way in which we plan today for tomorrow is in yesterday's vocabulary. We do so, because we try to 
get away with the concepts we are familiar with and that have acquired their meanings in our past experience. Of
course, the words and the concepts don't quite fit because our future differs from our past, but then we stretch 
them a little bit. Linguists are quite familiar with the phenomenon that the meanings of words evolve over time, 
but also know that this is a slow and gradual process.

It is the most common way of trying to cope with novelty: by means of metaphors and analogies we try to link 
the new to the old, the novel to the familiar. Under sufficiently slow and gradual change, it works reasonably 
well; in the case of a sharp discontinuity, however, the method breaks down: though we may glorify it with the 
name "common sense", our past experience is no longer relevant, the analogies become too shallow, and the 
metaphors become more misleading than illuminating. This is the situation that is characteristic for the "radical" 
novelty.

Coping with radical novelty requires an orthogonal method. One must consider one's own past, the experiences 
collected, and the habits formed in it as an unfortunate accident of history, and one has to approach the radical 
novelty with a blank mind, consciously refusing to try to link it with what is already familiar, because the 
familiar is hopelessly inadequate. One has, with initially a kind of split personality, to come to grips with a 
radical novelty as a dissociated topic in its own right. Coming to grips with a radical novelty amounts to creating
and learning a new foreign language that can not be translated into one's mother tongue. (Any one who has 
learned quantum mechanics knows what I am talking about.) Needless to say, adjusting to radical novelties is not
a very popular activity, for it requires hard work. For the same reason, the radical novelties themselves are 
unwelcome.

By now, you may well ask why I have paid so much attention to and have spent so much eloquence on such a 
simple and obvious notion as the radical novelty. My reason is very simple: radical novelties are so disturbing 
that they tend to be suppressed or ignored, to the extent that even the possibility of their existence in general is 
more often denied than admitted.

On the historical evidence I shall be short. Carl Friedrich Gauss, the Prince of Mathematicians but also 
somewhat of a coward, was certainly aware of the fate of Galileo —and could probably have predicted the 
calumniation of Einstein— when he decided to suppress his discovery of non-Euclidean geometry, thus leaving 
it to Bolyai and Lobatchewsky to receive the flak. It is probably more illuminating to go a little bit further back, 
to the Middle Ages. One of its characteristics was that "reasoning by analogy" was rampant; another 
characteristic was almost total intellectual stagnation, and we now see why the two go together. A reason for 
mentioning this is to point out that, by developing a keen ear for unwarranted analogies, one can detect a lot of 
medieval thinking today.

The other thing I can not stress enough is that the fraction of the population for which gradual change seems to 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html
https://www.cs.utexas.edu/~EWD/ewd10xx/EWD1036.PDF


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

be all but the only paradigm of history is very large, probably much larger than you would expect. Certainly 
when I started to observe it, their number turned out to be much larger than I had expected.

For instance, the vast majority of the mathematical community has never challenged its tacit assumption that 
doing mathematics will remain very much the same type of mental activity it has always been: new topics will 
come, flourish, and go as they have done in the past, but, the human brain being what it is, our ways of teaching, 
learning, and understanding mathematics, of problem solving, and of mathematical discovery will remain pretty 
much the same. Herbert Robbins clearly states why he rules out a quantum leap in mathematical ability:

"Nobody is going to run 100 meters in five seconds, no matter how much is invested in training and
machines. The same can be said about using the brain. The human mind is no different now from 
what it was five thousand years ago. And when it comes to mathematics, you must realize that this 
is the human mind at an extreme limit of its capacity."

My comment in the margin was "so reduce the use of the brain and calculate!". Using Robbins's own analogy, 
one could remark that, for going from A to B fast, there could now exist alternatives to running that are orders of 
magnitude more effective. Robbins flatly refuses to honour any alternative to time-honoured brain usage with the
name of "doing mathematics", thus exorcizing the danger of radical novelty by the simple device of adjusting his
definitions to his needs: simply by definition, mathematics will continue to be what it used to be. So much for 
the mathematicians.

Let me give you just one more example of the widespread disbelief in the existence of radical novelties and, 
hence, in the need of learning how to cope with them. It is the prevailing educational practice, for which gradual,
almost imperceptible, change seems to be the exclusive paradigm. How many educational texts are not 
recommended for their appeal to the student's intuition! They constantly try to present everything that could be 
an exciting novelty as something as familiar as possible. They consciously try to link the new material to what is 
supposed to be the student's familiar world. It already starts with the teaching of arithmetic. Instead of teaching 2
+ 3 = 5 , the hideous arithmetic operator "plus" is carefully disguised by calling it "and", and the little kids are 
given lots of familiar examples first, with clearly visible such as apples and pears, which are in, in contrast to 
equally countable objects such as percentages and electrons, which are out. The same silly tradition is reflected 
at university level in different introductory calculus courses for the future physicist, architect, or business major, 
each adorned with examples from the respective fields. The educational dogma seems to be that everything is 
fine as long as the student does not notice that he is learning something really new; more often than not, the 
student's impression is indeed correct. I consider the failure of an educational practice to prepare the next 
generation for the phenomenon of radical novelties a serious shortcoming. [When King Ferdinand visited the 
conservative university of Cervera, the Rector proudly reassured the monarch with the words; "Far be from us, 
Sire, the dangerous novelty of thinking.". Spain's problems in the century that followed justify my 
characterization of the shortcoming as "serious".] So much for education's adoption of the paradigm of gradual 
change.

The concept of radical novelties is of contemporary significance because, while we are ill-prepared to cope with 
them, science and technology have now shown themselves expert at inflicting them upon us. Earlier scientific 
examples are the theory of relativity and quantum mechanics; later technological examples are the atom bomb 
and the pill. For decades, the former two gave rise to a torrent of religious, philosophical, or otherwise quasi-
scientific tracts. We can daily observe the profound inadequacy with which the latter two are approached, be it 
by our statesmen and religious leaders or by the public at large. So much for the damage done to our peace of 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

mind by radical novelties.

I raised all this because of my contention that automatic computers represent a radical novelty and that only by 
identifying them as such can we identify all the nonsense, the misconceptions and the mythology that surround 
them. Closer inspection will reveal that it is even worse, viz. that automatic computers embody not only one 
radical novelty but two of them.

The first radical novelty is a direct consequence of the raw power of today's computing equipment. We all know 
how we cope with something big and complex; divide and rule, i.e. we view the whole as a compositum of parts 
and deal with the parts separately. And if a part is too big, we repeat the procedure. The town is made up from 
neighbourhoods, which are structured by streets, which contain buildings, which are made from walls and floors,
that are built from bricks, etc. eventually down to the elementary particles. And we have all our specialists along 
the line, from the town planner, via the architect to the solid state physicist and further. Because, in a sense, the 
whole is "bigger" than its parts, the depth of a hierarchical decomposition is some sort of logarithm of the ratio 
of the "sizes" of the whole and the ultimate smallest parts. From a bit to a few hundred megabytes, from a 

microsecond to a half an hour of computing confronts us with completely baffling ratio of 109! The programmer 
is in the unique position that his is the only discipline and profession in which such a gigantic ratio, which totally
baffles our imagination, has to be bridged by a single technology. He has to be able to think in terms of 
conceptual hierarchies that are much deeper than a single mind ever needed to face before. Compared to that 
number of semantic levels, the average mathematical theory is almost flat. By evoking the need for deep 
conceptual hierarchies, the automatic computer confronts us with a radically new intellectual challenge that has 
no precedent in our history.

Again, I have to stress this radical novelty because the true believer in gradual change and incremental 
improvements is unable to see it. For him, an automatic computer is something like the familiar cash register, 
only somewhat bigger, faster, and more flexible. But the analogy is ridiculously shallow: it is orders of 
magnitude worse than comparing, as a means of transportation, the supersonic jet plane with a crawling baby, for
that speed ratio is only a thousand.

The second radical novelty is that the automatic computer is our first large-scale digital device. We had a few 
with a noticeable discrete component: I just mentioned the cash register and can add the typewriter with its 
individual keys: with a single stroke you can type either a Q or a W but, though their keys are next to each other, 
not a mixture of those two letters. But such mechanisms are the exception, and the vast majority of our 
mechanisms are viewed as analogue devices whose behaviour is over a large range a continuous function of all 
parameters involved: if we press the point of the pencil a little bit harder, we get a slightly thicker line, if the 
violinist slightly misplaces his finger, he plays slightly out of tune. To this I should add that, to the extent that we
view ourselves as mechanisms, we view ourselves primarily as analogue devices: if we push a little harder we 
expect to do a little better. Very often the behaviour is not only a continuous but even a monotonic function: to 
test whether a hammer suits us over a certain range of nails, we try it out on the smallest and largest nails of the 
range, and if the outcomes of those two experiments are positive, we are perfectly willing to believe that the 
hammer will suit us for all nails in between.

It is possible, and even tempting, to view a program as an abstract mechanism, as a device of some sort. To do 
so, however, is highly dangerous: the analogy is too shallow because a program is, as a mechanism, totally 
different from all the familiar analogue devices we grew up with. Like all digitally encoded information, it has 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

unavoidably the uncomfortable property that the smallest possible perturbations —i.e. changes of a single bit— 
can have the most drastic consequences. [For the sake of completness I add that the picture is not essentially 
changed by the introduction of redundancy or error correction.] In the discrete world of computing, there is no 
meaningful metric in which "small" changes and "small" effects go hand in hand, and there never will be.

This second radical novelty shares the usual fate of all radical novelties: it is denied, because its truth would be 
too discomforting. I have no idea what this specific denial and disbelief costs the United States, but a million 
dollars a day seems a modest guess.

Having described —admittedly in the broadest possible terms— the nature of computing's novelties, I shall now 
provide the evidence that these novelties are, indeed, radical. I shall do so by explaining a number of otherwise 
strange phenomena as frantic —but, as we now know, doomed— efforts at hiding or denying the frighteningly 
unfamiliar.

A number of these phenomena have been bundled under the name "Software Engineering". As economics is 
known as "The Miserable Science", software engineering should be known as "The Doomed Discipline", 
doomed because it cannot even approach its goal since its goal is self-contradictory. Software engineering, of 
course, presents itself as another worthy cause, but that is eyewash: if you carefully read its literature and 
analyse what its devotees actually do, you will discover that software engineering has accepted as its charter 
"How to program if you cannot.".

The popularity of its name is enough to make it suspect. In what we denote as "primitive societies", the 
superstition that knowing someone's true name gives you magic power over him is not unusual. We are hardly 
less primitive: why do we persist here in answering the telephone with the most unhelpful "hello" instead of our 
name?

Nor are we above the equally primitive superstition that we can gain some control over some unknown, 
malicious demon by calling it by a safe, familiar, and innocent name, such as "engineering". But it is totally 
symbolic, as one of the US computer manufacturers proved a few years ago when it hired, one night, hundreds 
of new "software engineers" by the simple device of elevating all its programmers to that exalting rank. So much
for that term.

The practice is pervaded by the reassuring illusion that programs are just devices like any others, the only 
difference admitted being that their manufacture might require a new type of craftsmen, viz. programmers. From
there it is only a small step to measuring "programmer productivity" in terms of "number of lines of code 
produced per month". This is a very costly measuring unit because it encourages the writing of insipid code, but 
today I am less interested in how foolish a unit it is from even a pure business point of view. My point today is 
that, if we wish to count lines of code, we should not regard them as "lines produced" but as "lines spent": the 
current conventional wisdom is so foolish as to book that count on the wrong side of the ledger.

Besides the notion of productivity, also that of quality control continues to be distorted by the reassuring illusion 
that what works with other devices works with programs as well. It is now two decades since it was pointed out 
that program testing may convincingly demonstrate the presence of bugs, but can never demonstrate their 
absence. After quoting this well-publicized remark devoutly, the software engineer returns to the order of the day
and continues to refine his testing strategies, just like the alchemist of yore, who continued to refine his 
chrysocosmic purifications.

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

Unfathomed misunderstanding is further revealed by the term "software maintenance", as a result of which many
people continue to believe that programs —and even programming languages themselves— are subject to wear 
and tear. Your car needs maintenance too, doesn't it? Famous is the story of the oil company that believed that its
PASCAL programs did not last as long as its FORTRAN programs "because PASCAL was not maintained".

In the same vein I must draw attention to the astonishing readiness with which the suggestion has been accepted 
that the pains of software production are largely due to a lack of appropriate "programming tools". (The telling 
"programmer's workbench" was soon to follow.) Again, the shallowness of the underlying analogy is worthy of 
the Middle Ages. Confrontations with insipid "tools" of the "algorithm-animation" variety has not mellowed my 
judgement; on the contrary, it has confirmed my initial suspicion that we are primarily dealing with yet another 
dimension of the snake oil business.

Finally, to correct the possible impression that the inability to face radical novelty is confined to the industrial 
world, let me offer you an explanation of the —at least American— popularity of Artificial Intelligence. One 
would expect people to feel threatened by the "giant brains or machines that think". In fact, the frightening 
computer becomes less frightening if it is used only to simulate a familiar noncomputer. I am sure that this 
explanation will remain controversial for quite some time, for Artificial Intelligence as mimicking the human 
mind prefers to view itself as at the front line, whereas my explanation relegates it to the rearguard. (The effort 
of using machines to mimic the human mind has always struck me as rather silly: I'd rather use them to mimic 
something better.)

So much for the evidence that the computer's novelties are, indeed, radical.

And now comes the second —and hardest— part of my talk: the scientific and educational consequences of the 
above. The educational consequences are, of course, the hairier ones, so let's postpone their discussion and stay 
for a while with computing science itself. What is computing? And what is a science of computing about?

Well, when all is said and done, the only thing computers can do for us is to manipulate symbols and produce 
results of such manipulations. From our previous observations we should recall that this is a discrete world and, 
moreover, that both the number of symbols involved and the amount of manipulation performed are many orders
of magnitude larger than we can envisage: they totally baffle our imagination and we must therefore not try to 
imagine them.

But before a computer is ready to perform a class of meaningful manipulations —or calculations, if you prefer—
we must write a program. What is a program? Several answers are possible. We can view the program as what 
turns the general-purpose computer into a special-purpose symbol manipulator, and does so without the need to 
change a single wire (This was an enormous improvement over machines with problem-dependent wiring 
panels.) I prefer to describe it the other way round: the program is an abstract symbol manipulator, which can be 
turned into a concrete one by supplying a computer to it. After all, it is no longer the purpose of programs to 
instruct our machines; these days, it is the purpose of machines to execute our programs.

So, we have to design abstract symbol manipulators. We all know what they look like: they look like programs 
or —to use somewhat more general terminology— usually rather elaborate formulae from some formal system. 
It really helps to view a program as a formula. Firstly, it puts the programmer's task in the proper perspective: he 
has to derive that formula. Secondly, it explains why the world of mathematics all but ignored the programming 
challenge: programs were so much longer formulae than it was used to that it did not even recognize them as 
such. Now back to the programmer's job: he has to derive that formula, he has to derive that program. We know 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

of only one reliable way of doing that, viz. by means of symbol manipulation. And now the circle is closed: we 
construct our mechanical symbol manipulators by means of human symbol manipulation.

Hence, computing science is —and will always be— concerned with the interplay between mechanized and 
human symbol manipulation, usually referred to as "computing" and "programming" respectively. An immediate 
benefit of this insight is that it reveals "automatic programming" as a contradiction in terms. A further benefit is 
that it gives us a clear indication where to locate computing science on the world map of intellectual disciplines: 
in the direction of formal mathematics and applied logic, but ultimately far beyond where those are now, for 
computing science is interested in effective use of formal methods and on a much, much, larger scale than we 
have witnessed so far. Because no endeavour is respectable these days without a TLA (= Three-Letter Acronym),
I propose that we adopt for computing science FMI (= Formal Methods Initiative), and, to be on the safe side, we
had better follow the shining examples of our leaders and make a Trade Mark of it.

In the long run I expect computing science to transcend its parent disciplines, mathematics and logic, by 
effectively realizing a significant part of Leibniz's Dream of providing symbolic calculation as an alternative to 
human reasoning. (Please note the difference between "mimicking" and "providing an alternative to": 
alternatives are allowed to be better.)

Needless to say, this vision of what computing science is about is not universally applauded. On the contrary, it 
has met widespread —and sometimes even violent— opposition from all sorts of directions. I mention as 
examples

(0) the mathematical guild, which would rather continue to believe that the Dream of Leibniz is an unrealistic 
illusion

(1) the business community, which, having been sold to the idea that computers would make life easier, is 
mentally unprepared to accept that they only solve the easier problems at the price of creating much harder ones

(2) the subculture of the compulsive programmer, whose ethics prescribe that one silly idea and a month of 
frantic coding should suffice to make him a life-long millionaire

(3) computer engineering, which would rather continue to act as if it is all only a matter of higher bit rates and 
more flops per second

(4) the military, who are now totally absorbed in the business of using computers to mutate billion-dollar budgets
into the illusion of automatic safety

(5) all soft sciences for which computing now acts as some sort of interdisciplinary haven

(6) the educational business that feels that, if it has to teach formal mathematics to CS students, it may as well 
close its schools.

And with this sixth example I have reached, imperceptibly but also alas unavoidably, the most hairy part of this 
talk: educational consequences.

The problem with educational policy is that it is hardly influenced by scientific considerations derived from the 
topics taught, and almost entirely determined by extra-scientific circumstances such as the combined 
expectations of the students, their parents and their future employers, and the prevailing view of the role of the 
university: is the stress on training its graduates for today's entry-level jobs or to providing its alumni with the 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

intellectual bagage and attitudes that will last them another 50 years? Do we grudgingly grant the abstract 
sciences only a far-away corner on campus, or do we recognize them as the indispensable motor of the high-
technology industry? Even if we do the latter, do we recognize a high-technology industry as such if its 
technology primarily belongs to formal mathematics? Do the universities provide for society the intellectual 
leadership it needs or only the training it asks for?

Traditional academic rhetoric is perfectly willing to give to these questions the reassuring answers, but I don't 
believe them. By way of illustration of my doubts, in a recent article on "Who Rules Canada?", David H. 
Flaherty bluntly states "Moreover, the business elite dismisses traditional academics and intellectuals as largely 
irrelevant and powerless.".

So, if I look into my foggy crystal ball at the future of computing science education, I overwhelmingly see the 
depressing picture of "Business as usual". The universities will continue to lack the courage to teach hard 
science, they will continue to misguide the students, and each next stage of infantilization of the curriculum will 
be hailed as educational progress.

I now have had my foggy crystal ball for quite a long time. Its predictions are invariably gloomy and usually 
correct, but I am quite used to that and they won't keep me from giving you a few suggestions, even if it is 
merely an exercise in futility whose only effect is to make you feel guilty.

We could, for instance, begin with cleaning up our language by no longer calling a bug a bug but by calling it an 
error. It is much more honest because it squarely puts the blame where it belongs, viz. with the programmer who 
made the error. The animistic metaphor of the bug that maliciously sneaked in while the programmer was not 
looking is intellectually dishonest as it disguises that the error is the programmer's own creation. The nice thing 
of this simple change of vocabulary is that it has such a profound effect: while, before, a program with only one 
bug used to be "almost correct", afterwards a program with an error is just "wrong" (because in error).

My next linguistical suggestion is more rigorous. It is to fight the "if-this-guy-wants-to-talk-to-that-guy" 
syndrome: never refer to parts of programs or pieces of equipment in an anthropomorphic terminology, nor allow
your students to do so. This linguistical improvement is much harder to implement than you might think, and 
your department might consider the introduction of fines for violations, say a quarter for undergraduates, two 
quarters for graduate students, and five dollars for faculty members: by the end of the first semester of the new 
regime, you will have collected enough money for two scholarships.

The reason for this last suggestion is that the anthropomorphic metaphor —for whose introduction we can blame
John von Neumann— is an enormous handicap for every computing community that has adopted it. I have now 
encountered programs wanting things, knowing things, expecting things, believing things, etc., and each time 
that gave rise to avoidable confusions. The analogy that underlies this personification is so shallow that it is not 
only misleading but also paralyzing.

It is misleading in the sense that it suggests that we can adequately cope with the unfamiliar discrete in terms of 
the familiar continuous, i.e. ourselves, quod non. It is paralyzing in the sense that, because persons exist and act 
in time, its adoption effectively prevents a departure from operational semantics and thus forces people to think 
about programs in terms of computational behaviours, based on an underlying computational model. This is bad,
because operational reasoning is a tremendous waste of mental effort.

Let me explain to you the nature of that tremendous waste, and allow me to try to convince you that the term 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

"tremendous waste of mental effort" is not an exaggeration. For a short while, I shall get highly technical, but 
don't get frightened: it is the type of mathematics that one can do with one's hands in one's pockets. The point to 
get across is that if we have to demonstrate something about all the elements of a large set, it is hopelessly 
inefficient to deal with all the elements of the set individually: the efficient argument does not refer to individual 
elements at all and is carried out in terms of the set's definition.

Consider the plane figure Q, defined as the 8 by 8 square from which, at two opposite corners, two 1 by 1 
squares have been removed. The area of Q is 62, which equals the combined area of 31 dominos of 1 by 2. The 
theorem is that the figure Q cannot be covered by 31 of such dominos.

Another way of stating the theorem is that if you start with squared paper and begin covering this by placing 
each next domino on two new adjacent squares, no placement of 31 dominos will yield the figure Q.

So, a possible way of proving the theorem is by generating all possible placements of dominos and verifying for 
each placement that it does not yield the figure Q: a tremendously laborious job.

The simple argument, however is as follows. Colour the squares of the squared paper as on a chess board. Each 
domino, covering two adjacent squares, covers 1 white and 1 black square, and, hence, each placement covers as
many white squares as it covers black squares. In the figure Q, however, the number of white squares and the 
number of black squares differ by 2 —opposite corners lying on the same diagonal— and hence no placement of
dominos yields figure Q.

Not only is the above simple argument many orders of magnitude shorter than the exhaustive investigation of the
possible placements of 31 dominos, it is also essentially more powerful, for it covers the generalization of Q by 
replacing the original 8 by 8 square by any rectangle with sides of even length. The number of such rectangles 
being infinite, the former method of exhaustive exploration is essentially inadequate for proving our generalized 
theorem.

And this concludes my example. It has been presented because it illustrates in a nutshell the power of down-to-
earth mathematics; needless to say, refusal to exploit this power of down-to-earth mathematics amounts to 
intellectual and technological suicide. The moral of the story is: deal with all elements of a set by ignoring them 
and working with the set's definition.

Back to programming. The statement that a given program meets a certain specification amounts to a statement 
about all computations that could take place under control of that given program. And since this set of 
computations is defined by the given program, our recent moral says: deal with all computations possible under 
control of a given program by ignoring them and working with the program. We must learn to work with 
program texts while (temporarily) ignoring that they admit the interpretation of executable code.

Another way of saying the same thing is the following one. A programming language, with its formal syntax and 
with the proof rules that define its semantics, is a formal system for which program execution provides only a 
model. It is well-known that formal systems should be dealt with in their own right, and not in terms of a specific
model. And, again, the corollary is that we should reason about programs without even mentioning their possible
"behaviours".

And this concludes my technical excursion into the reason why operational reasoning about programming is "a 
tremendous waste of mental effort" and why, therefore, in computing science the anthropomorphic metaphor 
should be banned.

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

Not everybody understands this sufficiently well. I was recently exposed to a demonstration of what was 
pretended to be educational software for an introductory programming course. With its "visualizations" on the 
screen it was such an obvious case of curriculum infantilization that its author should be cited for "contempt" of 
the student body", but this was only a minor offense compared with what the visualizations were used for: they 
were used to display all sorts of features of computations evolving under control of the student's program! The 
system highlighted precisely what the student has to learn to ignore, it reinforced precisely what the student has 
to unlearn. Since breaking out of bad habits, rather than acquiring new ones, is the toughest part of learning, we 
must expect from that system permanent mental damage for most students exposed to it.

Needless to say, that system completely hid the fact that, all by itself, a program is no more than half a 
conjecture. The other half of the conjecture is the functional specification the program is supposed to satisfy. The
programmer's task is to present such complete conjectures as proven theorems.

Before we part, I would like to invite you to consider the following way of doing justice to computing's radical 
novelty in an introductory programming course.

On the one hand, we teach what looks like the predicate calculus, but we do it very differently from the 
philosophers. In order to train the novice programmer in the manipulation of uninterpreted formulae, we teach it 
more as boolean algebra, familiarizing the student with all algebraic properties of the logical connectives. To 
further sever the links to intuition, we rename the values {true, false} of the boolean domain as {black, white}.

On the other hand, we teach a simple, clean, imperative programming language, with a skip and a multiple 
assignment as basic statements, with a block structure for local variables, the semicolon as operator for statement
composition, a nice alternative construct, a nice repetition and, if so desired, a procedure call. To this we add a 
minimum of data types, say booleans, integers, characters and strings. The essential thing is that, for whatever 
we introduce, the corresponding semantics is defined by the proof rules that go with it.

Right from the beginning, and all through the course, we stress that the programmer's task is not just to write 
down a program, but that his main task is to give a formal proof that the program he proposes meets the equally 
formal functional specification. While designing proofs and programs hand in hand, the student gets ample 
opportunity to perfect his manipulative agility with the predicate calculus. Finally, in order to drive home the 
message that this introductory programming course is primarily a course in formal mathematics, we see to it that 
the programming language in question has not been implemented on campus so that students are protected from 
the temptation to test their programs. And this concludes the sketch of my proposal for an introductory 
programming course for freshmen.

This is a serious proposal, and utterly sensible. Its only disadvantage is that it is too radical for many, who, being
unable to accept it, are forced to invent a quick reason for dismissing it, no matter how invalid. I'll give you a 
few quick reasons.

You don't need to take my proposal seriously because it is so ridiculous that I am obviously completely out of 
touch with the real world. But that kite won't fly, for I know the real world only too well: the problems of the real
world are primarily those you are left with when you refuse to apply their effective solutions. So, let us try again.

You don't need to take my proposal seriously because it is utterly unrealistic to try to teach such material to 
college freshmen. Wouldn't that be an easy way out? You just postulate that this would be far too difficult. But 
that kite won't fly either for the postulate has been proven wrong: since the early 80's, such an introductory 

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html


www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

programming course has successfully been given to hundreds of college freshmen each year. [Because, in my 
experience, saying this once does not suffice, the previous sentence should be repeated at least another two 
times.] So, let us try again.

Reluctantly admitting that it could perhaps be taught to sufficiently docile students, you yet reject my proposal 
because such a course would deviate so much from what 18-year old students are used to and expect that 
inflicting it upon them would be an act of educational irresponsibility: it would only frustrate the students. 
Needless to say, that kite won't fly either. It is true that the student that has never manipulated uninterpreted 
formulae quickly realizes that he is confronted with something totally unlike anything he has ever seen before. 
But fortunately, the rules of manipulation are in this case so few and simple that very soon thereafter he makes 
the exciting discovery that he is beginning to master the use of a tool that, in all its simplicity, gives him a power 
that far surpasses his wildest dreams.

Teaching to unsuspecting youngsters the effective use of formal methods is one of the joys of life because it is so
extremely rewarding. Within a few months, they find their way in a new world with a justified degree of 
confidence that is radically novel for them; within a few months, their concept of intellectual culture has 
acquired a radically novel dimension. To my taste and style, that is what education is about. Universities should 
not be afraid of teaching radical novelties; on the contrary, it is their calling to welcome the opportunity to do so.
Their willingness to do so is our main safeguard against dictatorships, be they of the proletariat, of the scientific 
establishment, or of the corporate elite.

Austin, 2 December 1988

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

