


This manual consists of the film script, interspersed with para-
graphs supplying additional information about’ the problems discussed
in the film and mentioning some additional problems. There is a list
of references at the end.

What 45 the nicest way of placing N points on a cincle? Intuitively,
it 44 o place them at the ventices of an inscnibed regular polygon. But
is thene some precise, quantitative sense in which this is the best arrange-
ment? VYes, there ane severdl. '

For example, the area of a regular inscribed N-gon L& greatern than
that of any othen inscnibed N-gon. Thus, for any N greater than 2, the
unique way o4 maximizing the area 4is to place the points at the vertices
0§ a rnegubar inscribed N-gon. Now, rathen than maximizing the area, we
might nequine the points to be dispersed as much as possible. The smallest
distance determined by the points should be as Large as possibLe. 1In
othen wonds, we want to maximize the minimum distance between points of
the set. Note that Lt suffices to considern the distances beitween adfacent
points on the circle. Here again, the regular N-gon provides the unique
s0lution. That 45, the unique way of maximizing the minimum distance L4
1o place the points at the vertices of an inscribed regular N-gon. The
nesult £s the same as when we wanted Zo maximize Zhe area.

The nesults just stated are not hard Zo prove. (1) But what happens
when the points are on a sphere? How should they be arranged to maximize
the volume on the minimum distance? These problems arne unsolved or, at best,
onky partially solved. 1'm going to discuss them along with some other
geometnic problems that are unsolved at the time of filming in 1969.
Perthaps they will eventually be so0fved by the discovery of new geometric
figurnes orn configurations--that &8, by shapes of the future.

(l)There are many published proofs of the fact that, for a given
N and a given circle, only the regular N-gons are of maximum area among
those inscribed in the circle. See, for example, Fejes T6th(1953).
Cbviously the regular arrangement of N points on the circle is the only
one maximizing the minimum distance between the points.




Let's Look inst at the volume problem. We want to place N points on
Aphere s0 as to maximize the volume of the polyhedron with those N ver-
kaes . (2) 7p4 corresponds to the problem for area in two dimensions .
e N <5 4 the answern 45 as expected. A regularn tetrahedron maximizes
e volume. Recald that the volume of a tetrahedron 48 1/3 hA, where A
b the anea of one of the triangular faces and h is the distance from the
lane of that gace to the fourth vertex. When the vertices Lie on a
phere, the base plane's internsection with the sphere is a cincle through
ee of the verntices. 14 zthe base triangle 4is not equilateral, replacing
¢ by an equilaternal triangle will inchease the area of that face and hence
le volume of the tetrnahedron. Applying this angument to each of the
I faces of an inscriibed tetrahedron, we see that the insciibed tetra-
ldna of maximum volume have all of theirn faces equilateral and hence
te phecisely the rnegular ones.

(Z)Upon examining his understanding of the phrase, 'polyhedron
with those N vertices'", the reader may find it to be based more on
intuition than on mathematics. Since the film's problems are all
get in Euclidean 3-space E”, they can be understood fairly well on
an intuitive basis. However, we want also to discuss the higher-
dimensional analogues of some of the problems and for those, surely,
some precise definitions are required.

A subset C of Euclidean d-space Ed is said to be convex provided
that it contains all line segments whose endpoints are in the set;
that is, Ax + (1-A)y €C whenever xeC, yeC, and 0£AS1. Intuitively, a
convex set is ome that has neither dents nor holes. Several basic
notions concerning convex sets are relevant to the film's problems, and
they are discussed in this and subsequent footnotes. See Klee (1971b)
for a short general survey of convexity theory, including references
to the standard texts on various aspects of the subject.

It is plain that the intersection of any family of convex sets is
itself convex. Hence we may intersect all convex sets containing a
given set X to form the smallest convex set containing X; it is called
the convex hull of X. It is known that the convex hull of X is the
set of all points expressible in the form Ayxy + *++ + A K* where k is
a positive 1nteger, the A;'s are nonnegative real numbers khose sum is
1, and the x:'s are points of X. And by a theorem of Carathéodory(1907)
(see also Danzer, Griinbaum and Klee(1963)), we may set k = d + 1
when x €. E%. Thus, for example, if X is a subset of F- not contained
in any plane, the convex hull of X is the 'union of all tetrahedra whose
vertices belong to X.

As the term is used here, a polyhedron is a 3-dimensional subset
of E3 which is the convex hull of a finite set of points; equivalently,
it is a convex solid whose boundary is formed by a finite number of
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convex polygons. The problem of placing N points on a sphere #so to
"maximize the volume of the polyhedron with those N vertices'" reoulres
that the volume of the convex hull of the set X formed by the N points
should be as large as possible.

The volume 45 maximized when N is 6 by placing the points at the
vertices of a regular octahedron, and when N 48 12 at the vertices of a
regulan Lcosahedron. (3) That might be expected, by anafogy with the
regularity of the sofution on the cincle. However, the analogy is mis-
Leading when N is &, for the inscribed cube deés not give the maximum
volume in this case. When the sphere 4s dﬁ nadius n, the cube's volume L4
about 1.5x3 while that of a doubLe pyramid based on a regular hexagon A4
about 1.743; but that isn't .the maximum either. Hene is the best arrangeme
of edght points, which yields a volume of about 1.8:3. 1% was discovered
in Zhe 1960's when it was approximated by a ghaduate student with the aid
of a computer and Later p}wved by two other graduate situdents to be optimum,
The compi’/aca/ted nature o4 the exact expression fon the votume hints at the
complexity of the proof. Here's a model of the configuration, mounted 40
that you can see £t can be inscnibed in a sphere. Plainly it's farn from
being regular--for example, its edges are of three different Lengths.

(3)gee Fejes T6th(1953,1965) for proofs of these statements.

(4)This . ¢ ; .

optimum arrangement of eight points was approximated by
Grace (1963) with the aid of a computer search which identified it
as providing a local maximum for the volume of the convex hull of
eight points on the unit sphere of E°. Berman and Hanes (1970) des~
cribed the arrangement precisely and proved that it provides, up to
rotation, the unique global maximum for the volume.

There are neasonable confectures for some othern values of N. Here
48 the confectured optimum for nine vertices, obtained by adding a pyra-
midal cap over each of the 5qua/1e‘5ace/5 04 a tlangular prism. The volume
problem has actually been s0lved forn all N<9 and for N = 12. You might try
to find the known best congigurations gorn 5, 6, and 7 points yourself, Lin
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(5)A famous theorem of Euler(1752) (see also Griinbaum(1967)) asserts
that if a polyhedron P has v vertices, e edges, and f faces, then
v-e+f=2IfP is of maximum volume among all polyhedra formed
as.the convex hull of a given number v of points (P's vertices) on the
unit sphere of E3, then all of P's faces are triangles (Fejes Téth’
(1953)), whence it follows easily that 3f = 2e and hence 2e = 6v - 12.
Defining the valence of a vertex as the number of edges incident to it,
let v, denote the number of n-valent vertices of P, Then the average
valence of P's v vertices is Inv 2 12
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Call the polyhedron P medial provided that all of its faces are trian-
gles and the valence of each of its vertices differs by less than 1
from the average 6 - 12/v. The following conjecture, dual in a sense
to one of Goldberg(1935) (see(7) below), was formulated by Grace(1963)
and used also by Berman and Hanes(1970): If P is a polyhedron whose
v vertices lie on the unit sphere and whose volume is a maximum
subject to this condition, then P is medial if a medial polyhedron
exists for the v in question. For v<8 the validity of this conjecture
follows from the work of Berman and Hanes(1970), who state some addi-
tional unsolved problems concerning volumes of polyhedra.

(6)For points x = (xl,---,xd) and y = (yl""syd) of Ed, the inner
product <x,y> is given by <x,y> = x¥q teeet x4y 4- The norm of a

point x is Itx " = <x,x>l/2 and the distance between two points x and
y is X -y ". When x is not the origin 0, the set H. = {yaEd:<x,y>
= 1} is a2 hyperplane (a line when d = 2, an ordinary plane when d = 3,

*, a (d - 1)-dimensional flat in the general case) orthogonal to the
ray from O through x. In particular, when x belongs to the unit
sphere S = {sefd: || s || = 1}, the hyperplane H, is tangent to S at x.
For any point x of E4, the polar {x}° is defined by

{x}° = {yerd:<x,y> 2 1},
which for = # 0 is a closed halfspace that contains the origin and is
bounded by the hyperplanme Ey. The polar of any set X Ed is defined as
the intersection of the polars of the members of X; th;t 18y

%x° = {yerd:<x,y> 5 1 for all xeX},

The problem discussed above ---- of placing a given number N of
points on S so as to maximize the d-measure (area when d = 2, volume
when d = 3, etc.) of their convex hull —--- is closely related to the
problem of placing N points on S so as to minimize the d-measure of
their polar. When d = 2, the latter asks for the convex polygons
of minimum area circumscribed about S and having N edges; the unique
wolution is provided by the regular N-gons (see, for example, Fejes
T6th(1953)). When d = 3, it asks for the convex polyhedra of minimum
volume circumscribed about € and having N faces. This problem has
been extensively studied because of its connections with the isoper-
Imetric problem for polyhedra. See 7) below.

I'or d » 3, very little is known about either the maximum or the
minimum problem stated above, beyond the fact that the regular d-
pluplex (d=dimensional analogue of equilateral triangles and regular
tetrahoedra) 48 the largest simplex contained in a given sphere and
the smallest simplex, containing a given sphere (Slepian(1969), Ali
(1970)). In other words the maximum and minimum problems have been
solved when N = d + 1.

(7)The 2-dimensional isoperimetric theorem asserts that, among
all plane convex bodies of given perimeter, the circular disks are
of maximum area. In fact, if L and A are respectively the perimeter
and the area of a 2-dimensional body, then L2/A > 4m, with equality
only for circular disks. For convex polygons with a given number N
of vertices or edges, the inequality is sharpened to L2/A 2 4Ntan(m/N),
with equality only for regular N-gons (see Fejes T6th(1953)). '

The 3~dimensional isoperimetric inequality is A3/V2 2 367, where
A and V are respectively the surface area and the volume of a 3-
dimensional body; equality holds only for spherical balls. The
inequality can be sharpened in various ways for polyhedra. For
example, with w, = E§? %»it is known (Goldberg(1935), Fejes TSth

(1953)) that 3,2

AZ/VE 2 54(f - 2)tanwg (4sinZug - 1)
whenever A and V come from a polyhedron of f faces; equality holds only
for regular tetrahedra, cubes, and regular dodecahedra. Fejes Té6th

.(1953) gives other conjectured inequalities which have been proved
only in special cases.

The "isoperimetric problem for polyhedra" asks for those poly-
hedra which, for a given surface area and given number k of faces,
are of maximum volume; equivalently, it asks for those which minimize
the quotient A3/VZ, But it is known that any such minimizing poly-
hedron is circumscribed about a sphere, and that A3/V2 = 27V for
any polyhedron circumscribed about the unit sphere S. Hence the
problem reduces to the one, mentioned above, of finding the polyhedra
of minimum volume which are circumscribed about S and have k faces.
The problem has been rigorously solved for k=6, perhaps for k=7, and
for k=12, but appears otherwise to be open though it has been studied
by distinguished mathematicians since a 1782 paper of Lhuilier.

See Steinitz(1927,1928), Goldberg(1935), and Fejes T6th(1953;i965)
for references and a more detailed account.

Goldberg(1935) called a polyhedron with f faces medial provided
that each of its vertices is 3-valent and the number of edges of
each face differs by less than 1 from the average 6 - 12/f. For any
polyhedron P having the origin in its interior, it is true that P is
inscribed in the unit sphere S if and only if the polar P° is cir-
cumscribed about S, and that P is medial in Goldberg's sense if and
only if P° i? Tedial in the sense of Grace(1963) and Rerman and Hanes
(1970) (see 5 above). Goldberg's conjecture was that if P is a
polyhedron whose f faces are tangent to the unit sphere and whose
volume is a minimum subject to that condition, then P is medial (in
his sense) if a medial polyhedron exists for the f in question.,

The following attractive conjecture seems to be consistent with
the few known facts.® For each k > d and each set X of k points on the
unit sphere § gf,Ed, the following Eyg_statemeﬁ?§>arg_équivalent?_'—_u
(a)there is no set of k points on S whose convex hull has greater

d-measure than that of X; (b)there is no set of k points on § whose

(8)The term polytope is used here to mean a set (in a finite=-
dimensional Euclidean space) which is the convex hull of a finite

Slﬁlff points; equivalently a polytope is a bounded set which is
* Showed. g;ﬁ

(975) that 4he polan. of 4he Beuman~ftones §-veckep prlghedion 5 nat Aungont fo 4. wntsphine ad frce qun iy,

found e conset faze blk angles (o withas. (0™ nadl.) (1/30/74) T the. tplemal. polghedenn, of swallest ana. (a1 )
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the intersection of a finite number of closed halfspaces. The
standard reference on polytopes is Grunbaum(1967). A polytope of
dimension d is called a d-polytope; thus 2-polytopes are convex poly-
gons and 3-polytopes are convex polyhedra. When P is a d-polytope in
Ed, a face of P is either P itself or the intersection of P with a
hyperplane which misses the interior of P. Each face of a polytope
is itself a polytope. The O-faces are vertices and the l-faces are
edges. The 2-faces are often simply called "faces" when P is 3-—
dimensional.

Letlgk(P) denote the sum of the i-measures of the various i~
faces of P; for example, S&(P) is the sum of the lengths of P's edges.
For distinct integers i and.j beteeen 1 and d, let pi4(P) denote the
isoperimetric ratio SE(P)l/l/}E(P)l/J. Surprisingly, the following
problem is open: For which triples (d,i,j) is pi.(P) bounded above
as P ranges over all d-polytopes? 4And even when p;:(B) is known to
be bounded above, the precise value B(d,i,j) of its supremum has
been determined only when i ='d and j = d ~ 1.

Eggleston, Griinbaum and Klee(1964) show B8(d,i,j) is finite if
i=dordi=d-12>3joriis amultiple of j, and Klee(1970) shows
B(d,i,j) is infinite whenever i < j. However, the finiteness of
B(d,i,j) is unsettled whenever d = 2 2 i > j 2 2 and 1 is not a
multiple of j. From the d-dimensional version of the classical
isoperimetric inequality it follows that B(d,d,d-1) = (dWy
where Wy is the d-measure of a d-dimensional spherical ball of unit
radius. The supremum B(d,d-1,d-1) is not attained by any d-polytope,

but B. Griinbaum conjectures that all other finite suprema are attained.

Aberth(1963) shows s§3,2,1) 2 (6m)~1/2. Melzak(1965) conjectures
£(3,3,1) < 272/33711/6 with-equality only for a right prism based
on an equilateral triangle whose edge-length is equal to the height
of the prism. For other results related to the determination of
f(d,i,7) see Komhoff(1968,1970) and Larman and Mani(1970Db).

Now Let's turn to the dispesrsal problem. We want to place N points
o o Aphere so as to maximize the minimum distance between the points.
bt as {n the anafogous problem on the circle, we need consdder only the
s tances between points whose Line segment 48 an edge of the polyhedron
fonmed by taking the points as vertices. Quite a simplification, visually
wt Least, To fortify your intuition on this problem, you might think o4
(L ab the problem gaced by N misanthropes, each of whom s0 hates the othens
that he wants to get as far away from them as possible. For this, as for
the volume problem, regulanity is a good guide when N 48 4, é, on 12, but
aqadn not when N 46 8. The most dispersed arrangement §or elght points
(ot at the vertioes of a cube but rather at those o4 a square antiprism,
Whieh ulelds a Langer minimum distance. Note that the volume and dispersal
poblems o the sphexe have different answerns when N s §, while on Zhe

1/d>—1/(d-l),

cinele the area and dispernsal problems alwaus have the same answern. The
dispersal problem for N points has been sokved forn N < 10, N = 12, and

N= 24, A sclution has been anncunced gor N = 11, and zZhere are confectured
solutions for N = 10 and for about a dozen othen values of N. (9)

(g)Solutions of the dispersal problem for N < 6 were discovered
by Tammes(1930), a botanist. Rigorous solutions were given for
N < 6 and N = 12 by Fejes T6th(1943, 1949, 1953), for N < 9 by Schiitte
and van der Waerden(1951), and for N = 24 by Robinson(1961). Robinson's
result established a conjecture of Schiitte and van der Waerden(1951), as
did the solutions announced by Ludwig Danzer for N = 10 and N = 11.
However, Danzer's arguments, presented at conferences in 1962 and 1958
respectively, have never been published. There are published conjectures

of Schiitte and van der Waerden(1951), van der Waerden(1952), Jucovic(1959)

Strohmajer(1963), Goldberg(l965, 1967a-c, 1969a), and Robinson(1969)

which cover all values of N < 42 with the exception of 23, 28, 29, 34, 38,

and 39, and cover also the values 44, 48, 52, 60, 80, 110, 120, and 122,
The known results and conjectures are summarized by Goldberg(1967a, 1969a)
Among the expository accounts o0f the dispersal problem are those of
Fejes T6th(1953, 1965), Meschkowski(1966), van der Waerden(1961),
Coxeter(1962), and Klee(1l971a).

As was remarked by Robinson(1961), a general method of Tarski(1951)
provides in theory a solution of the dispersal problem for any given
number N of points. Indeed, for each N there is a finite number of com-
putational steps leading to an algebraic equation satisfied by the
maximum, overall arrangements of N points on the unit sphere, of the
minimum distance. However, because of the length of the required
computation, the method does not seem to be applicable in practice. lar
very large values of N one can only seek lower and upper bounds on the
maximum of the minimum distance, or, alternatively, lower and upper
bounds on the maximum number C(¥) of spherical caps of given angulur
radius ¢ that can be placed on the sphere without overlapping.

It is known that 27T (oqo2p - desc2)2/3) < o) = =25,

where o is such that sec2a = 1 + sec2¥. Here the lower bound is

due to van der Waerden(1952) and the upper bound to Fejes Toth(1949)
see also Coxeter(1962) for the latter. For ¢ < 22° a sharper but more
complicated upper bound follows from the work of Robinson(1961).

The §inszt systematic study of the dispersal probLem was made by a
botanist. 9 This picture shows why. He wanted o explain the disind:
bution on spherical pollen grains of the places through which a pollen fube
can emerge din the process of fertilization. As each pollen tube takes wp
a ceiitain amount of space, the exit places can't be too close togethon,
However, -there should be as many exit places as possible in order to maxds
mize the chances of fertilization. We might say that the polLlen ghain
wants to maximize the numbern of points--exit places--gor a fixed méndmum



unique best arrangement for iwelve points, and it has been announced that
discanding one o4 those points provides the unique best arrangement for
eleven. Similarn conjectures have been made forn N = 24, 48, 60, and 120.
Thus the misanthrope problem fLeads to the ﬁo&owing sub-problem: 13
D(N-1) equal to D(N) when N L8 6, 12, 24, 48, 60, and 120, and otherwise
strictly greaten than DIN)? 0f couwnse DIN-1) is neven Less than D(N).(17)

distance, while the misanthropes want to maximize Zhe minimum distance
4or a. gixed number of points--themselves. However, a complete solution
of either preblem entails a complete sofution of the othen. (10)

(lO)For another connection of the dispersal problem with biology,
see the mathematical model of cell-nuclei formulated by gerban and
Strecild(1966). The shapes of virus particles appear not to be re-
lated to the solutions of the dispersal problem (see Goldberg(1967d))

but rather to another geometrical problem considered by Goldberg (ll)The result for 11 points is Panzer's, as indicated in (9),
(1937) (see Caspar and Klug(1963) and Wrigley(1969)). while the conjecture about 24, 48, 60, and 120 is due to Robinson(1969).
- The special property of these numbers actually established by

In his studies of molecular geometry, Gillespie(1960,1970) (see Robinson, and related to the conjecture, is as follows: If N points
also Levine(1970)) notes that the arrangements of electron-pairs in a are placed on a sphere in such a way that each point EE.EE near to
given valency shell are a consequence of the mutual interactions of Five Otherg"ggfégz_two Egints are to each other, then N is 12, 24,
electrons due to (a)electrostatic repulsions, and (b)the operation 48, 66?7;;‘1}6, and for each of these values of N the coEEiguration is
of the Pauli exclusion principle, according to which electrons of unique gi_to rotation and reflection. This result has been extended
the same spin tend to stay as far apart as possible, while electrons in a certain ditection by Fejes Toth(1969b).

of opposite spin tend to be drawn together. He then concludes that,
in most cases, (b) is so dominant that (a) can be virtually ignored
and the dispersal problem provides the correct model for studying the
arrangement. However, Gillespie(1970) appears to claim incorrectly
that the most dispersed arrangement of 10 points is at the vertices A nelated probLem invofving points on a sphere was the souwrce of a dib«
&2 "ieapped sghaze Entipxien, agheement in 1694 between Tsaac Newton and David Gregony. They wondered
In connection with an earlier model of the atom, Thomson(1904) how many spheres could be arranged s0 as to Zouch a central sphere without
sought to determine the stable equilibrium patterns of N classical
electrons constrained to lie on the surface of a Sphere while re-

any overdapping, all the spheres being congruent. The points o4 tangency

pelling each other according to the inverse square law. (One such 04 the outen spheres with the central spherne provide a distribution of
attern would be that of minimum potential energy, but there might X ! 4

Ee others; there might even be inequivalent patierns having theg | points on that sphere. 1In Zhe corresponding plane problem--arranging

game minimum potential energy.) The problem, which is no easier ‘ congruwent cincles to fouch a central cincle--the maximum L8 easily seen Lo
than the dispersal problem, was later considered by Foppl(1912), . - h , X ;

Whyte(1952), Cohn(1956), and Goldberg(1969b), but the total amount | be 6. For the 3-dimensional maximum, NewZon confectured 12 and Gregohy 185,

of progress was not great. However, Cohn(1960) was able to provide i Note that if congruent spheres are tangent, one subtends on the other a cap
a rather complete treatment of the corresponding problem for the K

circle, where N not necessarily equal point charges are acted upon of angilar radius 30°. Hence the Newton-Gregory probLem amounts to ashdngt
by a fairly general repulsion law. For each ordering of the charges How many caps of angular radius 30° can be placed on a sphere without

on the circle there is.(up to rotation) a unique stable configuration, .

and when all charges are equal it is the regular one. ' | overtapping?

One way of arnanging twelve such caps is to maximuze the mémdmun
distance between thein centens. In this aviangement, which places the
centers at the verntices of an inscraibed regular Lcosahedron, the 30° ecapa
can even be enfarged slightly without overlapping. Newton knew a sphene
arrangement invofving twelve contacts, was unable o produce any Lnvolulig
Hhinteen, and probably assumed no one else could do it if he couldn't.
Thus he confectured the maximum was 12. Gregory's guess of 13 was aldo
plausible, as the surface area of a sphere 48 mone than thinteen Ldmes

An dntenesting aspect of the mésanthrope problem £8 brought out by
noting that the best minimum distance for five points is the same as for
., That s, 4§ DIN) denotes the best distance for N podints, then D(N-1) =
PDIN) fon N = 6. Thus the five misanthropes are surprised to find they are
ne better off than s4ix! The same relationship seems to hold between
eleven mtsanthnopes and twelve. The nregular Licosahedron provides the
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that o4 a cap of angular radius 30°. Well, Newton was night, but that
waisn"t proved untif 180 yeans Laten.''?) 1 hope it wite be fess than 180
yearns begore someone sclves the next stage of Newton's problem, in which
the single central sphene 44 replaced by two tangent spheres. That is, how-
many spheres can be made to contact the figure fommed by two tangent
sphenes, all spheres being congruent and no overlapping pmmi/tted?(w)

(12)5ee Coxeter(1962,1963) for an account of the Newton-Gregory
controversy and for references to solutions. The conjecture for the
two-sphere problem is due to R. Robinson(written communication), who
observes that it implies a conjecture of L. Fejes T6th to the effect
that any packing of congruent spheres in E3 in which each sphere
touches 12 others must be formed from layers with the usual hexagonal
arrangement.

As a step toward a heasonable confecture on the twc-sphere problem,
Lot us considen anothen arrangement of twelve 30° caps on a sphere, this
one associated with a cuboctahedron rather than an Licosahedron. In contrast
With the icosahednal arnangement, this one does not permit the caps to be
enlanged. Howevern, it does Lead to a packing of congruent spheres £n
space, with each contacting iwelve otherns. To see this, sdimply divide
J-space into cubes in the natural way and place spheres concentric with
altornate cubes so that each sphene £a tangent to all twelve edges of Ats
aube. This is the "cubdc close-packing” of Johannes Keplen. It 4s 04
special interest to crystallographers, as At As conjectured to provide
the densest packing of spheres in the space. However, that's another
unbolued problem, as the conjecture has been proved only under certain
negulandidy assumptions. (1) 14 we examine a parnticufarn sphere An tm confi-
quration, we see that the twelve points of tangency with the othen spheres
ahe at the vertices of a cuboctahedrion. And Lf we examine two tangent
sphenes, we see that there are 18 othens fouching ome on both of them.
The confectured maximum for the two-sphere problem is T§. (12)

(13)A sphere-packing in £d is called a lattice-packing provided
that, for each pair of sphere-centers x and y, the point 2y - x is
also the center of a sphere in the packing. The cubic close-packing
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of congruent spheres in E3 is a lattice—p%cking and is known to be
the densest such. However, there is in E” a non-lattice packing of
the same density, and it is therefore natural to ask whether some
other non-lattice packing may have even greater density. According
to Rogers(1958), "many mathematicians believe, and all physicists
know" that this is not the case. However, for certain values of d
greater than 3 there are non-lattice packings in Fd which are denmser
than the densest known lattice-packings (Leech and Sloane(1970)).

There arne many othern unsofved probfems concerning awiangements of
points on spheres. Fon example, how should a fixed number of unit charged
be placed on a sphere 40 as to minimize the potential energy of the con-
54'guna/tiﬂn?”4)”5) (16) However, 1'd Like Zo pass on to a group of unsolved
problems nelated to ihe famous fowr-colorn confecture. These will nequire
some definitions.

(14)The problem of finding the most dispersed arrangement of N
points in a set X, and closely related problems concerning the packing
of circles or spheres in X, have been studied for choices of X not
mentioned above. See(15)ifor higher—dimensional spheres. For the
cases of circular disks, rectangles, and cubes see Goldberg (1970,
1971a,1971b), Kravitz(1967,1969), Pvil(1969), Ruda(1970), Schaer
(1965), and Schaer and Meir(1965).

(15)To conclude the discussion of points on spheres, we will
describe some of the higher-dimensional results and problems.

The special relationship between 5 points and 6 in the case of
E3 was extended to Fd by Rankin(1955), who showed that for d + 2
SN 2 24, the most dispersed arrangement of N points on the unit
sphere of E4 involves a minimum angular distance of m/2.

Coxeter(1963) was concerned with the maximum number Ng of ballm
that can touch a ball in E4, all of the (spherical) balls being con-~
gruent and no overlapping permitted; equivalently, Ng is the maximum
number of points that can be placed on a sphere in Eg so that tha
minimum angular distance is at least 7/3. He obtained the following
bounds: 24 X N4 < 26, 40 < N5 < 48, 72 < Ng =< 85, 126 5 N7 5 146,
240 = Ng = 244. (See also Leech and Sloane(1971).) His lower
bounds are firm, as they result from specific constructions, but hin
upper bounds result from a formula based on a conjecture which im
unproved for all d 2 5. (For d = 4 it was proved by Boroezky and
Florian(1964).) Coxeter's formula leads to the asymptotic expraesulon

d-1)/2 1/2.3/2 -1
2( )/ ﬂ / d / e for the upper bound. Fejes TSth and Heppes(1967)
considered the number T; of congruent balls in F4 that can be arranped
so that each ball in the family either touches a certain ball B or
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‘touches a member of the family that touches B; they showed Ty = 18,
56 = Ty X 63, and 168 < T4 = 232. A further extension of this idea
was considered in E2 by Fejes Téth(1969a).

As was explained in the expository article of van der Waerden
(1961), the dispersal problem on a high-dimensional sphere is of
interest in information theory. In a communication system in which all
signals are of the same energy and are made up of a limited number of
frequencies, each signal may be represented by a point on a sphere
centered at the origin in E®, where the radius of the sphere is
determined by the energy, the dimension by the number of frequencies,
and the coordinates of a point by the Fourier coefficients of the
associated wave-form. The communication is inevitably subject to
some 'moise', so that when a point p is sent, it is certain only that
the received point (signal) is at distance < 8 from p, where the value
of & depends on the energy of the noise. In order to avoid ambi-
guity in communication, any two signals (points) that are used should
be at distance Z 26. Subject to this minimum distance requirement,
there should be as many available signals as possible. Alternatively,
if the number of signals is fixed, they should be as dispersed as
possible in order to maximize the amount of noise that can be toler-
ated. See Leech and Sloane(1971).

In another form of the communication problem, one seeks to mini-
mize the probability of error. This leads, as Balakrishnan(1961,1965)
has shown, to the problem of placing N points on the unit sphere S
of B¢ so as to maximize the mean width of their convex hull. (For a
convex body B < B4 and a unit vector u e S, the width w,(B) in the
direction u is defined as the length of the interval {<u,b>:beB}.

The mean width w(B) is then obtained by averaging w,(B) over S; that is,
fueSwu(B>
{d-1)-measure of S’
of information theory asserts that when N = d + 1 the mean width is
maximized by placing the N points at the vertices of a regular simplex
inscribed in S. Balakrishnan showed that the regular arrangement
provides a local maximum, but the claimed proof of global optimality
of Landau and Slepian(1966) was shown by Farber(1968) to be invalid.
Thus the problem is open for all d > 3. Tanner(1970) has provided a
survey of the problem and a well-organized exposition of the relevant
geometrical knowledge. ’

w(B) = The simplex conjecture

(16)The intention here has been to stay rather close to the spe-
cific unsolved problems mentioned in the film. Thus, despite the
considerable number of references cited, we have barely scratched
the surface of the vast literature devoted to packing problems and
have not even mentioned the closely related covering problems. The
standard references on packing and covering are Fejes T6th(1953)

(and many subsequent papers by him) for two and three dimensions, and
Rogers(1964) for higher-dimensional spaces.

Let us say that two 2-dimensionad regions are neighborns if their
(ntensection 46 1-dimensional, and that two 3-dimensional regions are
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neighbors Af thein internsection is 2-dimensional. A neighborly family

0f negions 45 one An which every negion A& a neighbor of every othen
negion. The foun rnegions of this planar map form a neighborly family,

50 0f couwnse the map cannot be colored in Less than four colons. However,

a plane cannot contain any nelghborly family consisting of more than foun
negions. Now, what {4 the situation in 3-space? That is, what is Zthe
maxAimum number of 3-dimensional regions in a neighborly 4amily? 1t turns
out there 48 no maximum, that §or each N there exists a neighborly family
consisting of N 3-dimensional regions. Here's an indication of how such
a gamily could be constructed. (17) But what if the negions are very
restricted Ain shape--fon example, Lf they are all tetrahedna?

(17>It can even be required that all of the regions are convex
polyhedra. Different proofs of this have been given by Tietze(1905),
Besicovitch(1947), and Danzer, Griinbaum, and Klee(1963). See Tietze(10¢
for the history of the problem. The construction of Danzer, Griinbaum
and Klee is based upon the startling fact that for each N > 4 there
exists a 4-polytope with N vertices such that each pair of vertices
is joined by an edge of the polytope. This fact and its higher-
dimensional analogues, first established by Carathéodory(1911) and
later rediscovered by Gale(1956,1963), play an important role in the
study of polytopes (Griinbaum(1967)).

~ Now we have an unsclved problem. Specifically, what is the max{mum
numbes N 0§ memberns forn a neighborly family of tetrahedra? To see that
N s at Least §, we begin with two bases. Each consists of four nelghbonly
dangles. We then construct two nelghborly families of foun tetnahedra
each by forming two pyramids. Finally we place the two pyramids base Lo
base and give a s@ight twist. That ylelds the configuration shown heno
in the plane of the bases. Thus each Zetrahedron in one pyramid famdLy
has a two-dimensional intersection with each in the other, and the edght
tetrahedna fornm a neighborly family. Hence N 48 at Least §. 1In the othen
direction, 4t has been proved that no neighborly gamily includes more Lhan
nine tetrahedna, though no one knows whethen nine are actually possdble.
The problem, then, 44 to decide whethen the maximum number N &4 & on 9,
and the answern L5 generally believed %o be eight. 1In attempting Lo prove
this you might want to Look for a new method nather than nefining the
old one, for the existing proof that N 44 at most 9 takes abouwt fwo
hundred pages' (18]
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(18)The problem of neighborly tetrahedra is due to Bagemihl
(1956), who proved 8 £ M < 17. Baston(19€5) showed N < 9. An
exposition of the problem was provided by Klee(1969a). Tor the
analogous d-dimensional problem, concerning neighborly families of
d-dimensional simplices in Ed, the literature does not even seem
to contain any good bounds, though Baston(1965) conjectures the
maximum is 2%.

The four-color problem deals with very general maps on a plane ox
sphene, An which the shapes of the countrnies may be veny complicated.
Howeven, the probLem can be neduced in several ways. In preparation §ok
some neductions, T'RL say that a set 4s convex L§ Lt has no dents on holes
in 4t on, mone gormally, A4 Lt contains all Line segments whose endpoints
are in the set. The deginition applies, of course, to all dimensicns.

A convex polyhedron 4is a 3-dimensional convex reglon whose surface Lb

made up to a gindite number of convex polfygons. These surgace polygons
are called the faces of the polyhedron and we're also interested Ain Ats
edges and verntices. For example, The tetrnahednon, cube, and octahedron
are alkl convex polyhedna. Thein numbe}us'oﬁ vertices, edges, and gfaces

are as shown.

Acconding to one reduction theorem, which we won'zt prove, the four-
colon confecturne 44 equivalent Zo the confecture that the faces of
any convex polyhedrnon can be colored Ain four colons s0 that neighboring
faces neven recelve the same coloxr. (19)  This plainly is possible for each
0f the three examples, but there are infinitely many othern convex polyhedra
Lo wornrny about. 1In onden to heduce the four-colon problem to a special
class of convex polyhedra, we introduce the notion of truncation. That
means sicing a polyhedron with a plane that passes between one vertex
and the nemaining ventices. This neplaces the verntex by a small face,
and {1t's easy to see the oniginal polyhedron can be colored in four colons
{f the thuncated vernsion can. Just note that any two faces which would
be nedghbors with the vertex nestored are also nedghborns in the truncated
vensdlon. By truncating any convex polyhedron at each of its original
verntices, we obtain one that 48 3-valent, meaning that each vertex As
on exactly three edges. Fon example, this is the rnesult of truncating
the octahedron at each of its s4ix vertices. 14 the resulting 3-valent
polyhednon can be colored in four colons, then so0 can the orniginal poly-
hednon,  Thus the four-colon confecture would be proved 4§ we could eszablish
Lt fon all 3-valent convex polyhedra.

(19)The most complete exposition of the four-color problem appears
in the book by 0re(1967), and some important aspects omitted by Ore
are discussed by Heesch(1969). May(1969) discusses the problem's
origin and Ore and Stemple(1970) show that any map of less than forty
countries can be colored in four colors.

The reduction of the four-color problem to the problem of coloring
the faces of a (convex) polyhedron follows from reductions given in the
literature together with an important theorem of F. Steinitz which
characterizes the graphs (combinatorial structures formed by the
vertices and edges) of polyhedra in purely combinatorial terms.

The theorem of Steinitz first appeared in Steinitz and Rademacher
(1934), and simpler proofs were provided by Griinbaum(1967) and
Barnette and Griinbaum(1969). The graphs of d-polytopes for d > 3
have still not been characterized in purely combinatorial terms,
though necessary conditions have been given by Balinski(1961),
Barnette(1967), Griinbaum and Motzkin(1963) (see also Griinbaum(1965)),
Klee(1964), and Larman and Mani(1970a). See Griinbaum(1970a) for
some higher-dimensional analogues of the four-color problem.

Now Let's Look at a different aspect of trwncation. 1§ you truncate
the cube four Zimes in the manner shown, you obtain a convex polyhedron
An which each face has three edges on s4ix edges. 1t has been confectuwred
that every convex polyhedron admits a ginite sequence of thuncations
Leading to a polyhedron in which every gace has a numben of edges that
i a multiple of 3. The nequired truncation sequences may be more com-
plicated than the one already shown forn the cube. Forn example, this
one Lnvolves thuncating a vertex which had itseld been introduced by an
earlien truncation. 1In any case, this innocent-sounding confecture 44
known %o be equivalent o the four-color conjectune! (20)

(ZO)The truncation conjecture is discussed by Hadwiger(1957).

There have been several claimed procgs cof the four-colorn confecture,
Akl of which twwned out to be incomnect. 1) However, one of them has Lud
to anothen interesting unscfved probLem. In onden to introduce that problem
and its connection with the four-colon conjectune, Let's consdider any
3-valent convex polyhedron that admits a Hamiltonian circult. By this
1 mean a way of traveling along the polyhedron's edges 50 as to visdit
each vertex exactly cnce and neturn to the starnting point. Fon example,
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that was a Hamiltonian cirewit on the cube and here 4s one on the regular
dodecahedron. Any such cireuit divides the surigace of the polyhedron
into two halves in a natural way, and it can be proved that the gaces in
each hatf can be coloned with only two colons so that neighboring faces
neceive different colors. That Leads to an acceptable coloring of all
the faces with fust gour colons.

(2)yhile writing the final version of this viewer's manual
(October 1971), I heard of another claimed proof of the four-color
conjecture, based on work of Heesch(1969), which sounded much more
promising than the many earlier claims. However, I have not yet
seen the details of the argument.

Thus the fouwr-colon confecture could be proved by showing that any
3-valent convex polyhedron admits a Hamiltonian cireuit. The exiszence o4
such cireuits stood as a confecture for more than sixty years uniil,
(inally in 1946, a counterexample was produced. However, there ftemains
the probLem of §inding the smallest counterexample. That is: What is the
mindmum number M of vertices gor a 3-valent convex polyhedron net admitting
a Hamiltonian cincwiz?!22) 1t is hnown that M is between 20 and 38. The
proof that M is at Least 20 involves an examination of the many different
types of 3-valent convex polyhedra with gewer than 20 vertices, and zthe
discovery of a Hamiltonian cireuit in each. In the other direction,
thehe is a clever prood that this polyhedron of 38 vertices does not admit
any Mamiltonian cirewit. Hence M is at most 38.

(22)4 result equivalent to the conjecture on Hamiltonian»circuits
was stated without proof by Tait(1880), and proofs were claimed by
Chuard (1932) and Schoblik(1930). The counterexample of Tutte(1946)
has 46 vertices, but an example with 38 vertices was constructed
independently by D. Barnette(see Klee(1967)), Bosak(1967) and Lederberg
(1967). With the aid of a method of generating 3-valent polyhedra due
in polar form to Bowen and Fisk(1967), it has been proved by Mrs. Jean
Butler that M 2 24. Thus 24 <M = 38, but further progress may be
quite difficult. Also unknown is the smallest number of vertices for
4 J=valent convex polyhedron not admitting a Hamiltonian path, where
this ds defined like a Hamiltonian circuit except that it need not
return to its etarting point. The smallest examples known at present
are those of T.A. Brown (90 vertices) and T. Zamfirescu (88 vertices),
which are described in the expository accounts of Klee(1967) and
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Grunbaum(1970b) respectively. Several related unsolved problems
are discussed in these accounts. In particular, the following
attractive conjectures of D. Barnette are stated by Grinbaum(1970b):

A 3-valent polyhedron admits a Hamiltonian circuit if each of its
faces has an even number of edges. - T

Fach 4-valent 4-polytope admits a Hamiltonian circuit.

The second conjecture is unsettled even for the simplest 4-valent
4-polytopes—--namely, those formed as prisms over 3-valent polyhedra.
The existence of Hamiltonian circuits for such 4-polytopes has been
observed by D. Barnmette to follow from the four-color conjecture.

A graph is said to be k-connected provided that it has at least
k + 1 vertices and is not separated by the removal of any k vertices;
equivalently, each pair of its vertices can be joined by k paths that
are pairwise disjoint except foE §heir common endpoints. By the theorem
of Steinitz(1934) mentioned in 1 ), as reformulated by Griinbaum and
Motzkin(1963), a graph G is isomorphic with the graph of a polyhedron
if and only if G is planar and 3-connected. In connection with the
above problems on Hamiltonian circuits, it should be mentioned that
Tutte(1956) (see also Ore(1967)) proved that every 4—-connected planar
graph admits a Hamiltonian circuit. And Fleischner(1971) has recently
proved that the square of every 2-connected graph admits a Hamiltonian
circuit. (The square G* of a graph G has the same vertices as G.
However, two vertices of G are neighbors (joined by an edge) in G2
if and only if they are either neighbors in G or have a common neighbon
in G.) \

For results concerning the existence of Hamiltonian circuits on
polyhedra of unrestricted valency, and on certain special classes of
3-valent polyhedra, see Klee(1967) and Grinbaum(1970b) and their
references. See especially Grinberg(1968), Sachs(1968), and Barnette
and Jucovic(1970). ]

For additional unsolved problems on various aspects of the
geometry of polytopes, see Griinbaum(1567,1970b), Griinbaum and Shephard
(1969), Klee(1966), and Shephard(1968).

Though the problLem 0§ finding M's true value L5 a special and
difgicult one, Lt L8 of Anterest in connection with an important problem
from ornganic chemistry---that of codifying the descidiptions of organic
compounds Ln a mannen that is amenable fo modern methods of electronic
data processing. (23] Having mentioned some s£ight nelationships of convex
bodies 2o botany, crystallography, and organic chemistrny, 1'£L close with
three shont unsolved problLems concerning physical properties of convex
bodies.
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(23) " X "
) S?e.Ledgrberg(1965,%969) for ghe use of Familtonian circuits (25)The problem about floating bodies was posed by S. Ulam in the
in the codification of organic compounds. 1930's, and is repeated in his book (Ulam(1960)) on unsolved problems.
The 2-dimensional example is due to Auerbach(1938).

A spherdical ball has the property that for any two planes the area

0f the ball's Langesit cross-section parallel to one plane is the same 1 The $inal problem also involves centens of gravity. A homogeneous
as that of <ts Largest cross-section parwllel to the other. 1t 4s unknown : solid 45 called unistable provided that Lt is in the shape of a convex
whethern any non-spherical convex body has that property. The analogous polyhedron and has a special face such that, however the s0lid 44 placed
2-dimensional question has an affimative answern. In fact, there 46 a on a §lat surface, Lt will roll over until Lt rests on that special face.
noneireular convex body whose maximum cross-sectional Length in any i Here 44 a unistable sofid with 19 faces; the special face is colonred red.
dinection 46 the same as that in any othern direction. (24) No matter how T put it down, £t will twwm until Lt rests on the red 4ace.

However, 4t is unknown what is the smallest possible numbern of faces for
such a sotid. (26)

(24)The plane convex bodies 'whose maximum cross-sectional length
in any direction is the same as that in any other direction' are pre-
cisely the bodies of constant width, usually defined by the condition
that the distance between any pair of parallel tangent lines is the
same as the distance between any other such pair. See Klee(1971a) for
an expository account of some of the surprising properties of these

bodies, and for references to the literature.

26
( )For the construction and a number of related unsolved problems,
see Guy(1969).

The unsolved 3-dimensional problem mentioned above, dealing with
areas of plane cross-sections, is related to the problem of deter—
mining the Fermi surface of a metal by means of the de Haas-van Alphen
effect. See Klee(1969b,1971a) for accounts of this, and Mackintosh
(1963) for a readable discussion of Fermi surfaces. Zaks(1971) has
constructed some rather well-behaved bodies which are not spherical
and yet have the property of ''constant maximum cross-sectional area'';
however, his examples are not convex.

To {ntroduce the next prcblem, we note that the non-circular plane
convex body shown here 48 such that for any Line cutting the body into
o halves of equal area, the segment joining the centers of gravity of
the fwo halves <is perpendicular to the Line. The question 48 whether any
nonapherical 3-dimensional convex bedy has the analogous property for all
planes cutting £t into two halves of equal volume. That is, does there
exdsdt a nonsphernical 3-dimensional convex body.such that, for any plane
Qultlng At dnto wo halves of equal volume, the Line joining the centens
0f aravity of the two halves is perpendicular to the plane? This amounts
to asling whethen there &4 a nonspherical homogeneous convex solid of
dena ity 1/2 which, when §loating 4in water, will nest in equilibrium
nogandboas of Lts ondentation. (25)
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