
Shiny Consolidated Documentation Set
from shiny.rstudio.com

unknown, USER is lgordon
September 7, 2015

Contents

Index 7

1 Tutorial 7

1.1 Teach yourself Shiny . 7

1.2 Are you ready for Shiny? . 9

1.3 The Shiny Webinar . 14

1.4 LESSON 1:Welcome to Shiny . 16

1.5 LESSON 2:Build a user-interface . 23

1.6 LESSON 3:Add control widgets . 33

1.7 LESSON 4:Display reactive output . 40

1.8 LESSON 5:Use R scripts and data . 46

1.9 LESSON 6:Use reactive expressions . 55

1.10 LESSON 7:Share your apps . 61

2 Articles 72

2.1 Articles . 72

2.2 The basic parts of a Shiny app . 75

2.3 How to build a Shiny app . 83

2.4 How to launch a Shiny app . 89

2.5 How to get help . 90

2.6 Single-file Shiny apps . 92

2.7 App formats and launching apps . 94

2.8 Persistent data storage in Shiny apps . 98

2.9 Application layout guide . 109

2.10 Display modes . 122

2.11 Tabsets . 128

2.12 Customize your UI with HTML . 132

2.13 Build your entire UI with HTML . 140

2.14 Build a dynamic UI that reacts to user . 144

2.15 Shiny HTML Tags Glossary . 147

2.16 Progress indicators . 154

2.17 Getting started with shinyapps.io . 160

2.18 Setting up custom domains with . 170

2.19 Scaling and Performance Tuning with . 172

2.20 Share data across sessions with . 177

2.21 Migrating shinyapps.io authentication . 180

2.22 Introduction to Shiny Server . 181

2.23 Save your app as a function . 185

2.24 Sharing apps to run locally . 194

2.25 Introduction to R Markdown . 197

2.26 Introduction to interactive documents . 208

2.27 R Markdown integration in the . 214

Shiny Tutorial and Articles 2

2.28 The R Markdown Cheat sheet . 222

2.29 Using Action Buttons . 224

2.30 Using sliders . 231

2.31 Help users download data from your . 234

2.32 Using selectize input . 237

2.33 Render images in a Shiny app . 241

2.34 How to use DataTables in a Shiny . 246

2.35 Reactivity: An overview . 250

2.36 Stop reactions with isolate() . 256

2.37 Execution scheduling . 260

2.38 How to understand reactivity in R . 266

2.39 Write error messages for your UI with . 276

2.40 Scoping rules for Shiny apps . 287

2.41 Debugging techniques for Shiny apps . 291

2.42 Learn about your user with . 293

2.43 Unicode characters in Shiny apps . 298

2.44 Style your apps with CSS . 303

2.45 Build custom input objects . 312

2.46 Build custom output objects . 317

2.47 Add Google Analytics to a Shiny app . 320

2.48 How to create User Privileges . 329

2.49 Allow different libraries for different . 332

2.50 Interactive plots . 336

2.51 Selecting rows of data . 339

2.52 Interactive plots - advanced . 346

2.53 Upgrade notes for Shiny 0.11 . 349

2.54 Upgrade notes for Shiny 0.12 . 351

3 Function Reference 352

3.1 Function reference version 0.12.1 . 352

3.2 Panel with absolute positioning . 358

3.3 Create a Bootstrap page . 359

3.4 Create a column within a UI definition . 360

3.5 Conditional Panel . 362

3.6 Create a page with a fixed layout . 364

3.7 Create a page with fluid layout . 366

3.8 Create a header panel . 369

3.9 Create a help text element . 370

3.10 Create an icon . 371

3.11 Create a main panel . 373

3.12 Create a page with a top level . 374

3.13 Create a navigation list panel . 377

3.14 Create a page with a sidebar . 379

3.15 Layout a sidebar and main area . 381

3.16 Create a sidebar panel . 383

3.17 Create a tab panel . 385

3.18 Create a tabset panel . 387

3.19 Create a panel containing an . 389

Shiny Tutorial and Articles 3

3.20 Input panel . 390

3.21 Flow layout . 391

3.22 Split layout . 393

3.23 Lay out UI elements vertically . 395

3.24 Create a well panel . 396

3.25 Load the MathJax library and typeset . 397

3.26 Action button/link . 398

3.27 Checkbox Group Input Control . 399

3.28 Checkbox Input Control . 401

3.29 Create date input . 402

3.30 Create date range input . 405

3.31 File Upload Control . 409

3.32 Create a numeric input control . 410

3.33 Create radio buttons . 411

3.34 Create a select list input control . 413

3.35 Slider Input Widget . 415

3.36 Create a submit button . 417

3.37 Create a text input control . 418

3.38 Create a password input control . 419

3.39 Change the value of a checkbox . 420

3.40 Change the value of a checkbox . 422

3.41 Change the value of a date input on . 424

3.42 Change the start and end values of a . 426

3.43 Change the value of a number input . 428

3.44 Change the value of a radio input on . 430

3.45 Change the value of a select input on . 432

3.46 Change the value of a slider input on . 434

3.47 Change the selected tab on the client . 436

3.48 Change the value of a text input on . 437

3.49 Create an HTML output element . 439

3.50 Create an plot or image output . 440

3.51 Set options for an output object. 445

3.52 Create a table output element . 446

3.53 Create a text output element . 448

3.54 Create a verbatim text output element . 449

3.55 Create a download button or link . 450

3.56 Reporting progress (object-oriented . 451

3.57 Reporting progress (functional API) . 453

3.58 HTML Builder Functions . 455

3.59 Mark Characters as HTML . 457

3.60 Include Content From a File . 458

3.61 Include content only once . 459

3.62 HTML Tag Object . 460

3.63 Validate proper CSS formatting of a . 462

3.64 Evaluate an expression using tags . 463

3.65 Plot Output . 465

3.66 Text Output . 466

3.67 Printable Output . 468

Shiny Tutorial and Articles 4

3.68 Table output with the JavaScript . 470

3.69 Image file output . 472

3.70 Table Output . 474

3.71 UI Output . 475

3.72 File Downloads . 476

3.73 Plot output (deprecated) . 477

3.74 Print output (deprecated) . 478

3.75 Table output (deprecated) . 479

3.76 Text output (deprecated) . 480

3.77 UI output (deprecated) . 481

3.78 Scheduled Invalidation . 482

3.79 Checks whether an object is a . 484

3.80 Create a non-reactive scope for an . 485

3.81 Make a reactive variable . 487

3.82 Create a reactive observer . 488

3.83 Event handler . 490

3.84 Create a reactive expression . 493

3.85 Reactive file reader . 495

3.86 Reactive polling . 497

3.87 Timer . 499

3.88 Create an object for storing reactive . 501

3.89 Convert a reactivevalues object to a . 503

3.90 Reactive domains . 504

3.91 Reactive Log Visualizer . 505

3.92 Create a Shiny UI handler . 506

3.93 Define Server Functionality . 507

3.94 Run Shiny Application . 509

3.95 Run Shiny Example Applications . 511

3.96 Run a Shiny application from a URL . 512

3.97 Stop the currently running Shiny app . 514

3.98 Create a web dependency . 515

3.99 Resource Publishing . 516

3.100Register an Input Handler . 517

3.101Deregister an Input Handler . 519

3.102Mark a function as a render function . 520

3.103Validate input values and other . 521

3.104Session object . 525

3.105Convert an expression to a function . 527

3.106Install an expression as a function . 529

3.107Parse a GET query string from a URL . 530

3.108Run a plotting function and save the . 532

3.109Make a random number generator . 533

3.110Print message for deprecated . 534

3.111Collect information about the Shiny . 535

3.112Global options for Shiny . 536

3.113Find rows of data that are selected by . 538

3.114Create an object representing . 540

3.115Create an object representing click . 541

Shiny Tutorial and Articles 5

3.116Create an object representing . 542

3.117Create an object representing hover . 543

3.118Find rows of data that are near a . 544

3.119Create a Shiny app object . 546

3.120Evaluate an expression without a . 548

3.121OVERVIEW . 549

3.122Create a web dependency . 550

3.123Resource Publishing . 551

3.124Register an Input Handler . 553

3.125Deregister an Input Handler . 555

3.126Mark a function as a render function . 556

3.127Validate input values and other . 557

3.128Session object . 562

3.129Convert an expression to a function . 564

3.130Install an expression as a function . 566

3.131Parse a GET query string from a URL . 568

3.132Run a plotting function and save the . 570

3.133Make a random number generator . 572

3.134Print message for deprecated . 574

3.135Collect information about the Shiny . 575

3.136Global options for Shiny . 576

3.137Create a Shiny app object . 578

3.138Evaluate an expression without a . 581

A Program listings to create this document 582

A.1 recipe.txt . 582

A.2 stg02.mkPdfSet.py . 582

A.3 fulltex.bat . 585

Index
animate, 231, 232, 415

clientData, 74, 95, 96, 243, 244, 293–295, 297, 330, 443, 472,
473, 525, 526, 530, 562, 563, 569

conditionalPanel, 144, 145, 255, 352, 362, 363, 475

fluidPage, 17, 23, 24, 26, 27, 29, 31, 34, 41, 51, 69, 76, 77, 80,
92, 94, 95, 99, 110–115, 117, 118, 120, 132, 133, 136,
163, 187–190, 266, 276, 285, 305, 306, 308, 309, 324,
347, 352, 359, 364, 366, 367, 377, 379, 381, 395, 434,
441, 446, 471, 491, 522, 546, 547, 558, 578, 579

fluidrow, 25, 34, 35, 111, 112, 117–119, 121, 347, 352, 359–361,
366, 367, 442, 443, 446, 471

HTML, 138, 139, 151, 152, 285, 306, 309, 457, 458

includeText, 354, 458
inputs

actionButton, 33, 34, 69, 73, 99, 155, 156, 158, 224–226,
229, 230, 233, 256–258, 281, 302, 353, 398, 400, 401,
404, 407, 409, 410, 412, 414, 416–419, 441–443, 491,
492, 522, 558

checkboxGroupInput, 34, 35, 145, 247, 353, 398–401, 404,
408–410, 412, 414, 416–421, 522, 558

checkboxInput, 34, 35, 56, 69, 84, 85, 87, 99, 113, 144,
145, 163, 353, 398, 400, 401, 404, 408–410, 412, 414,
416–419, 422, 423

dateInput, 34, 35, 353, 398, 400–404, 407–410, 412, 414,
416–419, 424, 425

dateRangeInput, 34, 35, 56, 69, 353, 398, 400, 401, 404–
407, 409, 410, 412, 414, 416–419, 426, 427

numericInput, 34, 35, 78, 81, 145, 353, 383, 391, 398, 400,
401, 404, 408–410, 412, 414, 416–420, 422, 424, 426,
428–430, 432, 434, 437, 491, 510, 547, 579, 580

submitButton, 34, 230, 324, 353, 371, 398, 400, 401, 404,
408–410, 412, 414, 416–419

textInput, 34, 36, 69, 80, 81, 99, 311, 353, 398, 400, 401,
404, 408–410, 412, 414, 416–419, 437, 438, 526, 563

invalidateLater, 355, 482, 499, 500
isolate, 14, 73, 225, 226, 256–258, 355, 398, 466, 468, 482,

485, 486, 490, 491, 494, 499–503, 528, 536, 548, 565,
577, 581

jQuery, 141, 146, 246, 312, 313, 315, 318, 320, 325–327

logging, 355, 505

MathJax, 352, 397
mouse

clickId, 440, 441
hoverId, 440, 441

navbarMenu, 116, 352, 374, 375
navbarPage, 25, 109, 115–117, 120, 228–230, 311, 352, 371,

372, 374, 375, 385, 436

outputOptions, 353, 445
outputs

dataTableOutput, 99, 246, 247, 351, 354, 446, 447, 471
plotOutput, 17, 41, 52, 69, 76, 86, 87, 92, 94, 95, 110–112,

114, 121, 129, 132, 133, 136, 155, 156, 164, 187–190,
256, 277, 285, 295, 305–309, 324, 336, 337, 339–344,
347, 353, 360, 367, 373, 380, 381, 385, 387, 391, 393,

394, 440–442, 465, 510, 522, 538–545, 547, 558, 579,
580

verbatimTextOutput, 41, 78, 81, 114, 121, 129, 294, 295,
336, 337, 339–343, 347, 354, 385, 387, 442, 443, 449

plotPNG, 356, 465, 473, 532, 536, 570, 576

reactiveValues, 15, 226, 227, 229, 230, 254, 271, 355, 484, 486,
489, 493, 501–503, 525, 527, 562, 565

renderDataTable, 99, 246–249, 319, 351, 354, 413, 432, 446,
447, 470, 471

renderUI, 42, 144–146, 210, 331, 355, 397, 439, 475, 481
RJSONIO, 317, 318, 351, 553, 555, 563

selectInput, 34, 35, 41, 51, 77, 81, 84, 85, 87, 113, 144, 145,
163, 164, 209, 210, 235, 237, 245, 277, 285, 297, 324,
353, 362, 383, 391, 398, 400, 401, 404, 408–410, 412–
414, 416–419, 432, 433

session
argument, 96, 99, 238, 242, 243, 293, 294, 330, 420, 422,

424, 426, 428, 430, 433, 435–437, 442, 443, 452, 482,
495, 496, 498, 499, 504, 507, 526, 563

clientData, 74, 96, 243, 244, 293–295, 297, 330, 443, 526,
563

user, 169, 330

tabPanel, 114–117, 128, 129, 229, 230, 247, 352, 371, 372,
374–377, 385, 387, 388

tabsetPanel, 109, 113–115, 128, 129, 228–230, 247, 352, 353,
376, 385–388, 436

updates
updateCheckboxGroupInput, 353, 400, 420, 421
updateCheckboxInput, 353, 401, 422
updateDateInput, 353, 404, 424
updateDateRangeInput, 353, 407, 426, 427
updateNumericInput, 353, 410, 420, 422, 424, 426, 428–

430, 432, 434, 437
updateRadioButtons, 353, 412, 430, 431
updateSelectInput, 353, 414, 432, 433
updateTabsetPanel, 353, 388, 436
updateTextInput, 353, 418, 419, 437, 526, 563

validate, 74, 82, 226, 260–264, 273, 276–286, 354–356, 393,
413, 415, 462, 482, 488–491, 493, 495, 497, 499, 500,
521, 522, 524, 557, 558, 560, 561

6

Shiny Tutorial 7

1 Tutorial

1.1 Teach yourself Shiny

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Teach yourself Shiny
You can teach yourself to use Shiny in two ways. You can watch the “How to Start Shiny” webinar series, or you can
work through the self-paced Shiny tutorial below.

Who should take the tutorial?
You will get the most out of the webinar or tutorial if you already know how to program in R, but not Shiny.

If R is new to you, you may want to check out the learning resources at www.rstudio.com/training before taking this
tutorial. If you are not sure whether you are ready for Shiny, try our quiz.

If you use Shiny on a regular basis, you may want to skip this tutorial and visit the articles section of the
Development Center. In the articles section, we cover individual Shiny topics at an advanced level.

How to Start Shiny
The How to Start Shiny webinar series is recorded here in a single video. The video last two hours and 25 minutes,
and will teach you how to build, deploy, and customize your own Shiny web apps.

View individual chapters

The Shiny tutorial
This seven lesson tutorial will take you from R programmer to Shiny developer. Each lesson takes about 20 minutes
and teaches one new Shiny skill. By the end of the lessons, you will know how to build and deploy a Shiny app.

Each lesson includes an exercise. Don’t skip the exercises, even if you are tempted to get to the next lesson. The
learning occurs in the exercises. How do we know? Because we designed the tutorial to be this way.

Teach yourself Shiny: You can teach yourself to use Shiny in two ways. You can watch the ”How to Start Shiny” webinar series, or you can 8

Shiny is an RStudio project. © 2014 RStudio, Inc.

Click the Lesson 1 button to get started and say hello to Shiny!

Lesson 1 - Welcome to Shiny
Lesson 2 - Layout the user interface
Lesson 3 - Add control widgets
Lesson 4 - Display reactive output
Lesson 5 - Use R scripts and data
Lesson 6 - Use reactive expressions
Lesson 7 - Share your apps

Continue to lesson 1

Are you ready for Shiny?: You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to 9

1.2 Are you ready for Shiny?

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Are you ready for Shiny?
You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to
extend R to a new domain, interactive web apps.

But how much R do you need to know?

This quiz will help you decide whether you know enough about R to feel confident with Shiny. You are ready to make
the most of Shiny if you can answer each of the questions below.

1. Common Errors
qplot() is a function that comes in the ggplot2 package in R. You can use qplot() to create quick scatterplots

if you pass qplot() two variable names and the name of the data set that contains the variables.

The code below is a correctly written qplot() call; but if you copy and paste the code into R, you will get an error
message when you run the code. Why?

qplot(Sepal.Width, Sepal.Length, data = iris)

Reveal answer

2. More Common Errors
You can assign values to R objects. For example, you could assign the age of your cat to an object named cat like
this, cat <- 4 .

Suppose you ran the code below and received the error message that follows. What does it mean?

cat + 1

Error in cat + 1 : non-numeric argument to binary operator

Reveal answer

3. One More Common Error
The code below creates a function that returns a list. Assume that you run the code.

make_list <- function() {

 list(date = Sys.Date(),

 time = Sys.time(),

 timezone = Sys.timezone())

}

make_list()

Are you ready for Shiny?: You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to 10
$date

[1] "2015-03-12"

$time

[1] "2015-03-12 16:58:13 EDT"

$timezone

[1] "America/New_York"

You can call the function and immediately subset its result with R’s dollar sign syntax. However, the code below will
fail to do this. Why does the code fail, and how can you fix it?

make_list$time

Error in make_list$time : object of type 'closure' is not subsettable

Reveal answer

4. Lists
The code below creates a list object.

lst <- list(numbers = 1:10, letters = letters, boolean = c(TRUE, FALSE))

lst

$numbers

[1] 1 2 3 4 5 6 7 8 9 10

$letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"

[14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

$boolean

[1] TRUE FALSE

What will each of these return? What type of object will each be?

lst$numbers

lst[1]

lst[[1]]

Reveal answer

5. Data frames
Here is a data frame that comes with R. How can you calculate the sum of its temperature column?

pressure

temperature pressure

1 0 0.0002

2 20 0.0012

3 40 0.0060

4 60 0.0300

5 80 0.0900

6 100 0.2700

Are you ready for Shiny?: You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to 11
7 120 0.7500

8 140 1.8500

9 160 4.2000

10 180 8.8000

11 200 17.3000

12 220 32.1000

13 240 57.0000

14 260 96.0000

15 280 157.0000

16 300 247.0000

17 320 376.0000

18 340 558.0000

19 360 806.0000

Reveal answer

6. Plots
How can you make a scatterplot of the pressure data? The plot should show temperature on the x axis and
pressure on the y axis.

Reveal answer

7. Missing values
Suppose I change the first temperature value to NA , which stands for a missing value.

pressure$temperature[1] <- NA

What will sum(pressure$temperature) return? How can I ask sum to ignore the NA ?

pressure

 temperature pressure

1 NA 0.0002

2 20 0.0012

3 40 0.0060

4 60 0.0300

5 80 0.0900

6 100 0.2700

7 120 0.7500

8 140 1.8500

9 160 4.2000

10 180 8.8000

11 200 17.3000

12 220 32.1000

13 240 57.0000

14 260 96.0000

15 280 157.0000

16 300 247.0000

17 320 376.0000

18 340 558.0000

19 360 806.0000

Reveal answer

Are you ready for Shiny?: You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to 12

8. Functions
Write a function that can take a vector of numbers as input, and return the mean of the numbers as output. Recall
that the mean of a vector is the sum of the vector divided by the length of the vector.

Reveal answer

9. Scoping
What will this code return?

x <- 1

f <- function() {

 y <- 2

 c(x, y)

}

f()

Reveal answer

10. Assignment
What will the code below return?

obj <- 1

change_obj <- function(obj){

 obj <- 2

}

change_obj(obj)

obj

Reveal answer

11. Packages
How would you install and load the shiny package so that you can use it in your R session? How often will you
need to install the package? How often will you need to load it?

Reveal answer

12. Working directory
What is your working directory and how can you change it?

Reveal answer

13. Scripts
What is an R script? How can you “source” one, and what will that do?

Reveal answer

Are you ready for Shiny?: You should know a little about R before you learn Shiny. Shiny is not a substitute for the R language, but a way to 13

Shiny is an RStudio project. © 2014 RStudio, Inc.

Results
If you stumbled on these questions, you may find learning Shiny to be frustrating or confusing. But don’t feel glum, R
is easy to learn!

You can learn more about R by attending a live training, reading a book, or studying the free online resources at the
RStudio training website.

If you answered all of the questions above, you’re ready to go! A good way to learn Shiny is with our online tutorial.

Take the tutorial

The Shiny Webinar: Watch the complete webinar above, or jump to a specific chapter by clicking a link below. The entire webinar is two 14

1.3 The Shiny Webinar

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

The Shiny Webinar

Watch the complete webinar above, or jump to a specific chapter by clicking a link below. The entire webinar is two
hours and 25 minutes long.

Part 1 - How to build a Shiny app
1. Introduction
2. R
3. App architecture
4. App template
5. Inputs and outputs
6. The server function
7. Sharing apps
8. Shinyapps.io
9. Shiny servers

10. Recap - Part 1

Part 2 - How to customize reactions
1. Introduction
2. Review of Part 1
3. Reactivity
4. Reactive values
5. Reactive functions
6. render*()
7. reactive()
8. isolate()
9. observeEvent()

The Shiny Webinar: Watch the complete webinar above, or jump to a specific chapter by clicking a link below. The entire webinar is two 15

Shiny is an RStudio project. © 2014 RStudio, Inc.

10. eventReactive()
11. reactiveValues()
12. Recap - Part 2
13. Parting tips

Part 3 - How to customize appearance
1. Introduction
2. Review of Parts 1 and 2
3. HTML UI
4. Adding static content
5. Building layouts
6. Panels and tabsets
7. Prepackaged layouts
8. CSS
9. Recap - Part 3

LESSON 1: Welcome to Shiny 16

1.4 LESSON 1:Welcome to Shiny

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 1

Welcome to Shiny
Shiny is an R package that makes it easy to build interactive web applications (apps) straight from R. This lesson will
get you started building Shiny apps right away.

If you still haven’t installed the Shiny package, open an R session, connect to the internet, and run

> install.packages("shiny")

This tutorial is based on the preview release of RStudio IDE. The preview release contains new features designed for
Shiny. Download it here.

Examples

The Shiny package has eleven built-in examples that each demonstrate how Shiny works. Each example is a self-
contained Shiny app.

The Hello Shiny example plots a histogram of R’s faithful dataset with a configurable number of bins. Users
can change the number of bins with a slider bar, and the app will immediately respond to their input. You’ll use Hello
Shiny to explore the structure of a Shiny app and to create your first app.

To run Hello Shiny, type:

� 2 3 4 5 6 7 �Lesson 1

LESSON 1: Welcome to Shiny 17
> library(shiny)

> runExample("01_hello")

Structure of a Shiny App
Shiny apps have two components:

a user-interface script

a server script

The user-interface (ui) script controls the layout and appearance of your app. It is defined in a source script named
ui.R . Here is the ui.R script for the Hello Shiny example.

ui.R

library(shiny)

Define UI for application that draws a histogram

shinyUI(fluidPage(

 # Application title

 titlePanel("Hello Shiny!"),

 # Sidebar with a slider input for the number of bins

 sidebarLayout(

 sidebarPanel(

 sliderInput("bins",

 "Number of bins:",

 min = 1,

 max = 50,

 value = 30)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

)

))

The server.R script contains the instructions that your computer needs to build your app. Here is the server.R
script for the Hello Shiny example.

server.R

library(shiny)

Define server logic required to draw a histogram

shinyServer(function(input, output) {

 # Expression that generates a histogram. The expression is

 # wrapped in a call to renderPlot to indicate that:

 #

 # 1) It is "reactive" and therefore should re-execute automatically

LESSON 1: Welcome to Shiny 18
 # when inputs change

 # 2) Its output type is a plot

 output$distPlot <- renderPlot({

 x <- faithful[, 2] # Old Faithful Geyser data

 bins <- seq(min(x), max(x), length.out = input$bins + 1)

 # draw the histogram with the specified number of bins

 hist(x, breaks = bins, col = 'darkgray', border = 'white')

 })

})

At one level, the Hello Shiny server.R script is very simple. The script does some calculations and then plots a
histogram with the requested number of bins.

However, you’ll also notice that most of the script is wrapped in a call to renderPlot . The comment above the
function explains a bit about this, but if you find it confusing, don’t worry. We’ll cover this concept in much more detail
soon.

Play with the Hello Shiny app and review the source code. Try to develop a feel for how the app works.

Your R session will be busy while the Hello Shiny app is active, so you will not be able to run any R commands. R
is monitoring the app and executing the app’s reactions. To get your R session back, hit escape or click the stop sign
icon (found in the upper right corner of the RStudio console panel).

Running an App
Every Shiny app has the same structure: two R scripts saved together in a directory. At a minimum, a Shiny app has
ui.R and server.R files.

You can create a Shiny app by making a new directory and saving a ui.R and server.R file inside it. Each app
will need its own unique directory.

You can run a Shiny app by giving the name of its directory to the function runApp . For example if your Shiny app is
in a directory called my_app , run it with the following code:

> library(shiny)

> runApp("my_app")

Note: runApp is similar to read.csv , read.table , and many other functions in R. The first argument of runApp
is the filepath from your working directory to the app’s directory. The code above assumes that the app directory is in
your working directory. In this case, the filepath is just the name of the directory.

(In case you are wondering, the Hello Shiny app’s files are saved in a special system directory called
"01_hello" . This directory is designed to work with the runExample ("01_hello") call.)

Your Turn
Create a new directory named App-1 in your working directory. Then copy and paste the ui.R and server.R
scripts above into your directory (the scripts from Hello Shiny). When you are finished the directory should look like
this:

LESSON 1: Welcome to Shiny 19

Launch your app by running runApp("App-1") . Then click escape and make some changes to your app:

1. Change the title from “Hello Shiny!” to “Hello World!”.

2. Set the minimum value of the slider bar to 5.

3. Change the histogram color from "darkgray" to "skyblue" .

When you are ready, launch your app again. Your new app should match the image below. If it doesn’t, or if you
want to check your code, press the model answers button to reveal how we did these tasks.

By default, Shiny apps display in “normal” mode, like the app pictured above. Hello Shiny and the other built in
examples display in “showcase mode”, a different mode that displays the server.R and ui.R` scripts alongside the
app.

LESSON 1: Welcome to Shiny 20
If you would like your app to display in showcase mode, you can run
runApp("App-1", display.mode = "showcase") .

Model Answers
Reveal answer

Relaunching Apps
To relaunch your Shiny app:

Run runApp("App-1") , or

Open the ui.R or server.R scripts in your RStudio editor. RStudio will recognize the Shiny script and
provide a Run App button (at the top of the editor). Either click this button to launch your app or use the
keyboard shortcut: Command+Shift+Enter (Control+Shift+Enter on Windows).

RStudio will launch the app in a new window by default, but you can also choose to have the app launch in a
dedicated viewer pane, or in your external web browser. Make your selection by clicking the icon next to Run App.

LESSON 1: Welcome to Shiny 21

Recap
To create your own Shiny app:

Make a directory named for your app.

Save your app’s server.R and ui.R script inside that directory.

Launch the app with runApp or RStudio’s keyboard shortcuts.

Exit the Shiny app by clicking escape.

Go Further
You can create Shiny apps by copying and modifying existing Shiny apps. The Shiny gallery provides some good
examples, or use the eleven pre-built Shiny examples listed below.

system.file("examples", package="shiny")

runExample("01_hello") # a histogram

runExample("02_text") # tables and data frames

runExample("03_reactivity") # a reactive expression

runExample("04_mpg") # global variables

runExample("05_sliders") # slider bars

runExample("06_tabsets") # tabbed panels

runExample("07_widgets") # help text and submit buttons

runExample("08_html") # Shiny app built from HTML

runExample("09_upload") # file upload wizard

runExample("10_download") # file download wizard

runExample("11_timer") # an automated timer

Each demonstrates a feature of Shiny apps. All Shiny example apps open in “showcase” mode (with the ui.R and
server.R scripts in the display).

But why limit yourself to copying other apps? The next few lessons will show you how to build your own Shiny apps
from scratch. You’ll learn about each part of a Shiny app, and finish by deploying your own Shiny app online.

When you are ready, click to Lesson 2, where you will learn how to build the layout and appearance of your Shiny
apps.

Continue to lesson 2

LESSON 1: Welcome to Shiny 22

Shiny is an RStudio project. © 2014 RStudio, Inc.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Eric Zivot

There is no run App button in the latest Rstudio for windows.

Garrett

The runApp button is a new feature in the next version of RStudio. You can
download a preview of the version to use here. The tutorial uses the preview version
of RStudio. I apologize if I didn't make that clear enough at the start of Lesson 1.

Mona Jalal

how can I get rid of the unused area of the sidebarPanel in the left handside rather
than using some nasty solution like this?
http://stackoverflow.com/quest...

Marcus

This initially stumped me as well, the version of the beta interface is 0.98.885 which
provides the runApp button for server.R/ui.R scripts.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

LESSON 2: Build a user-interface 23

1.5 LESSON 2:Build a user-interface

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 2

Build a user-interface
Now that you understand the structure of a Shiny app, it’s time to build your first app from scratch.

This lesson will show you how to build a user-interface for your app. You will learn how to lay out the user-interface
and then add text, images, and other HTML elements to your Shiny app.

We’ll use the App-1 app you made in Lesson 1. To get started, open its server.R and ui.R files. Edit the scripts
to match the ones below:

ui.R

shinyUI(fluidPage(

))

server.R

shinyServer(function(input, output) {

})

This code is the bare minimum needed to create a Shiny app. The result is an empty app with a blank user-interface,
an appropriate starting point for this lesson.

Layout
Shiny ui.R scripts use the function fluidPage to create a display that automatically adjusts to the dimensions of
your user’s browser window. You lay out your app by placing elements in the fluidPage function.

For example, the ui.R script below creates a user-interface that has a title panel and then a sidebar layout, which
includes a sidebar panel and a main panel. Note that these elements are placed within the fluidPage function.

ui.R

shinyUI(fluidPage(

 titlePanel("title panel"),

 sidebarLayout(

 sidebarPanel("sidebar panel"),

 mainPanel("main panel")

� 1 3 4 5 6 7 �Lesson 2

LESSON 2: Build a user-interface 24
)

))

titlePanel and sidebarLayout are the two most popular elements to add to fluidPage . They create a basic
Shiny app with a sidebar.

sidebarLayout always takes two arguments:

sidebarPanel function output

mainPanel function output

These functions place content in either the sidebar or the main panels. The sidebar panel will appear on the left side
of your app by default. You can move it to the right side by giving sidebarLayout the optional argument
position = "right" .

ui.R

shinyUI(fluidPage(

 titlePanel("title panel"),

 sidebarLayout(position = "right",

 sidebarPanel("sidebar panel"),

 mainPanel("main panel")

)

))

LESSON 2: Build a user-interface 25

titlePanel and sidebarLayout create a basic layout for your Shiny app, but you can also create more
advanced layouts. You can use navbarPage to give your app a multi-page user-interface that includes a navigation
bar. Or you can use fluidRow and column to build your layout up from a grid system. If you’d like to learn more
about these advanced options, read the Shiny Application Layout Guide. We will stick with sidebarLayout in this
tutorial.

HTML Content
You can add content to your Shiny app by placing it inside a *Panel function. For example, the apps above display
a character string in each of their panels. The words “sidebar panel” appear in the sidebar panel, because we added
the string to the sidebarPanel function, e.g sidebarPanel("sidebar panel") . The same is true for the text in
the title panel and the main panel.

To add more advanced content, use one of Shiny’s HTML tag functions. These functions parallel common HTML5
tags. Let’s try out a few of them.

shiny function HTML5 equivalent creates
p <p> A paragraph of text
h1 <h1> A first level header
h2 <h2> A second level header
h3 <h3> A third level header
h4 <h4> A fourth level header
h5 <h5> A fifth level header
h6 <h6> A sixth level header
a <a> A hyper link
br
 A line break (e.g. a blank line)
div <div> A division of text with a uniform style
span An in-line division of text with a uniform style
pre <pre> Text ‘as is’ in a fixed width font
code <code> A formatted block of code

LESSON 2: Build a user-interface 26
img An image
strong Bold text
em Italicized text
HTML Directly passes a character string as HTML code

Headers
To create a header element:

select a header function (e.g., h1 or h5)

give it the text you want to see in the header

For example, you can create a first level header that says “My title” with h1("My title") . If you run the command
at the command line, you’ll notice that it produces HTML code.

> library(shiny)

> h1("My title")

<h1>My title</h1>

To place the element in your app:

pass h1("My title") as an argument to titlePanel , sidebarPanel , or mainPanel

The text will appear in the corresponding panel of your web page. You can place multiple elements in the same panel
if you separate them with a comma.

Give this a try. The new script below uses all six levels of headers. Update your ui.R to match the script and then
relaunch your app. Remember to relaunch a Shiny app you may run runApp("App-1") , click the Run App button,
or use your keyboard shortcuts.

ui.R

shinyUI(fluidPage(

 titlePanel("My Shiny App"),

 sidebarLayout(

 sidebarPanel(),

 mainPanel(

 h1("First level title"),

 h2("Second level title"),

 h3("Third level title"),

 h4("Fourth level title"),

 h5("Fifth level title"),

 h6("Sixth level title")

)

)

))

Now your app should look like this.

LESSON 2: Build a user-interface 27
You can create this effect with align = "center" , as in h6("Episode IV", align = "center") . In general,
any HTML tag attribute can be set as an argument in any Shiny tag function.

If you are unfamiliar with HTML tag attributes, you can look them up in one of the many free online HTML resources
such as w3schools.

Here’s the code that made the Star Wars-inspired user-interface:

ui.R

shinyUI(fluidPage(

 titlePanel("My Shiny App"),

 sidebarLayout(

 sidebarPanel(),

 mainPanel(

 h6("Episode IV", align = "center"),

 h6("A NEW HOPE", align = "center"),

 h5("It is a period of civil war.", align = "center"),

 h4("Rebel spaceships, striking", align = "center"),

 h3("from a hidden base, have won", align = "center"),

 h2("their first victory against the", align = "center"),

 h1("evil Galactic Empire.")

)

)

))

Formatted text
Shiny offers many tag functions for formatting text. The easiest way to describe them is by running through an
example.

Paste the ui.R script below into your ui.R file and save it. If your Shiny app is still running, you can refresh your
web page or preview window, and it will display the changes. If your app is closed, just relaunch it.

Compare the displayed app to your updated ui.R script to discover how to format text in a Shiny app.

ui.R

shinyUI(fluidPage(

 titlePanel("My Shiny App"),

 sidebarLayout(

 sidebarPanel(),

 mainPanel(

 p("p creates a paragraph of text."),

 p("A new p() command starts a new paragraph. Supply a style attribute to change the

format of the entire paragraph.", style = "font-family: 'times'; font-si16pt"),

 strong("strong() makes bold text."),

 em("em() creates italicized (i.e, emphasized) text."),

 br(),

 code("code displays your text similar to computer code"),

 div("div creates segments of text with a similar style. This division of text is all

blue because I passed the argument 'style = color:blue' to div", style = "color:blue"),

 br(),

 p("span does the same thing as div, but it works with",

 span("groups of words", style = "color:blue"),

 "that appear inside a paragraph.")

)

LESSON 2: Build a user-interface 28
)

))

Images
Images can enhance the appearance of your app and help your users understand the content. Shiny looks for the
img function to place image files in your app.

To insert an image, give the img function the name of your image file as the src argument (e.g.,
img(src = "my_image.png")). You must spell out this argument since img passes your input to an HTML tag,

and src is what the tag expects.

You can also include other HTML friendly parameters such as height and width. Note that height and width numbers
will refer to pixels.

img(src = "my_image.png", height = 72, width = 72)

The img function looks for your image file in a specific place. Your file must be in a folder named www in the same
directory as the ui.R script. Shiny treats this directory in a special way. Shiny will share any file placed here with
your user’s web browser, which makes www a great place to put images, style sheets, and other things the browser
will need to build the wep components of your Shiny app.

So if you want to use an image named bigorb.png, your App-1 directory should look like this one:

LESSON 2: Build a user-interface 29

With this file arrangment, the ui.R script below can create this app. Download bigorb.png here and try it out.

ui.R

shinyUI(fluidPage(

 titlePanel("My Shiny App"),

 sidebarLayout(

 sidebarPanel(),

 mainPanel(

 img(src="bigorb.png", height = 400, width = 400)

)

)

))

LESSON 2: Build a user-interface 30

Other tags
This lesson covers the most popular Shiny tag functions, but there are many more tag functions for you to use. You
can learn about additional tag functions in Customize your UI with HTML and the Shiny HTML Tags Glossary.

Your turn
You can use Shiny’s layout, HTML, and img functions to create very attractive and useful user-interfaces. See how
well you understand these functions by recreating the Shiny app pictured below. Use the examples in this tutorial to
work on it and then test it out.

Our ui.R script is found under the Model Answer button, but don’t copy and paste it. Make sure you understand
how the code works before moving on.

LESSON 2: Build a user-interface 31

Model Answer
Reveal answer

Recap
With your new skills, you can:

create a user-interface with fluidPage , titlePanel and sidebarLayout

create an HTML element with one of Shiny’s tag functions

set HTML tag attributes in the arguments of each tag function

add an element to your web page by passing it to titlePanel , sidebarPanel or mainPanel

add multiple elements to each panel by separating them with a comma

add images by placing your image in a folder labeled www within your Shiny app directory and then calling the
img function

Now that you can place simple content in your user-interface, let’s look at how you would place more complicated
content, like widgets. Widgets are interactive web elements that your user can use to control the app. They are also
the subject of Lesson 3.

Continue to lesson 3

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If

LESSON 2: Build a user-interface 32

Shiny is an RStudio project. © 2014 RStudio, Inc.

you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Shobbo

I want to get an image to the right of the title.

shinyUI(pageWithSidebar(
headerPanel("EME Demo for Graphs (Standard!!)",
tags$head(
tags$img(src="PicLight1.png", height=100, width=100)
)
),

It put the image above the title. Any way to put next to it.

THANKS

isomorphisms

Logically written. Thanks.

isomorphisms

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

LESSON 3: Add control widgets 33

1.6 LESSON 3:Add control widgets

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 3

Add control widgets
This lesson will show you how to add control widgets to your Shiny apps. What’s a widget? A web element that your
users can interact with. Widgets provide a way for your users to send messages to the Shiny app.

Shiny widgets collect a value from your user. When a user changes the widget, the value will change as well. This
sets up opportunities that we’ll explore in Lesson 4.

Control widgets

Shiny comes with a family of pre-built widgets, each created with a transparently named R function. For example,
Shiny provides a function named actionButton that creates an Action Button and a function names sliderInput

that creates a slider bar.

The standard Shiny widgets are:

function widget

� 1 2 4 5 6 7 �Lesson 3

LESSON 3: Add control widgets 34
actionButton Action Button
checkboxGroupInput A group of check boxes
checkboxInput A single check box
dateInput A calendar to aid date selection
dateRangeInput A pair of calendars for selecting a date range
fileInput A file upload control wizard
helpText Help text that can be added to an input form
numericInput A field to enter numbers
radioButtons A set of radio buttons
selectInput A box with choices to select from
sliderInput A slider bar
submitButton A submit button
textInput A field to enter text

Some of these widgets are built using the Twitter Bootstrap project, a popular open source framework for building
user-interfaces.

Adding widgets
You can add widgets to your web page in the same way that you added other types of HTML content in Lesson 2. To
add a widget to your app, place a widget function in sidebarPanel or mainPanel in your ui.R file.

Each widget function requires several arguments. The first two arguments for each widget are

A Name for the widget. The user will not see this name, but you can use it to access the widget’s value.
The name should be a character string.

A label. This label will appear with the widget in your app. It should be a character string, but it can be an
empty string "" .

In this example, the name is “action” and the label is “Action”: actionButton("action", label = "Action")

The remaining arguments vary from widget to widget, depending on what the widget needs to do its job. They include
things the widget needs to do its job, like initial values, ranges, and increments. You can find the exact arguments
needed by a widget on the widget function’s help page, (e.g., ?selectInput).

The ui.R script below makes the app pictured above. Change your own App-1 ui.R script to match it, and then
launch the app (runApp("App-1") , select Run App, or use shortcuts).

Play with each widget to get a feel for what it does. Experiment with changing the values of the widget functions and
observe the effects. If you are interested in the layout scheme for this Shiny app, read the description in the
application layout guide. This lesson will not cover this slightly more complicated layout scheme, but it is interesting to
note what it does.

ui.R

shinyUI(fluidPage(

 titlePanel("Basic widgets"),

 fluidRow(

 column(3,

 h3("Buttons"),

 actionButton("action", label = "Action"),

 br(),

 br(),

 submitButton("Submit")),

LESSON 3: Add control widgets 35

 column(3,

 h3("Single checkbox"),

 checkboxInput("checkbox", label = "Choice A", value = TRUE)),

 column(3,

 checkboxGroupInput("checkGroup",

 label = h3("Checkbox group"),

 choices = list("Choice 1" = 1,

 "Choice 2" = 2, "Choice 3" = 3),

 selected = 1)),

 column(3,

 dateInput("date",

 label = h3("Date input"),

 value = "2014-01-01"))

),

 fluidRow(

 column(3,

 dateRangeInput("dates", label = h3("Date range"))),

 column(3,

 fileInput("file", label = h3("File input"))),

 column(3,

 h3("Help text"),

 helpText("Note: help text isn't a true widget,",

 "but it provides an easy way to add text to",

 "accompany other widgets.")),

 column(3,

 numericInput("num",

 label = h3("Numeric input"),

 value = 1))

),

 fluidRow(

 column(3,

 radioButtons("radio", label = h3("Radio buttons"),

 choices = list("Choice 1" = 1, "Choice 2" = 2,

 "Choice 3" = 3),selected = 1)),

 column(3,

 selectInput("select", label = h3("Select box"),

 choices = list("Choice 1" = 1, "Choice 2" = 2,

 "Choice 3" = 3), selected = 1)),

 column(3,

 sliderInput("slider1", label = h3("Sliders"),

 min = 0, max = 100, value = 50),

 sliderInput("slider2", "",

 min = 0, max = 100, value = c(25, 75))

),

LESSON 3: Add control widgets 36
 column(3,

 textInput("text", label = h3("Text input"),

 value = "Enter text..."))

)

))

Your turn
Rewrite your ui.R script to create the user-interface displayed below. Notice that this Shiny app uses a basic Shiny
layout (no columns) and contains three of the widgets pictured above. The other values of the select box are shown
below the image of the app.

Model Answer
Reveal answer

Recap
It is easy to add fully functional widgets to your Shiny app.

LESSON 3: Add control widgets 37
Shiny provides a family of functions to create these widgets.

Each function requires a name and a label.

Some widgets need specific instructions to do their jobs.

You add widgets to your Shiny app just like you added other types of HTML content (see Lesson 2)

Go Further
The Shiny Widgets Gallery provides templates that you can use to quickly add widgets to your Shiny apps.

To use a template, visit the gallery. The gallery displays each of Shiny’s widgets, and demonstrates how the widgets’
values change in response to your input.

Select the widget that you want and click the “See Code” button below the widget. The gallery will take you to an
example app that describes the widget. To use the widget, copy and paste the code in the example’s ui.R file to
your ui.R file.

LESSON 3: Add control widgets 38

In Lesson 4, you will learn how to connect widgets to reactive output, objects that update themselves whenever your
user changes a widget.

Continue to lesson 4

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

singco

i just like this tutorialï¼Œthanks

Garrett

Thanks singco, I'm glad it is helpful!

dazhi

catch you ^_^

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

LESSON 3: Add control widgets 39

Shiny is an RStudio project. © 2014 RStudio, Inc.

Xiny Shen

I am a little confused about the checkbox widget, for example, if I have for check
boxes for user, and each of them trigger their own SQL query in server. how can I
do this? do I need any if-else statement? or do the checkbox widget provide any
name for each of the box?

comments powered by Disqus

LESSON 4: Display reactive output 40

1.7 LESSON 4:Display reactive output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 4

Display reactive output
Time to give your Shiny app a “live” quality! This lesson will teach you how to build reactive output to display in your
Shiny app. Reactive output automatically responds when your user toggles a widget.

By the end of this lesson, you’ll know how to make a simple Shiny app with two reactive lines of text. Each line will
display the values of a widget based on your user’s input.

This new Shiny app will need its own, new directory. Create a folder in your working directory named census-app .
This is where we’ll save the ui.R and server.R files that you make in this lesson.

Two steps
You can create reactive output with a two step process.

1. Add an R object to your user-interface with ui.R .
2. Tell Shiny how to build the object in server.R . The object will be reactive if the code that builds it calls a

widget value.

Step 1: Add an R object to the UI

� 1 2 3 5 6 7 �Lesson 4

LESSON 4: Display reactive output 41
Shiny provides a family of functions that turn R objects into output for your user-interface. Each function creates a
specific type of output.

Output function creates
htmlOutput raw HTML
imageOutput image
plotOutput plot
tableOutput table
textOutput text
uiOutput raw HTML
verbatimTextOutput text

You can add output to the user-interface in the same way that you added HTML elements and widgets. Place the
output function inside sidebarPanel or mainPanel in the ui.R script.

For example, the ui.R file below uses textOutput to add a reactive line of text to the main panel of the Shiny app
pictured above.

ui.R

shinyUI(fluidPage(

 titlePanel("censusVis"),

 sidebarLayout(

 sidebarPanel(

 helpText("Create demographic maps with

 information from the 2010 US Census."),

 selectInput("var",

 label = "Choose a variable to display",

 choices = c("Percent White", "Percent Black",

 "Percent Hispanic", "Percent Asian"),

 selected = "Percent White"),

 sliderInput("range",

 label = "Range of interest:",

 min = 0, max = 100, value = c(0, 100))

),

 mainPanel(

 textOutput("text1")

)

)

))

Notice that textOutput takes an argument, the character string “text1”. Each of the *Output functions require a
single argument: a character string that Shiny will use as the name of your reactive element. Your users will not see
this name, but you will use it later.

Step 2: Provide R code to build the object.
Placing a function in ui.R tells Shiny where to display your object. Next, you need to tell Shiny how to build the
object.

Do this by providing R code that builds the object in server.R . The code should go in the unnamed function that
appears inside shinyServer in your server.R script.

LESSON 4: Display reactive output 42
The unnamed function plays a special role in the Shiny process; it builds a list-like object named output that
contains all of the code needed to update the R objects in your app. Each R object needs to have its own entry in the
list.

You can create an entry by defining a new element for output within the unnamed function, like below. The element
name should match the name of the reactive element that you created in ui.R .

In the script below, output$text1 matches textOutput("text1") in your ui.R script.

server.R

shinyServer(function(input, output) {

 output$text1 <- renderText({

 "You have selected this"

 })

 }

)

You do not need to arrange for the unnamed function to return output in its last line of code. R will automatically
update output through reference class semantics.

Each entry to output should contain the output of one of Shiny’s render* functions. These functions capture an R
expression and do some light pre-processing on the expression. Use the render* function that corrresponds to the
type of reactive object you are making.

render function creates
renderImage images (saved as a link to a source file)
renderPlot plots
renderPrint any printed output
renderTable data frame, matrix, other table like structures
renderText character strings
renderUI a Shiny tag object or HTML

Each render* function takes a single argument: an R expression surrounded by braces, {} . The expression can
be one simple line of text, or it can involve many lines of code, as if it were a complicated function call.

Think of this R expression as a set of instructions that you give Shiny to store for later. Shiny will run the instructions
when you first launch your app, and then Shiny will re-run the instructions every time it needs to update your object.

For this to work, your expression should return the object you have in mind (a piece of text, a plot, a data frame, etc).
You will get an error if the expression does not return an object, or if it returns the wrong type of object.

Use widget values
If you run the server.R script above, the Shiny app will display “You have selected this” in the main panel.
However, the text will not be reactive. It will not change even if you manipulate the widgets of your app.

You can make the text reactive by asking Shiny to call a widget value when it builds the text. Let’s look at how to do
this.

Take a look at the first line of code in server.R . Do you notice that the unnamed function mentions two arguments,
input and output ? You already saw that output is a list-like object that stores instructions for building the R

objects in your app.

input is a second list-like object. It stores the current values of all of the widgets in your app. These values will be
saved under the names that you gave the widgets in ui.R .

LESSON 4: Display reactive output 43
So for example, our app has two widgets, one named “var” and one named “range” (you gave the widgets these
names in Lesson 3). The values of “var” and “range” will be saved in input as input$var and input$range .
Since the slider widget has two values (a min and a max), input$range will contain a vector of length two.

Shiny will automatically make an object reactive if the object uses an input value. For example, the server.R file
below creates a reactive line of text by calling the value of the select box widget to build the text.

server.R

shinyServer(

 function(input, output) {

 output$text1 <- renderText({

 paste("You have selected", input$var)

 })

 }

)

Shiny tracks which outputs depend on which widgets. When a user changes a widget, Shiny will rebuild all of the
outputs that depend on the widget, using the new value of the widget as it goes. As a result, the rebuilt objects will be
completely up-to-date.

This is how you create reactivity with Shiny, by connecting the values of input to the objects in output . Shiny
takes care of all of the other details.

Launch your app and see the reactive output
When you are ready, update your server.R and ui.R files to match those above. Then launch your Shiny app by
running runApp("censusVis", display.mode = "showcase") at the command line. Your app should look like
the app below, and your statement should update instantly as you change the select box widget.

Watch the server.R script. When Shiny rebuilds an output, it highlights the code it is running. This temporary
highlighting can help you see how Shiny generates reactive output.

LESSON 4: Display reactive output 44

Your turn
Add a second line of reactive text to the main panel of your Shiny app. This line should display “You have chosen a
range that goes from something to something”, and each something should show the current minimum (min) or
maximum (max) value of the slider widget.

Don’t forget to update both your ui.R and server.R files.

Model answer
Reveal answer

Recap
In this lesson, you created your first reactive Shiny app. Along the way, you learned to

use an *Output function in the ui.R script to place reactive objects in your Shiny app
use a render* function in the server.R script to tell Shiny how to build your objects
surround R expressions by braces, {} , in each render* function
save your render* expressions in the output list, with one entry for each reactive object in your app.
create reactivity by including an input value in a render* expression

If you follow these rules, Shiny will automatically make your objects reactive.

In Lesson 5 you will create a more sophisticated reactive app that relies on R scripts and external data.

Continue to lesson 5

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Jean

Thanks for these tutorials. Very helpful.

There's an error in this lesson. The folder name "census-app" and the argument to
runApp(), "censusVis" should be the same. One or the other should be changed to
match the other.

Howard

Hi. Thanks for a great read.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

LESSON 4: Display reactive output 45

Shiny is an RStudio project. © 2014 RStudio, Inc.

How can I pass a reactive string variable from server.R to ui.R that would be
evaluated "as-is" in ui.R?

For example, I would like to evaluate the "horizontalTableWidth" variable in the ui.R:
div(tableOutput("table"), style = horizontalTableWidth)

I cant get no.. loading..table

comments powered by Disqus

LESSON 5: Use R scripts and data 46

1.8 LESSON 5:Use R scripts and data

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 5

Use R scripts and data
This lesson will show you how to load data, R Scripts, and packages to use in your Shiny apps. Along the way, you
will build a sophisticated app that visualizes US Census data.

counties.rds
counties.rds is a dataset of demographic data for each county in the United States, collected with the
UScensus2010 R package. You can download it here.

Once you have the file,

Create a new folder named data in your census-app directory.

� 1 2 3 4 6 7 �Lesson 5

LESSON 5: Use R scripts and data 47
Move counties.rds into the data folder.

When you’re done, your census-app folder should look like this.

The dataset in counties.rds contains

the name of each county in the United States
the total population of the county
the percent of residents in the county who are white, black, hispanic, or asian

counties <- readRDS("census-app/data/counties.rds")

head(counties)

 name total.pop white black hispanic asian

1 alabama,autauga 54571 77.2 19.3 2.4 0.9

2 alabama,baldwin 182265 83.5 10.9 4.4 0.7

3 alabama,barbour 27457 46.8 47.8 5.1 0.4

4 alabama,bibb 22915 75.0 22.9 1.8 0.1

5 alabama,blount 57322 88.9 2.5 8.1 0.2

6 alabama,bullock 10914 21.9 71.0 7.1 0.2

helpers.R
helpers.R is an R script that can help you make choropleth maps, like the ones pictured above. A choropleth map

is a map that uses color to display the regional variation of a variable. In our case, helpers.R will create
percent_map , a function designed to map the data in counties.rds . You can download helpers.R here.

helpers.R uses the maps and mapproj packages in R. If you’ve never installed these packages before, you’ll
need to do so before you make this app. Run

> install.packages(c("maps", "mapproj"))

Save helpers.R inside your census-app directory, like below.

LESSON 5: Use R scripts and data 48

The percent_map function in helpers.R takes five arguments:

Argument Input
var a column vector from the counties.rds dataset
color any character string you see in the output of colors()
legend.title A character string to use as the title of the plot’s legend
max A parameter for controlling shade range (defaults to 100)
min A parameter for controlling shade range (defaults to 0)

You can use percent_map at the command line to plot the counties data as a choropleth map, like this.

library(maps)

library(mapproj)

source("census-app/helpers.R")

counties <- readRDS("census-app/data/counties.rds")

percent_map(counties$white, "darkgreen", "% white")

Note: The code above assumes that census-app is a sub-directory in your working directory. Make certain to set
your working directory as the parent directory for census-app . To change your working directory location, click on
Session > Set Working Directory > Choose Directory… in the RStudio menu bar.

percent_map plots the counties data as a choropleth map. Here it will plot the percent of white residents in the
counties in the color dark green.

LESSON 5: Use R scripts and data 49

Loading files and file paths
Take a look at the above code. To use percent_map , we first ran helpers.R with the source function, and then
loaded counties.rds with the readRDS function. We also ran library(maps) and library(mapproj) .

You will need to ask Shiny to call the same functions before it uses percent_map in your app, but how you write
these functions will change. Both source and readRDS require a file path, and file paths do not behave the same
way in a Shiny app as they do at the command line.

When Shiny runs the commands in server.R , it will treat all file paths as if they begin in the same directory as
server.R . In other words, the directory that you save server.R in will become the working directory of your Shiny

app.

Since you saved helpers.R in the same directory as server.R , you can ask Shiny to load it with

source("helpers.R")

Since you saved counties.rds in a sub-directory (named data) of the directory that server.R is in, you can load
it with.

counties <- readRDS("data/counties.rds")

You can load the maps and mapproj packages in the normal way with

library(maps)

library(mapproj)

which does not require a file path.

LESSON 5: Use R scripts and data 50

Execution
Shiny will execute all of these commands if you place them in your server.R script. However, where you place
them in server.R will determine how many times they are run (or re-run), which will in turn affect the performance
of your app.

Shiny will run some sections of server.R more often than others.

Shiny will run the whole script the first time you call runApp . This causes Shiny to execute shinyServer .
shinyServer then gives Shiny the unnamed function in its first argument.

Shiny saves the unnamed function until a new user arrives. Each time a new user visits your app, Shiny runs the
unnamed function again, one time. The function helps Shiny build a distinct set of reactive objects for each user.

LESSON 5: Use R scripts and data 51
Here’s what we’ve learned so far:

The server.R script is run once, when you launch your app
The unnamed function inside shinyServer is run once each time a user visits your app
The R expressions inside render* functions are run many times. Shiny runs them once each time a user
changes a widget.

How can you use this information?

Source scripts, load libraries, and read data sets at the beginning of server.R outside of the shinyServer
function. Shiny will only run this code once, which is all you need to set your server up to run the R expressions
contained in shinyServer .

Define user specific objects inside shinyServer ’s unnamed function, but outside of any render* calls. These
would be objects that you think each user will need their own personal copy of. For example, an object that records
the user’s session information. This code will be run once per user.

Only place code that Shiny must rerun to build an object inside of a render* function. Shiny will rerun all of the
code in a render* chunk each time a user changes a widget mentioned in the chunk. This can be quite often.

You should generally avoid placing code inside a render function that does not need to be there. The code will
slow down the entire app.

Your Turn 1
Copy and paste the following ui.R and server.R files to your census-app directory . Then add

source("helpers.R")

counties <- readRDS("data/counties.rds")

library(maps)

library(mapproj)

to server.R . Be sure to place the commands in an efficient location.

Note: This is the first of two steps that will complete your app. Choose the best place to insert the code above, but
do not try to run the app. Your app will return an error until you replace # some arguments with real code in Your
Turn 2.

ui.R

ui.R

shinyUI(fluidPage(

 titlePanel("censusVis"),

 sidebarLayout(

 sidebarPanel(

 helpText("Create demographic maps with

 information from the 2010 US Census."),

 selectInput("var",

 label = "Choose a variable to display",

 choices = c("Percent White", "Percent Black",

 "Percent Hispanic", "Percent Asian"),

 selected = "Percent White"),

 sliderInput("range",

LESSON 5: Use R scripts and data 52
 label = "Range of interest:",

 min = 0, max = 100, value = c(0, 100))

),

 mainPanel(plotOutput("map"))

)

))

server.R

server.R

shinyServer(

 function(input, output) {

 output$map <- renderPlot({

 percent_map(# some arguments)

 })

 }

)

Model Answer 1
Reveal answer

Finishing the app
The censusVis app has one reactive object, a plot named “map”. The plot is built with the percent_map function,
which takes five arguments.

The first three arguments, var , color , and legend.title , depend on the value of the select box widget.
The last two arguments, max and min , should be the max and min values of the slider bar widget.

The server.R script below shows one way to craft reactive arguments for percent_map . R’s switch function
can transform the output of a select box widget to whatever you like. However, the script is incomplete. It does not
provide values for color , legend.title , max , or min . Note: the script will not run as is. You will
need to finish the script before you run it, which is the task of Your Turn 2.

server.R

library(maps)

library(mapproj)

counties <- readRDS("data/counties.rds")

source("helpers.R")

shinyServer(

 function(input, output) {

 output$map <- renderPlot({

 data <- switch(input$var,

 "Percent White" = counties$white,

 "Percent Black" = counties$black,

 "Percent Hispanic" = counties$hispanic,

 "Percent Asian" = counties$asian)

LESSON 5: Use R scripts and data 53

 percent_map(var = data, color = ?, legend.title = ?, max = ?, min = ?)

 })

 }

)

Your Turn 2
Complete the code to build a working censusVis app.

When you’re ready to deploy your app, save your server.R and ui.R files and run runApp("census-app") . If
everything works, your app should look like the picture below.

You’ll need to decide

how to create the argument values for percent_map , and
where to put the code that creates these arguments.

Remember, you’ll want the argument values to switch whenever a user changes the associated widget. When you
are finished, or if you get stuck, read on below for a model answer.

Model Answers 2
Reveal answer

Recap
You can create more complicated Shiny apps by loading R Scripts, packages, and data sets.

LESSON 5: Use R scripts and data 54
Keep in mind:

The directory that server.R appears in will become the working directory of the Shiny app
Shiny will run code placed at the start of server.R , before shinyServer , only once during the life of the
app.
Shiny will run code placed inside shinyServer multiple times, which can slow the app down.

You also learned that switch is a useful companion to multiple choice Shiny widgets. Use switch to change the
values of a widget into R expressions.

As your apps become more complex, they can become inefficient and slow. Lesson 6 will show you how to build fast,
modular apps with reactive expressions.

Continue to lesson 6

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Fernando Hernandez

The code for the legend for Asian in

Model Answers 2
A simple version of server.R:

says "Percent Asian" = "% Violet")

Awesome tutorial by the way! I particularly like the Your Turn sections.

Garrett

Thanks for catching that, Fernando. I'm glad you like the tutorial!

Ken Deal

I have a problem similar to one below by Mira and TyStudio but I've not found a
solution.

Is there a trick to reading data into the server.r file?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

LESSON 6: Use reactive expressions 55

1.9 LESSON 6:Use reactive expressions

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 6

Use reactive expressions
Shiny apps wow your users by running fast, instantly fast. But what if your app needs to do a lot of slow
computation?

This lesson will show you how to streamline your Shiny apps with reactive expressions. Reactive expressions let you
control which parts of your app update when, which prevents unnecessary work.

To get started:

Create a new folder named stockVis in your working directory.
Download the following files and place them inside stockVis : ui.R, server.R, and helpers.R.
Launch the app with runApp("stockVis")

StockVis use R’s quantmod package, so you’ll need to install quantmod with install.packages("quantmod") if
you do not already have it.

runApp("stockVis")

A new app: stockVis
The stockVis app looks up stock prices by ticker symbol and displays the results as a line chart. The app lets you

1. Select a stock to examine
2. Pick a range of dates to review
3. Choose whether to plot stock prices or the log of the stock prices on the y axis, and
4. Decide whether or not to correct prices for inflation.

� 1 2 3 4 5 7 �Lesson 6

LESSON 6: Use reactive expressions 56

Note that the “Adjust prices for inflation” check box doesn’t work yet. One of our tasks in this lesson is to fix this
check box.

By default, stockVis displays the SPY ticker (an index of the entire S & P 500). To look up a different stock, type in a
stock symbol that Yahoo finance will recognize. You can find a list of Yahoo’s stock symbols here. Some common
symbols are GOOG (Google), AAPL (Apple), and GS (Goldman Sachs).

StockVis relies heavily on two functions from the quantmod package:

1. It uses getSymbols to download financial data straight into R from websites like Yahoo finance and the
Federal Reserve Bank of St. Louis.

2. It uses chartSeries to display prices in an attractive chart.

StockVis also relies on an R script named helpers.R , which contains a function that adjusts stock prices for
inflation.

Check boxes and date ranges
The stockVis app uses a few new widgets.

a date range selector, created with dateRangeInput , and
a couple of check boxes made with checkboxInput . Check box widgets are very simple. They return a
TRUE when the check box is checked, and a FALSE when the check box is not checked.

The check boxes are named log and adjust in the ui.R script, which means you can look them up as
input$log and input$adjust in the server.R script. If you’d like to review how to use widgets and their

values, check out Lesson 3 and Lesson 4.

Streamline computation
The stockVis app has a problem.

Examine what will happen when you click “Plot y axis on the log scale.” The value of input$log will change, which
will cause the entire expression in renderPlot to re-run:

output$plot <- renderPlot({

LESSON 6: Use reactive expressions 57
 data <- getSymbols(input$symb, src = "yahoo",

 from = input$dates[1],

 to = input$dates[2],

 auto.assign = FALSE)

 chartSeries(data, theme = chartTheme("white"),

 type = "line", log.scale = input$log, TA = NULL)

})

Each time renderPlot re-runs

1. it re-fetches the data from Yahoo finance with getSymbols , and
2. it re-draws the chart with the correct axis.

This is not good, because you do not need to re-fetch the data to re-draw the plot. In fact, Yahoo finance will cut you
off if you re-fetch your data too often (because you begin to look like a bot). But more importantly, re-running
getSymbols is unnecessary work, which can slow down your app and consume server bandwidth.

Reactive expressions
You can limit what gets re-run during a reaction with reactive expressions.

A reactive expression is an R expression that uses widget input and returns a value. The reactive expression will
update this value whenever the original widget changes.

To create a reactive expression use the reactive function, which takes an R expression surrounded by braces (just
like the render* functions).

For example, here’s a reactive expression that uses the widgets of stockVis to fetch data from Yahoo.

dataInput <- reactive({

 getSymbols(input$symb, src = "yahoo",

 from = input$dates[1],

 to = input$dates[2],

 auto.assign = FALSE)

})

When you run the expression, it will run getSymbols and return the results, a data frame of price data. You can use
the expression to access price data in renderPlot by calling dataInput() .

output$plot <- renderPlot({

 chartSeries(dataInput(), theme = chartTheme("white"),

 type = "line", log.scale = input$log, TA = NULL)

})

Reactive expressions are a bit smarter than regular R functions. They cache their values and know when their values
have become outdated. What does this mean? The first time that you run a reactive expression, the expression will
save its result in your computer’s memory. The next time you call the reactive expression, it can return this saved
result without doing any computation (which will make your app faster).

The reactive expression will only return the saved result if it knows that the result is up-to-date. If the reactive
expression has learned that the result is obsolete (because a widget has changed), the expression will recalculate the
result. It then returns the new result and saves a new copy. The reactive expression will use this new copy until it too
becomes out of date.

Let’s summarize this behavior

LESSON 6: Use reactive expressions 58
A reactive expression saves its result the first time you run it.

The next time the reactive expression is called, it checks if the saved value has become out of date (i.e.,
whether the widgets it depends on have changed).

If the value is out of date, the reactive object will recalculate it (and then save the new result).

If the value is up-to-date, the reactive expression will return the saved value without doing any computation.

You can use this behavior to prevent Shiny from re-running unnecessary code. Consider how a reactive expression
will work in the new stockVis app below.

server.R

library(quantmod)

source("helpers.R")

shinyServer(function(input, output) {

 dataInput <- reactive({

 getSymbols(input$symb, src = "yahoo",

 from = input$dates[1],

 to = input$dates[2],

 auto.assign = FALSE)

 })

 output$plot <- renderPlot({

 chartSeries(dataInput(), theme = chartTheme("white"),

 type = "line", log.scale = input$log, TA = NULL)

 })

})

When you click “Plot y axis on the log scale”, input$log will change and renderPlot will re-execute. Now

1. renderPlot will call dataInput()
2. dataInput will check that the dates and symb widgets have not changed
3. dataInput will return its saved data set of stock prices without re-fetching data from Yahoo
4. renderPlot will re-draw the chart with the correct axis.

Dependencies
What if your user changes the stock symbol in the symb widget?

This will make the plot drawn by renderPlot out of date, but renderPlot no longer calls input$symb . Will
Shiny know that input$symb has made plot out of date?

Yes, Shiny will know and will redraw the plot. Shiny keeps track of which reactive expressions an output object
depends on, as well as which widget inputs. Shiny will automatically re-build an object if

an input value in the objects’s render* function changes, or
a reactive expression in the objects’s render* function becomes obsolete

Think of reactive expressions as links in a chain that connect input values to output objects. The objects in
output will respond to changes made anywhere downstream in the chain. (You can fashion a long chain because

reactive expressions can call other reactive expressions).

Only call a reactive expression from within a reactive or a render* function. Why? Only these R functions are
equipped to deal with reactive output, which can change without warning. In fact, Shiny will prevent you from calling
reactive expressions outside of these functions.

LESSON 6: Use reactive expressions 59

Warm up
Time to fix the broken check box for “Adjust prices for inflation.” Your user should be able to toggle between prices
adjusted for inflation and prices that have not been adjusted.

The adjust function in helpers.R uses the Consumer Price Index data provided by the Federal Reserve Bank of
St. Louis to transform historical prices into present day values. But how can you implement this in the app?

Here’s one solution below, but it is not ideal. Can you spot why? Once again it has to do with input$log .

server.R

library(quantmod)

source("helpers.R")

shinyServer(function(input, output) {

 dataInput <- reactive({

 getSymbols(input$symb, src = "yahoo",

 from = input$dates[1],

 to = input$dates[2],

 auto.assign = FALSE)

 })

 output$plot <- renderPlot({

 data <- dataInput()

 if (input$adjust) data <- adjust(dataInput())

 chartSeries(data, theme = chartTheme("white"),

 type = "line", log.scale = input$log, TA = NULL)

 })

})

Reveal answer

Your Turn
Fix this problem by adding a new reactive expression to the app. The reactive expression should take the value of
dataInput and return an adjusted (or not adjusted) copy of the data.

When you think you have it, compare your solution to the model answer below. Make sure you understand what
calculations will happen and what calculations will not happen in your app when your user clicks “Plot y axis on the
log scale”.

Reveal answer

Recap
You can make your apps faster by modularizing your code with reactive expressions.

A reactive expression takes input values, or values from other reactive expressions, and returns a new value
Reactive expressions save their results, and will only re-calculate if their input has changed
Create reactive expressions with reactive({ })
Call reactive expressions with the name of the expression followed by parentheses ()

LESSON 6: Use reactive expressions 60

Shiny is an RStudio project. © 2014 RStudio, Inc.

Only call reactive expressions from within other reactive expressions or render* functions

You can now create sophisticated, streamlined Shiny apps. The final lesson in this tutorial will show you how to share
your apps with others.

Continue to lesson 7

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Nellster

Hello,
Great tutorial! I enjoy it very much.
I just have one problem: when I run the last step of this lesson, which uses the
adjust function of helper.R, I get an error message:
Error in .func() : could not find function "adjust"

helpers.R was loaded correctly. I then checked inside helpers.R, to see where was
this adjust function: I could not find it!
Did I miss something?

Thanks in advance

Garrett

Nellster, no wonder your code didn't work :) adjust is definitely in helpers.R, but
you might have the wrong helpers.R file. Try downloading this version.

If you see percent_map in your helpers.R file, it means that you are using the file
from lesson 5. Lesson 6 has a new helpers.R file. I apologize about the name

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

LESSON 7: Share your apps 61

1.10 LESSON 7:Share your apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

LESSON 7

Share your apps
You can now build a useful Shiny app, but can you share it with others? This lesson will show you several ways to
share your Shiny apps.

When it comes to sharing Shiny apps, you have two basic options:

1. Share your Shiny app as two files: server.R and ui.R . This is the simplest way to share an app,
but it works only if your users have R on their own computer (and know how to use it). Users can use these
scripts to launch the app from their own R session, just like you’ve been launching the apps.

2. Share your Shiny app as a web page. This is definitely the most user friendly way to share a Shiny
app. Your users can navigate to your app through the internet with a web browser. They will find your app fully
rendered, up to date, and ready to go.

Share as two R files
Anyone with R can run your Shiny app. They will need a copy of your server.R and ui.R files, as well as any
supplementary materials used in your app (e.g., www folders or helpers.R files).

To send your files to another user, email the files (perhaps in a zip file) or host the files online.

Your user can place the files into an app directory in their working directory. They can launch the app in R with the
same commands you used on your computer.

install.packages("shiny")

library(shiny)

runApp("census-app")

� 1 2 3 4 5 6 �Lesson 7

LESSON 7: Share your apps 62

Shiny has three built in commands that make it easy to use files that are hosted online: runUrl , runGitHub , and
runGist .

runUrl
runUrl will download and launch a Shiny app straight from a weblink.

To use runURL :

Save your Shiny app’s directory as a zip file
Host that zip file at its own link on a web page. Anyone with access to the link can launch the app from inside
R by running:

library(shiny)

runUrl("<the weblink>")

runGitHub
If you don’t have your own web page to host the files at, you can host your the files for free at www.github.com.

Github is a popular project hosting site for R developers since it does more than just host files. Github provides many
features to support collaboration, such as issue trackers, wikis, and close integration with the git version control
system. To use Github, you’ll need to sign up (it’s free) and choose a user name.

To share an app through Github, create a project repository on Github. Then store your server.R and ui.R files
in the repository, along with any supplementary files that the app uses.

Your users can launch your app by running:

runGitHub("<your repository name>", "<your user name>")

runGist

LESSON 7: Share your apps 63
If you want an anonymous way to post files online, Github offers a pasteboard service for sharing files at
gist.github.com. You don’t need to sign up for Github to use this service. Even if you have a Github account, Gist can
be a simple, quick way to share Shiny projects.

To share your app as a Gist:

Copy and paste your server.R and ui.R files to the Gist web page.
Note the URL that Github gives the Gist.

Once you’ve made a Gist, your users can launch the app with runGist("<gist number>") where
"<gist number>" is the number that appears at the end of your Gist’s web address.

Here’s an example of an app hosted as a Gist. You could launch this app with:

runGist("3239667")

Share as a web page
All of the above methods share the same limitation. They require your user to have R and Shiny installed on their
computer.

However, Shiny creates the perfect opportunity to share output with people who do not have R (and have no
intention of getting it). Your Shiny app happens to be one of the most widely used communication tools in the world:
a web page. If you host the app at its own URL, users can visit the app (and not need to worry about code).

If you are familiar with web hosting or have access to an IT department, you can host your Shiny apps yourself.

If you’d prefer an easier experience or need support, RStudio offers three ways to host your Shiny app as a web
page:

1. Shinyapps.io.
2. Shiny Server, and
3. Shiny Server Pro

Shinyapps.io
The easiest way to turn your Shiny app into a web page is to use shinyapps.io, RStudio’s hosting service for Shiny
apps.

shinyapps.io lets you upload your app straight from your R session to a server hosted by RStudio. You complete
control over your app including server administration tools. To find out more about shinyapps.io visit shinyapps.io.

Shiny Server
Shiny Server is a companion program to Shiny that builds a web server designed to host Shiny apps. It’s free, open
source, and available from Github.

Shiny Server is a server program that Linux servers can run to host a Shiny app as a web page. To use Shiny
Server, you’ll need a Linux server that has explicit support for Ubuntu 12.04 or greater (64 bit) and CentOS/RHEL 5
(64 bit). If you are not using an explicitly supported distribution, you can still use Shiny Server by building it from
source.

You can host multiple Shiny applications on multiple web pages with the same Shiny Server, and you can deploy the
apps from behind a firewall.

To see detailed instructions for installing and configuring a Shiny Server, visit the Shiny Server guide.

Shiny Server Pro

LESSON 7: Share your apps 64
Shiny Server will get your app to the web and take care of all of your Shiny publishing needs. However, if you use
Shiny in a for-profit setting, you may want to give yourself the server tools that come with most paid server programs,
such as

Password authentification
SSL support
Administrator tools
Priority support
and more.

If so, check out Shiny Server Pro, RStudio’s paid professional version of Shiny Server.

Recap
Shiny apps are easy to share. You can share your app as a couple of R scripts, or as a fully functioning web app with
its own URL. Each method has its own advantages.

You learned:

Anyone can launch your app as long as they have a copy of R, Shiny, and a copy of your app’s files.
runUrl , runGitHub , and runGist make it simple to share and retrieve Shiny files from web links.

You can turn your app into a live web app at its own URL with shinyapps.io.
You can use the open source Shiny Server to build a Linux server that hosts Shiny apps.
If you need closer control, or want to manage large volumes of traffic, you can purchase Shiny Server Pro from
RStudio.

Congratulations. You’ve worked through the entire Shiny development process. You can build a sophisticated,
reactive app, deploy it, and share it with others. Users can interact with your data and follow your stories in a new
way.

The next step is to practice, and then explore the advanced features of Shiny.

The Shiny Dev Center can help you along the way. It hosts a gallery of inspiring apps, along with the code that
makes the apps.

The Shiny Dev Center also includes an articles section for continuing education. Each article examines an
intermediate to advanced Shiny topic in depth.

You now know enough to build your own Shiny apps. See what you can do!

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Kalyana

Excellent help for the Shiny starters, thankyou

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

LESSON 7: Share your apps 65

Shiny is an RStudio project. © 2014 RStudio, Inc.

Camilo Mora

This is a great tutorial,

While loading my app into ShinyApps.io
using:

deployApp("01_hello")
I get the following error:
Error: Unhandled Exception: 'NoneType' object has no attribute '__getitem__'

and while the app shows up in the web-page of ShinyApps.io, it appears as
""undeployed".

Any clue what may be causing this. I google this with no info availbale.

Yimi
comments powered by Disqus

LESSON 7: Share your apps 66
control over your app including server administration tools. To find out more about shinyapps.io visit shinyapps.io.

Shiny Server
Shiny Server is a companion program to Shiny that builds a web server designed to host Shiny apps. It’s free, open
source, and available from Github.

Shiny Server is a server program that Linux servers can run to host a Shiny app as a web page. To use Shiny
Server, you’ll need a Linux server that has explicit support for Ubuntu 12.04 or greater (64 bit) and CentOS/RHEL 5
(64 bit). If you are not using an explicitly supported distribution, you can still use Shiny Server by building it from
source.

You can host multiple Shiny applications on multiple web pages with the same Shiny Server, and you can deploy the
apps from behind a firewall.

=== [p]To see detailed instructions for installing and configuring a Shiny Server, visit the Shiny Server [a
href="https://github.com/rstudio/shiny-server/blob/master/README.md"]guide[/a].[/p] ===

Shiny Server Pro
Shiny Server will get your app to the web and take care of all of your Shiny publishing needs. However, if you use
Shiny in a for-profit setting, you may want to give yourself the server tools that come with most paid server programs,
such as

Password authentification
SSL support
Administrator tools
Priority support
and more.

If so, check out Shiny Server Pro, RStudio’s paid professional version of Shiny Server.

Recap
Shiny apps are easy to share. You can share your app as a couple of R scripts, or as a fully functioning web app with
its own URL. Each method has its own advantages.

You learned:

Anyone can launch your app as long as they have a copy of R, Shiny, and a copy of your app’s files.
runUrl , runGitHub , and runGist make it simple to share and retrieve Shiny files from web links.

You can turn your app into a live web app at its own URL with shinyapps.io.
You can use the open source Shiny Server to build a Linux server that hosts Shiny apps.
If you need closer control, or want to manage large volumes of traffic, you can purchase Shiny Server Pro from
RStudio.

Congratulations. You’ve worked through the entire Shiny development process. You can build a sophisticated,
reactive app, deploy it, and share it with others. Users can interact with your data and follow your stories in a new
way.

The next step is to practice, and then explore the advanced features of Shiny.

The Shiny Dev Center can help you along the way. It hosts a gallery of inspiring apps, along with the code that

LESSON 7: Share your apps 67

Shiny is an RStudio project. © 2014 RStudio, Inc.

makes the apps.

The Shiny Dev Center also includes an articles section for continuing education. Each article examines an
intermediate to advanced Shiny topic in depth.

You now know enough to build your own Shiny apps. See what you can do!

Let us know what you think! If you have a sophisticated question, or want an in depth answer, please post at the
Shiny Discussion Forum, where we can respond at length. For help with code, check out How to get help.

comments powered by Disqus

LESSON 7: Share your apps 68
Note: percent map is designed to work with the counties data set
It may not work correctly with other data sets if their row order does
not exactly match the order in which the maps package plots counties
percent_map <- function(var, color, legend.title, min = 0, max = 100) {

 # generate vector of fill colors for map
 shades <- colorRampPalette(c("white", color))(100)

 # constrain gradient to percents that occur between min and max
 var <- pmax(var, min)
 var <- pmin(var, max)
 percents <- as.integer(cut(var, 100,
 include.lowest = TRUE, ordered = TRUE))
 fills <- shades[percents]

 # plot choropleth map
 map("county", fill = TRUE, col = fills,
 resolution = 0, lty = 0, projection = "polyconic",
 myborder = 0, mar = c(0,0,0,0))

 # overlay state borders
 map("state", col = "white", fill = FALSE, add = TRUE,
 lty = 1, lwd = 1, projection = "polyconic",
 myborder = 0, mar = c(0,0,0,0))

 # add a legend
 inc <- (max - min) / 4
 legend.text <- c(paste0(min, " % or less"),
 paste0(min + inc, " %"),
 paste0(min + 2 * inc, " %"),
 paste0(min + 3 * inc, " %"),
 paste0(max, " % or more"))

 legend("bottomleft",
 legend = legend.text,
 fill = shades[c(1, 25, 50, 75, 100)],
 title = legend.title)
}

LESSON 7: Share your apps 69
library(shiny)

shinyUI(fluidPage(
 titlePanel("stockVis"),

 sidebarLayout(
 sidebarPanel(
 helpText("Select a stock to examine.
 Information will be collected from yahoo finance."),

 textInput("symb", "Symbol", "SPY"),

 dateRangeInput("dates",
 "Date range",
 start = "2013-01-01",
 end = as.character(Sys.Date())),

 actionButton("get", "Get Stock"),

 br(),
 br(),

 checkboxInput("log", "Plot y axis on log scale",
 value = FALSE),

 checkboxInput("adjust",
 "Adjust prices for inflation", value = FALSE)
),

 mainPanel(plotOutput("plot"))
)
))

LESSON 7: Share your apps 70
server.R

library(quantmod)
source("helpers.R")

shinyServer(function(input, output) {

 output$plot <- renderPlot({
 data <- getSymbols(input$symb, src = "yahoo",
 from = input$dates[1],
 to = input$dates[2],
 auto.assign = FALSE)

 chartSeries(data, theme = chartTheme("white"),
 type = "line", log.scale = input$log, TA = NULL)
 })

})

LESSON 7: Share your apps 71
if (!exists(".inflation")) {
 .inflation <- getSymbols('CPIAUCNS', src = 'FRED',
 auto.assign = FALSE)
}

adjusts yahoo finance data with the monthly consumer price index
values provided by the Federal Reserve of St. Louis
historical prices are returned in present values
adjust <- function(data) {

 latestcpi <- last(.inflation)[[1]]
 inf.latest <- time(last(.inflation))
 months <- split(data)

 adjust_month <- function(month) {
 date <- substr(min(time(month[1]), inf.latest), 1, 7)
 coredata(month) * latestcpi / .inflation[date][[1]]
 }

 adjs <- lapply(months, adjust_month)
 adj <- do.call("rbind", adjs)
 axts <- xts(adj, order.by = time(data))
 axts[, 5] <- Vo(data)
 axts
}

Shiny Articles 72

2 Articles

2.1 Articles

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Articles
The basics
If you've been through the tutorial and need a refresher, these articles are a good place to start. They describe the
lay of the land.

The basic parts of a Shiny app
How to build a Shiny app
How to launch a Shiny app
How to get help
The Shiny cheat sheet
Single-file Shiny apps
App formats and launching methods
Persistent data storage in Shiny apps

Extend Shiny
These packages provide advanced features that can enhance your Shiny apps.

shinythemes - CSS themes ready to use with Shiny
shinydashboard - Shiny powered dashboards
htmlwidgets - A framework for embedding JavaScript visualizations into R. Ready to use examples include:

leaflet - Geo-spatial mapping (article)
dygraphs - Time series charting (article)
MetricsGraphics - Scatterplots and line charts with D3
networkD3 - Graph data visualization with D3
DataTables - Tabular data display (article)
threejs - 3D scatterplots and globes
rCharts - Multiple JavaScript charting libraries
d3heatmap - Heatmaps (article)
diagrammeR - Graph and flowchart diagrams (article)

Layouts and UI
These articles explain how to control the layout, user-interface, and general appearance of your Shiny apps.

Application layout guide
Display modes
Tabsets
Customize your UI with HTML

Articles 73
Build your entire UI with HTML
Build a dynamic UI that reacts to user input
Shiny HTML Tags Glossary
Progress indicators

Deploying apps
These articles describe the different ways to share your Shiny apps with users.

Getting started with shinyapps.io
Setting up custom domains with shinyapps.io
Scaling and Performance Tuning with shinyapps.io
Share data across sessions with shinyapps.io
Migrating shinyapps.io authentication
Introduction to Shiny Server
Save your app as a function
Sharing apps to run locally

Interactive documents
These articles explain how to add Shiny components to R Markdown reports.

Introduction to R Markdown
Introduction to interactive documents
R Markdown integration in the RStudio IDE
The R Markdown Cheat sheet

Widgets
These articles describe Shiny's pre-built widgets and provide ideas on how to use them. (See also Lesson 3 in the
tutorial, and the Widgets section in the gallery.)

Using Action Buttons
Using sliders
Help users download data from your app
Using selectize input

Outputs
These articles show you how to create and use different output objects, the parts of your app that display results and
react to user input.

Render images in a Shiny app
How to use DataTables in a Shiny App

Reactive programming
These articles describe reactivity from a conceptual level. Understanding reactivity will help you build apps that are
more efficient, robust, and correct.

Reactivity: An overview
Stop reactions with isolate()
Execution scheduling
How to understand reactivity in R

Articles 74

Shiny is an RStudio project. © 2014 RStudio, Inc.

Best practices
These articles contain ideas that can improve your Shiny workflow and help you create faster, more efficient apps.

Write error messages for your UI with validate
Scoping rules for Shiny apps
Debugging techniques for Shiny apps
Learn about your user with session$clientData
Unicode characters in Shiny apps

Customizing Shiny
These articles suggest ways to create custom Shiny widgets, layouts and outputs; or to combine Shiny with other web
technologies.

Style your apps with CSS
Build custom input objects
Build custom output objects
Add Google Analytics to a Shiny app

Shiny Server Pro
Here are some of the unique things you can do when you deploy your apps with Shiny Server Pro

How to create User Privileges
Allow different libraries for different apps

Interactive plots
Create interactive plots with base and ggplot2 graphics

Interactive plots
Selecting rows of data
Interactive plots - advanced

Upgrade notes
Notes for upgrading to particular versions of Shiny

Upgrade notes for Shiny 0.11
Upgrade notes for Shiny 0.12

The basic parts of a Shiny app 75

2.2 The basic parts of a Shiny app

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

The basic parts of a Shiny app
ADDED: 06 JAN 2014

The Shiny package comes with ten built-in examples that demonstrate how Shiny works. This article reviews the first
three examples, which demonstrate the basic structure of a Shiny app.

Example 1: Hello Shiny

The Hello Shiny example is a simple application that plots R’s built-in faithful dataset with a configurable number
of bins. To run the example, type:

> library(shiny)

> runExample("01_hello")

Shiny applications have two components: a user-interface definition and a server script. The source code for both of
these components is listed below.

In subsequent sections of the article we’ll break down Shiny code in detail and explain the use of “reactive”
expressions for generating output. For now, though, just try playing with the sample application and reviewing the
source code to get an initial feel for things. Be sure to read the comments carefully.

The user interface is defined in a source file named ui.R:

ui.R

library(shiny)

The basic parts of a Shiny app 76
Define UI for application that draws a histogram

shinyUI(fluidPage(

 # Application title

 titlePanel("Hello Shiny!"),

 # Sidebar with a slider input for the number of bins

 sidebarLayout(

 sidebarPanel(

 sliderInput("bins",

 "Number of bins:",

 min = 1,

 max = 50,

 value = 30)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

)

))

The server-side of the application is shown below. At one level, it’s very simple–a random distribution is plotted as a
histogram with the requested number of bins. However, you’ll also notice that the code that generates the plot is
wrapped in a call to renderPlot . The comment above the function explains a bit about this, but if you find it
confusing, don’t worry–we’ll cover this concept in much more detail soon.

server.R

library(shiny)

Define server logic required to draw a histogram

shinyServer(function(input, output) {

 # Expression that generates a histogram. The expression is

 # wrapped in a call to renderPlot to indicate that:

 #

 # 1) It is "reactive" and therefore should be automatically

 # re-executed when inputs change

 # 2) Its output type is a plot

 output$distPlot <- renderPlot({

 x <- faithful[, 2] # Old Faithful Geyser data

 bins <- seq(min(x), max(x), length.out = input$bins + 1)

 # draw the histogram with the specified number of bins

 hist(x, breaks = bins, col = 'darkgray', border = 'white')

 })

})

The next example will show the use of more input controls, as well as the use of reactive functions to generate
textual output.

The basic parts of a Shiny app 77

Example 2: Shiny Text

The Shiny Text application demonstrates printing R objects directly, as well as displaying data frames using HTML
tables. To run the example, type:

> library(shiny)

> runExample("02_text")

The first example had a single numeric input specified using a slider and a single plot output. This example has a bit
more going on: two inputs and two types of textual output.

If you try changing the number of observations to another value, you’ll see a demonstration of one of the most
important attributes of Shiny applications: inputs and outputs are connected together “live” and changes are
propagated immediately (like a spreadsheet). In this case, rather than the entire page being reloaded, just the table
view is updated when the number of observations change.

Here is the user interface definition for the application. Notice in particular that the sidebarPanel and mainPanel
functions are now called with two arguments (corresponding to the two inputs and two outputs displayed):

ui.R

library(shiny)

Define UI for dataset viewer application

shinyUI(fluidPage(

 # Application title

 titlePanel("Shiny Text"),

 # Sidebar with controls to select a dataset and specify the

 # number of observations to view

 sidebarLayout(

 sidebarPanel(

 selectInput("dataset", "Choose a dataset:",

 choices = c("rock", "pressure", "cars")),

The basic parts of a Shiny app 78
 numericInput("obs", "Number of observations to view:", 10)

),

 # Show a summary of the dataset and an HTML table with the

 # requested number of observations

 mainPanel(

 verbatimTextOutput("summary"),

 tableOutput("view")

)

)

))

The server side of the application has also gotten a bit more complicated. Now we create:

A reactive expression to return the dataset corresponding to the user choice
Two other rendering expressions (renderPrint and renderTable) that return the output$summary and
output$view values

These expressions work similarly to the renderPlot expression used in the first example: by declaring a rendering
expression you tell Shiny that it should only be executed when its dependencies change. In this case that’s either one
of the user input values (input$dataset or input$obs).

server.R

library(shiny)

library(datasets)

Define server logic required to summarize and view the selected

dataset

shinyServer(function(input, output) {

 # Return the requested dataset

 datasetInput <- reactive({

 switch(input$dataset,

 "rock" = rock,

 "pressure" = pressure,

 "cars" = cars)

 })

 # Generate a summary of the dataset

 output$summary <- renderPrint({

 dataset <- datasetInput()

 summary(dataset)

 })

 # Show the first "n" observations

 output$view <- renderTable({

 head(datasetInput(), n = input$obs)

 })

})

We’ve introduced more use of reactive expressions but haven’t really explained how they work yet. The next example
will start with this one as a baseline and expand significantly on how reactive expressions work in Shiny.

Example 3: Reactivity

The basic parts of a Shiny app 79

The Reactivity application is very similar to Hello Text, but goes into much more detail about reactive programming
concepts. To run the example, type:

> library(shiny)

> runExample("03_reactivity")

The previous examples have given you a good idea of what the code for Shiny applications looks like. We’ve
explained a bit about reactivity, but mostly glossed over the details. In this section, we’ll explore these concepts more
deeply. If you want to dive in and learn about the details, see the Understanding Reactivity section, starting with
Reactivity Overview.

What is Reactivity?
The Shiny web framework is fundamentally about making it easy to wire up input values from a web page, making
them easily available to you in R, and have the results of your R code be written as output values back out to the
web page.

input values => R code => output values

Since Shiny web apps are interactive, the input values can change at any time, and the output values need to be
updated immediately to reflect those changes.

Shiny comes with a reactive programming library that you will use to structure your application logic. By using
this library, changing input values will naturally cause the right parts of your R code to be reexecuted, which will in
turn cause any changed outputs to be updated.

Reactive Programming Basics
Reactive programming is a coding style that starts with reactive values–values that change over time, or in
response to the user–and builds on top of them with reactive expressions–expressions that access reactive
values and execute other reactive expressions.

The basic parts of a Shiny app 80
What’s interesting about reactive expressions is that whenever they execute, they automatically keep track of what
reactive values they read and what reactive expressions they invoked. If those “dependencies” become out of date,
then they know that their own return value has also become out of date. Because of this dependency tracking,
changing a reactive value will automatically instruct all reactive expressions that directly or indirectly depended on
that value to re-execute.

The most common way you’ll encounter reactive values in Shiny is using the input object. The input object,
which is passed to your shinyServer function, lets you access the web page’s user input fields using a list-like
syntax. Code-wise, it looks like you’re grabbing a value from a list or data frame, but you’re actually reading a
reactive value. No need to write code to monitor when inputs change–just write reactive expression that read the
inputs they need, and let Shiny take care of knowing when to call them.

It’s simple to create reactive expression: just pass a normal expression into reactive . In this application, an
example of that is the expression that returns an R data frame based on the selection the user made in the input
form:

datasetInput <- reactive({

 switch(input$dataset,

 "rock" = rock,

 "pressure" = pressure,

 "cars" = cars)

})

To turn reactive values into outputs that can viewed on the web page, we assigned them to the output object (also
passed to the shinyServer function). Here is an example of an assignment to an output that depends on both the
datasetInput reactive expression we just defined, as well as input$obs :

output$view <- renderTable({

 head(datasetInput(), n = input$obs)

})

This expression will be re-executed (and its output re-rendered in the browser) whenever either the datasetInput
or input$obs value changes.

Back to the Code
Now that we’ve taken a deeper look at some of the core concepts, let’s revisit the source code and try to understand
what’s going on in more depth. The user interface definition has been updated to include a text-input field that
defines a caption. Other than that it’s very similar to the previous example:

ui.R

library(shiny)

Define UI for dataset viewer application

shinyUI(fluidPage(

 # Application title

 titlePanel("Reactivity"),

 # Sidebar with controls to provide a caption, select a dataset,

 # and specify the number of observations to view. Note that

 # changes made to the caption in the textInput control are

 # updated in the output area immediately as you type

 sidebarLayout(

 sidebarPanel(

The basic parts of a Shiny app 81
 textInput("caption", "Caption:", "Data Summary"),

 selectInput("dataset", "Choose a dataset:",

 choices = c("rock", "pressure", "cars")),

 numericInput("obs", "Number of observations to view:", 10)

),

 # Show the caption, a summary of the dataset and an HTML

 # table with the requested number of observations

 mainPanel(

 h3(textOutput("caption", container = span)),

 verbatimTextOutput("summary"),

 tableOutput("view")

)

)

))

Server Script
The server script declares the datasetInput reactive expression as well as three reactive output values. There are
detailed comments for each definition that describe how it works within the reactive system:

server.R

library(shiny)

library(datasets)

Define server logic required to summarize and view the selected

dataset

shinyServer(function(input, output) {

 # By declaring datasetInput as a reactive expression we ensure

 # that:

 #

 # 1) It is only called when the inputs it depends on changes

 # 2) The computation and result are shared by all the callers

 # (it only executes a single time)

 #

 datasetInput <- reactive({

 switch(input$dataset,

 "rock" = rock,

 "pressure" = pressure,

 "cars" = cars)

 })

 # The output$caption is computed based on a reactive expression

 # that returns input$caption. When the user changes the

 # "caption" field:

 #

 # 1) This function is automatically called to recompute the

 # output

 # 2) The new caption is pushed back to the browser for

 # re-display

The basic parts of a Shiny app 82
 #

 # Note that because the data-oriented reactive expressions

 # below don't depend on input$caption, those expressions are

 # NOT called when input$caption changes.

 output$caption <- renderText({

 input$caption

 })

 # The output$summary depends on the datasetInput reactive

 # expression, so will be re-executed whenever datasetInput is

 # invalidated

 # (i.e. whenever the input$dataset changes)

 output$summary <- renderPrint({

 dataset <- datasetInput()

 summary(dataset)

 })

 # The output$view depends on both the databaseInput reactive

 # expression and input$obs, so will be re-executed whenever

 # input$dataset or input$obs is changed.

 output$view <- renderTable({

 head(datasetInput(), n = input$obs)

 })

})

We’ve reviewed a lot code and covered a lot of conceptual ground in the first three examples. The next article
focuses on the mechanics of building a Shiny application from the ground up.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

How to build a Shiny app 83

2.3 How to build a Shiny app

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to build a Shiny app
ADDED: 06 JAN 2014

Let’s walk through the steps of building a simple Shiny application. A Shiny application is simply a directory
containing a user-interface definition, a server script, and any additional data, scripts, or other resources required to
support the application.

UI & Server
To get started building the application, create a new empty directory wherever you’d like, then create empty ui.R
and server.R files within in. For purposes of illustration we’ll assume you’ve chosen to create the application at
~/shinyapp:

~/shinyapp

|-- ui.R

|-- server.R

Now we’ll add the minimal code required in each source file. We’ll first define the user interface by calling the
function pageWithSidebar and passing it’s result to the shinyUI function:

ui.R

library(shiny)

Define UI for miles per gallon application

shinyUI(pageWithSidebar(

 # Application title

 headerPanel("Miles Per Gallon"),

 sidebarPanel(),

 mainPanel()

))

The three functions headerPanel , sidebarPanel , and mainPanel define the various regions of the user-
interface. The application will be called “Miles Per Gallon” so we specify that as the title when we create the header
panel. The other panels are empty for now.

Now let’s define a skeletal server implementation. To do this we call shinyServer and pass it a function that
accepts two parameters, input and output :

server.R

How to build a Shiny app 84
library(shiny)

Define server logic required to plot various variables against mpg

shinyServer(function(input, output) {

})

Our server function is empty for now but later we’ll use it to define the relationship between our inputs and outputs.

We’ve now created the most minimal possible Shiny application. You can run the application by calling the runApp
function as follows:

> library(shiny)

> runApp("~/shinyapp")

If everything is working correctly you’ll see the application appear in your browser looking something like this:

We now have a running Shiny application however it doesn’t do much yet. In the next section we’ll complete the
application by specifying the user-interface and implementing the server script.

Inputs & Outputs
Adding Inputs to the Sidebar
The application we’ll be building uses the mtcars data from the R datasets package, and allows users to see a box-
plot that explores the relationship between miles-per-gallon (MPG) and three other variables (Cylinders,
Transmission, and Gears).

We want to provide a way to select which variable to plot MPG against as well as provide an option to include or
exclude outliers from the plot. To do this we’ll add two elements to the sidebar, a selectInput to specify the
variable and a checkboxInput to control display of outliers. Our user-interface definition looks like this after adding
these elements:

ui.R

library(shiny)

Define UI for miles per gallon application

How to build a Shiny app 85
shinyUI(pageWithSidebar(

 # Application title

 headerPanel("Miles Per Gallon"),

 # Sidebar with controls to select the variable to plot against mpg

 # and to specify whether outliers should be included

 sidebarPanel(

 selectInput("variable", "Variable:",

 list("Cylinders" = "cyl",

 "Transmission" = "am",

 "Gears" = "gear")),

 checkboxInput("outliers", "Show outliers", FALSE)

),

 mainPanel()

))

If you run the application again after making these changes you’ll see the two user-inputs we defined displayed within
the sidebar:

Creating the Server Script
Next we need to define the server-side of the application which will accept inputs and compute outputs. Our server.R
file is shown below, and illustrates some important concepts:

Accessing input using slots on the input object and generating output by assigning to slots on the output
object.
Initializing data at startup that can be accessed throughout the lifetime of the application.
Using a reactive expression to compute a value shared by more than one output.

The basic task of a Shiny server script is to define the relationship between inputs and outputs. Our script does this
by accessing inputs to perform computations and by assigning reactive expressions to output slots.

Here is the source code for the full server script (the inline comments explain the implementation technqiues in more
detail):

server.R

How to build a Shiny app 86
library(shiny)

library(datasets)

We tweak the "am" field to have nicer factor labels. Since this doesn't

rely on any user inputs we can do this once at startup and then use the

value throughout the lifetime of the application

mpgData <- mtcars

mpgData$am <- factor(mpgData$am, labels = c("Automatic", "Manual"))

Define server logic required to plot various variables against mpg

shinyServer(function(input, output) {

 # Compute the forumla text in a reactive expression since it is

 # shared by the output$caption and output$mpgPlot expressions

 formulaText <- reactive({

 paste("mpg ~", input$variable)

 })

 # Return the formula text for printing as a caption

 output$caption <- renderText({

 formulaText()

 })

 # Generate a plot of the requested variable against mpg and only

 # include outliers if requested

 output$mpgPlot <- renderPlot({

 boxplot(as.formula(formulaText()),

 data = mpgData,

 outline = input$outliers)

 })

})

The use of renderText and renderPlot to generate output (rather than just assigning values directly) is what
makes the application reactive. These reactive wrappers return special expressions that are only re-executed when
their dependencies change. This behavior is what enables Shiny to automatically update output whenever input
changes.

Displaying Outputs
The server script assigned two output values: output$caption and output$mpgPlot . To update our user
interface to display the output we need to add some elements to the main UI panel.

In the updated user-interface definition below you can see that we’ve added the caption as an h3 element and filled
in its value using the textOutput function, and also rendered the plot by calling the plotOutput function:

ui.R

library(shiny)

Define UI for miles per gallon application

shinyUI(pageWithSidebar(

 # Application title

 headerPanel("Miles Per Gallon"),

 # Sidebar with controls to select the variable to plot against mpg

How to build a Shiny app 87
 # and to specify whether outliers should be included

 sidebarPanel(

 selectInput("variable", "Variable:",

 list("Cylinders" = "cyl",

 "Transmission" = "am",

 "Gears" = "gear")),

 checkboxInput("outliers", "Show outliers", FALSE)

),

 # Show the caption and plot of the requested variable against mpg

 mainPanel(

 h3(textOutput("caption")),

 plotOutput("mpgPlot")

)

))

Running the application now shows it in its final form including inputs and dynamically updating outputs:

Now that we’ve got a simple application running we’ll probably want to make some changes. The next article covers
the basic cycle of editing, running, and debugging Shiny applications.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

How to build a Shiny app 88

Shiny is an RStudio project. © 2014 RStudio, Inc.

John Wandeto

Dear All. This is fantastic. I hope to build an application to analyse students tests
performance, award grades,produce results with appropriate comments/suggestion.
Thank you

Mark Cavanaugh

Thanks for this...very helpful...and I look forward to build with shiny.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

How to launch a Shiny app 89

2.4 How to launch a Shiny app

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to launch a Shiny app
ADDED: 06 JAN 2014

In previous articles[1, 2] you’ve been calling runApp to run the example applications. This function starts the
application and opens up your default web browser to view it. The call is blocking, meaning that it prevents traditional
interaction with the console while the application is running.

To stop the application you simply interrupt R – you can do this by pressing the Ctrl-C in some R front ends, or the
Escape key in RStudio,or by clicking the stop button if your R environment provides one.

Running in a Separate Process
If you don’t want to block access to the console while running your Shiny application you can also run it in a separate
process. You can do this by opening a terminal or console window and executing the following, where ~/shinyapp
should be replaced with the path to your application:

R -e "shiny::runApp('~/shinyapp')"

By default runApp starts the application on a randomly selected port. For example, it might start on port 4700, in
which case you can connect to the running application by navigating your browser to http://localhost:4700.

In other articles, we discuss some techniques for debugging Shiny applications, including the ability to stop execution
and inspect the current environment. To combine these techniques with running your applications in a separate
terminal session, you’ll need to call runApp from an interactive R session, instead of with the method here.

Live Reloading
When you make changes to your underlying user-interface definition or server script you don’t need to stop and
restart your application to see the changes. Simply save your changes and then reload the browser to see the
updated application in action.

One qualification to this: when a browser reload occurs Shiny explicitly checks the timestamps of the ui.R and
server.R files to see if they need to be re-sourced. Shiny isn’t aware of other scripts or data files that change, so if
you use those files and modify them, a full stop and restart of the application is needed.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

How to get help 90

2.5 How to get help

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to get help
ADDED: 22 MAY 2014
BY: GARRETT GROLEMUND

Writing code can be tricky. Sometimes you will want more advice than you can find in R’s help pages.

This article will show you where to seek help, how to get it.

Support for R and Shiny has developed like the languages themselves, organically and through the excellent work of
volunteers. You can be a part of this process. Simply ask your questions in the right places and in a clear manner.
Not only will your question help you, it will create a record that will benefit everyone who has the same question later.

Where to seek help
You will get the quickest response if you submit your question to a place that people already visit to ask and answer
similar questions. I recommend these resources for questions on the following topics:

R (general): StackOverflow
Shiny (general): StackOverflow
Shiny: The Shiny discussion group
Shiny Server: The Shiny Server support forum
Shiny Server Pro: email the Shiny Server Pro support team
ShinyApps.io: The ShinyApps.io discussion group
RStudio IDE: The RStudio IDE support forum

Since Shiny Server Pro is a paid product, it has a customer support team.

These sites all have archives that you can search to see if your question has already been answered. If answered,
you can get an immediate solution!

Once answered your question will go into these archives and expand the knowledge base in the Shiny community.

How to get help
You will get the most useful help if you do these simple things:

1. Search the archives and check if your question has an answer already.
2. Write a minimal reproducible example that illustrates your problem.
3. Be precise. Include the exact error messages that you see.
4. Run sessionInfo() in R and include the output with your question (sessionInfo() displays the versions

of R and its packages that you are using, as well as your OS. This is important information for debugging).
5. Be friendly and appreciative.

These steps will make it easier for a mentor to help you.

How to write a good reproducible example

1

1

How to get help 91
A reproducible example is a snippet of R code that someone can run and recreate your problem. Many bugs cannot
be diagnosed unless you include the code that causes them.

A good reproducible example is:

1. Minimal - It should contain just enough code to recreate the bug. This will help both you and your mentors
zero in on the problem.

2. Complete - It should contain everything a person needs to recreate the bug. In other words, a person should
be able to copy and paste the code into R and see the bug.

You do not need to share your own code and data (if you do not want to). Often you can create an example that
reproduces your bug with toy code and a dummy data set.

If you need to create a reproducible example of a Shiny app, we recommend you save your app as a gist. When you
write your question, include the runGist command that will launch your app. A runGist command looks like this:

shiny::runGist("3239667")

Don’t forget to explain how to create the error in your app. You may need to provide instructions such as “Click this
checkbox” or “Select this value.”

If you need to create a reproducible example of Rcpp code, I recommend you supply a .cpp file that can be executed
through Rcpp::sourceCpp . It is the easiest way of testing or debugging C++ / Rcpp code.

If you want more details on writing a good example, Hadley gives some advice here.

What about the Shiny Dev Center?
RStudio wants to make the Shiny Dev Center as useful as possible. I hope it can be a one stop shop for advice,
wisdom, and inspiration. However the Shiny Dev Center is not designed to be an interactive resource.

If you ask a question about an article or tutorial in its comments section, I will try my best to answer it there. However,
the comments section is not a good place to ask for specific help with your code. Why not?

Practicality - Volunteers do not hang out in the comments sections waiting to answer your questions.
Efficiency - The resources listed above are searchable and well known, which makes it easy for others to
benefit from your questions and answers. Not so for the comments.
Redundancy - There is a good chance someone already answered your question at one of the help sites.
Why not find out?

Recap
You can get the help you need and make Shiny better in the process by visiting a help site specific to your question.
Do not forget to make your question clear with a reproducible example, an error message, and the output of
sessionInfo() .

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome

Single-file Shiny apps 92

2.6 Single-file Shiny apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Single-file Shiny apps
ADDED: 10 SEP 2014
BY: WINSTON CHANG

As of version 0.10.2, Shiny supports single-file applications. You no longer need to build separate server.R and
ui.R files for your app; you can just create a file called app.R that contains both the server and UI components.

Example
To create a single-file app, create a new directory (for example, newdir/) and place a file called app.R in the
directory. To run it, call runApp("newdir") .

Your app.R file should call shinyApp() with an appropriate UI object and server function, as demonstrated below:

server <- function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs), col = 'darkgray', border = 'white')

 })

}

ui <- fluidPage(

 sidebarLayout(

 sidebarPanel(

 sliderInput("obs", "Number of observations:", min = 10, max = 500, value = 100)

),

 mainPanel(plotOutput("distPlot"))

)

)

shinyApp(ui = ui, server = server)

One nice feature about single-file apps is that you can copy and paste the entire app into the R console, which
makes it easy to quickly share code for others to experiment with. For example, if you copy and paste the code
above into the R command line, it will start a Shiny app.

Details
The shinyApp() function returns an object of class shiny.appobj . When this is returned to the console, it is
printed using the print.shiny.appobj() function, which launches a Shiny app from that object.

You can also use a similar technique to create and run files that aren’t named app.R and don’t reside in their own
directory. If, for example, you create a file called test.R and have it call shinyApp() at the end, you could then
run it from the console with:

Single-file Shiny apps 93

Shiny is an RStudio project. © 2014 RStudio, Inc.

print(source("test.R"))

When the file is sourced, it returns a shiny.appobj —but by default, the return value from source() isn’t printed.
Wrapping it in print() causes Shiny to launch it.

This method is handy for quick experiments, but it lacks some advantages that you get from having an app.R in its
own directory. When you do runApp("newdir") , Shiny will monitor the file for changes and reload the app if you
reload your browser, which is useful for development. This doesn’t happen when you simply source the file. Also,
Shiny Server and shinyapps.io expect an app to be in its own directory. So if you want to deploy your app, it should
go in its own directory.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

GÃ¼nter Lutz-Misof

Would it be possible to create nested shiny apps. What I want to do is to realize a
tabbed interface and each tab represents a single shiny app. all these apps should
use the same dataset. Tested this and it works partially. If i integrate the histogram
app then its shown in an iframe and works fine. If I want to use data from the main
app it seems that I have lost the environment. And during loading the complete app
it shows ERROR: [on_request_read] connection reset by peer. Is it possible that you
provide an example how to do this, if this is possible?

ImAndy

For examples that require additional packages, how do I add, say, library(dplyr) in
the above code?

Bk

Just add your library in front of the code:

library(dplyr)

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

App formats and launching apps 94

2.7 App formats and launching apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

App formats and launching apps
ADDED: 10 FEB 2015
BY: WINSTON CHANG

You may have noticed that there are several different ways that Shiny apps are defined and launched. Sometimes
you’ll see the shinyServer() in the server.R file, sometimes not, and the same goes for shinyUI() in ui.R .
Sometimes there isn’t even a server.R file at all.

This article provides an overview of the different ways of defining and launching Shiny applications.

server.R and ui.R
Most examples will include a server.R and ui.R file like the following:

server.R

function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs), col = 'darkgray', border = 'white')

 })

}

ui.R

fluidPage(

 sidebarLayout(

 sidebarPanel(

 sliderInput("obs", "Number of observations:", min = 10, max = 500, value = 100)

),

 mainPanel(plotOutput("distPlot"))

)

)

For applications defined this way, the server.R file must return the server function, and the ui.R file must return
the UI object (in this case, the UI object is created by fluidPage()). In other words, if the files contained other
code (like utility functions) you must make sure that the last expression in the file is the server function or UI object.

shinyServer() and shinyUI()
Prior to Shiny 0.10, the server.R and ui.R files required calls to shinyServer() and shinyUI() respectively.
Older Shiny application examples might look like the following. These are the same as in the previous example,
except that the code is wrapped in shinyServer() and shinyUI() :

App formats and launching apps 95
server.R

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs), col = 'darkgray', border = 'white')

 })

})

ui.R

shinyUI(fluidPage(

 sidebarLayout(

 sidebarPanel(

 sliderInput("obs", "Number of observations:", min = 10, max = 500, value = 100)

),

 mainPanel(plotOutput("distPlot"))

)

))

As of Shiny 0.10, calling these functions is no longer needed.

app.R
As of Shiny 0.10.2, applications can be created with a single file, app.R , which contains both the UI and server
code. This file must return an object created by the shinyApp() function.

app.R

server <- function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs), col = 'darkgray', border = 'white')

 })

}

ui <- fluidPage(

 sidebarLayout(

 sidebarPanel(

 sliderInput("obs", "Number of observations:", min = 10, max = 500, value = 100)

),

 mainPanel(plotOutput("distPlot"))

)

)

shinyApp(ui = ui, server = server)

This method is more appropriate for smaller applications; for larger applications, you may find that having separate
ui.R and server.R files makes your code easier to manage.

For more information, see the article about single-file apps.

session and clientData
In the server code for some examples, you might see code like this:

function(input, output) { }

App formats and launching apps 96
In other examples, you might session as a third argument to the server function:

function(input, output, session) { }

The session argument is optional. It’s only needed if you want to use advanced features of Shiny – some functions
in Shiny take the session variable as an argument.

You may also see some older examples that take clientData as an argument to the server function. clientData
provides information about the connection and the visibility of various components on the web page (see the client
data article for more).

However, it is no longer necessary to use clientData as an argument, because if you have session , you can
access the same information client data with session$clientData . For the sake of consistency, we recommend
using session$clientData :

These two server functions do the same thing

Using the clientData argument directly (older examples)

function(input, output, clientData) {

 output$txt <- renderPrint({

 clientData

 })

}

Using the session argument

function(input, output, session) {

 output$txt <- renderPrint({

 session$clientData

 })

}

Ways of calling runApp()
There are several different things that may be passed to runApp() to launch an application.

App directory
If your application resides in a directory myapp/ , you could launch it with:

runApp("myapp")

Shiny app object
If you’ve created a Shiny app object at the console by calling shinyApp() , you can pass that app object to
runApp() :

Create app object (assume ui and server are defined above)

app <- shinyApp(ui, server)

runApp(app)

App formats and launching apps 97
Additionally, if you simply type app at the console and press Enter, R will launch the app. This is because when you
run code at the console, R will call print() on the return value, and for a Shiny app object, the print() method
calls runApp() on the object. So you could do the following to launch the app:

app <- shinyApp(ui, server)

app

list(ui, server)

Another way to launch an app is by giving runApp() a list with the ui and server components. This is an older style
that predates the Shiny app object method above.

(Assume ui and server are defined above)

runApp(list(ui, server))

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Persistent data storage in Shiny apps 98

2.8 Persistent data storage in Shiny apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Persistent data storage in Shiny apps
ADDED: 01 JUL 2015
BY: DEAN ATTALI

Shiny apps often need to save data, either to load it back into a different session or to simply log some information.
However, common methods of storing data from R may not work well with Shiny. Functions like write.csv() and
saveRDS() save data locally, but consider how shinyapps.io works.

Shinyapps.io is a popular server for hosting Shiny apps. It is designed to distribute your Shiny app across different
servers, which means that if a file is saved during one session on some server, then loading the app again later will
probably direct you to a different server where the previously saved file doesn’t exist.

On other occasions, you may use data that is too big to store locally with R in an efficient manner.

This guide will explain seven methods for storing persistent data remotely with a Shiny app. You will learn how to
store:

Arbitrary data can be stored as a file in some sort of a file system (local file system, Dropbox, Amazon
S3)
Structured rectangular data can be stored as a table in a relational database or table-storage
service (SQLite, MySQL, Google Sheets)
Semi-structured data can be stored as a collection in a NoSQL database (MongoDB)

The article explains the theory behind each method, and augments the theory with working examples that will make it
clear and easy for you to use these methods in your own apps.

As a complement to this article, you can see a live demo of a Shiny app that uses each of the seven storage
methods to save and load data (source code on GitHub). This article expands on Jeff Allen’s article regarding sharing
data across sessions.

Basic Shiny app without data storage
To demonstrate how to store data using each storage type, we’ll start with a simple form-submission Shiny app that

1. collects some information from the user
2. stores their response, and
3. shows all previous responses

Initially the app will only save responses within its R session. We will learn later how to modify the app to use each
different storage type.

Here is the code for the basic app that we will be using as our starting point—copy it into a file named app.R . (In
case you didn’t know: Shiny apps don’t have to be broken up into separate ui.R and server.R files, they can be
completely defined in one file as this Shiny article explains)

library(shiny)

Persistent data storage in Shiny apps 99
Define the fields we want to save from the form

fields <- c("name", "used_shiny", "r_num_years")

Shiny app with 3 fields that the user can submit data for

shinyApp(

 ui = fluidPage(

 DT::dataTableOutput("responses", width = 300), tags$hr(),

 textInput("name", "Name", ""),

 checkboxInput("used_shiny", "I've built a Shiny app in R before", FALSE),

 sliderInput("r_num_years", "Number of years using R", 0, 25, 2, ticks = FALSE),

 actionButton("submit", "Submit")

),

 server = function(input, output, session) {

 # Whenever a field is filled, aggregate all form data

 formData <- reactive({

 data <- sapply(fields, function(x) input[[x]])

 data

 })

 # When the Submit button is clicked, save the form data

 observeEvent(input$submit, {

 saveData(formData())

 })

 # Show the previous responses

 # (update with current response when Submit is clicked)

 output$responses <- DT::renderDataTable({

 input$submit

 loadData()

 })

 }

)

The above code is taken from a guide on how to mimic a Google form with Shiny.

The above app is very simple—there is a table that shows all responses, three input fields, and a Submit button
that will take the data in the input fields and save it. You might notice that there are two functions that are not defined
but are used in the app: saveData(data) and loadData() . These two functions are the only code that affects
how the data is stored/retrieved, and we will redefine them for each data storage type. In order to make the app work
for now, here’s a trivial implementation of the save and load functions that simply stores responses in the current R
session.

saveData <- function(data) {

 data <- as.data.frame(t(data))

 if (exists("responses")) {

 responses <<- rbind(responses, data)

 } else {

 responses <<- data

 }

}

loadData <- function() {

 if (exists("responses")) {

 responses

 }

}

Persistent data storage in Shiny apps 100
Before continuing further, make sure this basic app works for you and that you understand every line in it—it is not
difficult, but take the two minutes to go through it. The code for this app is also available as a gist and you can run it
either by copying all the code to your RStudio IDE or by running shiny::runGist("c4db11d81f3c46a7c4a5") .

Local vs remote storage
Before diving into the different storage methods, one important distinction to understand is local storage vs remote
storage.

Local storage means saving a file on the same machine that is running the Shiny application. Functions like
write.csv() , write.table() , and saveRDS() implement local storage because they will save a file on the

machine running the app. Local storage is generally faster than remote storage, but it should only be used if you
always have access to the machine that saves the files.

Remote storage means saving data on another server, usually a reliable hosted server such as Dropbox, Amazon, or
a hosted database. One big advantage of using hosted remote storage solutions is that they are much more reliable
and can generally be more trusted to keep your data alive and not corrupted.

When going through the different storage type options below, keep in mind that if your Shiny app is hosted on
shinyapps.io, you will have to use a remote storage method for the time being. RStudio plans to implement persistent
storage on shinyapps.io soon. In the meantime, using local storage is only an option if you’re hosting your own Shiny
Server, though that comes at the price of having to manage a server and should only be done if you’re comfortable
with administering a server.

Persistent data storage methods
Using the above Shiny app, we can store and retrieve responses in many different ways. Here we will go through
seven ways to achieve data persistence that can be easily integrated into Shiny apps. For each method, we will
explain the method and provide a version of saveData() and loadData() that implements the method. To use a
method as the storage type in the example app, run the app with the appropriate version of saveData() and
loadData() .

As a reminder, you can see all the seven different storage types being used, along with the exact code used, in this
live Shiny app.

Here is a summary of the different storage types we will learn to use.

Method Data type Local storage Remote storage R package
Local file system Arbitrary data YES -
Dropbox Arbitrary data YES rdrop2
Amazon S3 Arbitrary data YES RAmazonS3
SQLite Structured data YES RSQLite
MySQL Structured data YES YES RMySQL
Google Sheets Structured data YES googlesheets
MongoDB Semi-structured data YES YES rmongodb

Store arbitrary data in a file
This is the most flexible option to store data since files allow you to store any type of data, whether it is a single
value, a big data.frame, or any arbitrary data. There are two common cases for using files to store data:

1. you have one file that gets repeatedly overwritten and used by all sessions (like the example in Jeff Allen’s
article), or

Persistent data storage in Shiny apps 101
2. you save a new file every time there is new data

In our case we’ll use the latter because we want to save each response as its own file. We can use the former option,
but then we would introduce the potential for race conditions which will overcomplicate the app. A race condition
happens when two users submit a response at the exact same time, but since the file cannot deal with multiple edits
simultaneously, one user will overwrite the response of the other user.

When saving multiple files, it is important to save each file with a different file name to avoid overwriting files. There
are many ways to do this. For example, you can simply use the current timestamp and an md5 hash of the data
being saved as the file name to ensure that no two form submissions have the same file name.

Arbitrary data can be stored in a file either on the local file system or on remote services such as Dropbox or Amazon
S3.

1. Local file system (local)
The most trivial way to save data from Shiny is to simply save each response as its own file on the current server. To
load the data, we simply load all the files in the output directory. In our specific example, we also want to concatenate
all of the data files together into one data.frame.

Setup: The only setup required is to create an output directory (responses in this case) and to ensure that the Shiny
app has file permissions to read/write in that directory.

Code:

outputDir <- "responses"

saveData <- function(data) {

 data <- t(data)

 # Create a unique file name

 fileName <- sprintf("%s_%s.csv", as.integer(Sys.time()), digest::digest(data))

 # Write the file to the local system

 write.csv(

 x = data,

 file = file.path(outputDir, fileName),

 row.names = FALSE, quote = TRUE

)

}

loadData <- function() {

 # Read all the files into a list

 files <- list.files(outputDir, full.names = TRUE)

 data <- lapply(files, read.csv, stringsAsFactors = FALSE)

 # Concatenate all data together into one data.frame

 data <- do.call(rbind, data)

 data

}

2. Dropbox (remote)
If you want to store arbitrary files with a remote hosted solution instead of the local file system, you can store files on
Dropbox. Dropbox is a file storing service which allows you to host any file, up to a certain maximum usage. The free
account provides plenty of storage space and should be enough to store most data from Shiny apps.

This approach is similar to the previous approach that used the local file system. The only difference is that now that
files are being saved to and loaded from Dropbox. You can use the rdrop2 package to interact with Dropbox from
R. Note that rdrop2 can only move existing files onto Dropbox, so we still need to create a local file before storing it
on Dropbox.

Persistent data storage in Shiny apps 102
Setup: You need to have a Dropbox account and create a folder to store the responses. You will also need to add
authentication to rdrop2 with any approach suggested in the package README. The authentication approach I
chose was to authenticate manually once and to copy the resulting .httr-oauth file that gets created into the
Shiny app’s folder.

Code:

library(rdrop2)

outputDir <- "responses"

saveData <- function(data) {

 data <- t(data)

 # Create a unique file name

 fileName <- sprintf("%s_%s.csv", as.integer(Sys.time()), digest::digest(data))

 # Write the data to a temporary file locally

 filePath <- file.path(tempdir(), fileName)

 write.csv(data, filePath, row.names = FALSE, quote = TRUE)

 # Upload the file to Dropbox

 drop_upload(filePath, dest = outputDir)

}

loadData <- function() {

 # Read all the files into a list

 filesInfo <- drop_dir(outputDir)

 filePaths <- filesInfo$path

 data <- lapply(filePaths, drop_read_csv, stringsAsFactors = FALSE)

 # Concatenate all data together into one data.frame

 data <- do.call(rbind, data)

 data

}

3. Amazon S3 (remote)
Another popular alternative to Dropbox for hosting files online is Amazon S3, or S3 in short. Just like with Dropbox,
you can host any type of file on S3, but instead of placing files inside directories, in S3 you place files inside of
buckets. You can use the RAmazonS3 package to interact with S3 from R. Note that the package is a few years old
and is not under active development, so use it at your own risk.

Setup: You need to have an Amazon Web Services account and to create an S3 bucket to store the responses. As
the package documentation explains, you will need to set the AmazonS3 global option to enable authentication.

Code:

library(RAmazonS3)

s3BucketName <- "my-unique-s3-bucket-name"

options(AmazonS3 = c('login' = "secret"))

saveData <- function(data) {

 # Create a unique file name

 fileName <- sprintf("%s_%s.csv", as.integer(Sys.time()), digest::digest(data))

 # Upload the data to S3

 addFile(

 I(paste0(

 paste(names(data), collapse = ","),

 "\n",

 paste(data, collapse = ",")

Persistent data storage in Shiny apps 103
)),

 s3BucketName,

 fileName,

 virtual = TRUE

)

}

loadData <- function() {

 # Get a list of all files

 files <- listBucket(s3BucketName)$Key

 files <- as.character(files)

 # Read all files into a list

 data <- lapply(files, function(x) {

 raw <- getFile(s3BucketName, x, virtual = TRUE)

 read.csv(text = raw, stringsAsFactors = FALSE)

 })

 # Concatenate all data together into one data.frame

 data <- do.call(rbind, data)

 data

}

Store structured data in a table
If the data you want to save is structured and rectangular, storing it in a table would be a good option. Loosely
defined, structured data means that each observation has the same fixed fields, and rectangular data means that all
observations contain the same number of fields and fit into a nice 2D matrix. A data.frame is a great example of such
data, and thus data.frames are ideal candidates to be stored in tables such as relational databases.

Structured data must have some schema that defines what the data fields are. In a data.frame, the number and
names of the columns can be thought of as the schema. In tables with a header row, the header row can be thought
of as the schema.

Structured data can be stored in a table either in a relational database (such as SQLite or MySQL) or in any other
table-hosting service such as Google Sheets. If you have experience with database interfaces in other languages,
you should note that R does not currently have support for prepared statements, so any SQL statements have to be
constructed manually. One advantage of using a relational database is that with most databases it is safe to have
multiple users using the database concurrently without running into race conditions thanks to transaction support.

4. SQLite (local)
SQLite is a very simple and light-weight relational database that is very easy to set up. SQLite is serverless, which
means it stores the database locally on the same machine that is running the shiny app. You can use the RSQLite
package to interact with SQLite from R. To connect to a SQLite database in R, the only information you need to
provide is the location of the database file.

To store data in a SQLite database, we loop over all the values we want to add and use a SQL INSERT statement to
add the data to the database. It is essential that the schema of the database matches exactly the names of the
columns in the Shiny data, otherwise the SQL statement will fail. To load all previous data, we use a plain SQL
SELECT * statement to get all the data from the database table.

Setup: First, you must have SQLite installed on your server. Installation is fairly easy; for example, on an Ubuntu
machine you can install SQLite with sudo apt-get install sqlite3 libsqlite3-dev . If you use shinyapps.io,
SQLite is already installed on the shinyapps.io server, which will be a handy feature in future versions of shinyapps.io,
which will include persistent local storage.

You also need to create a database and a table that will store all the responses. When creating the table, you need
to set up the schema of the table to match the columns of your data. For example, if you want to save data with

Persistent data storage in Shiny apps 104
columns “name” and “email” then you can create the SQL table with
CREATE TABLE responses(name TEXT, email TEXT); . Make sure the shiny app has write permissions on the

database file and its parent directory.

Code:

library(RSQLite)

sqlitePath <- "/path/to/sqlite/database"

table <- "responses"

saveData <- function(data) {

 # Connect to the database

 db <- dbConnect(SQLite(), sqlitePath)

 # Construct the update query by looping over the data fields

 query <- sprintf(

 "INSERT INTO %s (%s) VALUES ('%s')",

 table,

 paste(names(data), collapse = ", "),

 paste(data, collapse = "', '")

)

 # Submit the update query and disconnect

 dbGetQuery(db, query)

 dbDisconnect(db)

}

loadData <- function() {

 # Connect to the database

 db <- dbConnect(SQLite(), sqlitePath)

 # Construct the fetching query

 query <- sprintf("SELECT * FROM %s", table)

 # Submit the fetch query and disconnect

 data <- dbGetQuery(db, query)

 dbDisconnect(db)

 data

}

5. MySQL (local or remote)
MySQL is a very popular relational database that is similar to SQLite but is more powerful. MySQL databases can
either be hosted locally (on the same machine as the Shiny app) or online using a hosting service.

This method is very similar to the previous SQLite method, with the main difference being where the database is
hosted. You can use the RMySQL package to interact with MySQL from R. Since MySQL databases can be hosted
on remote servers, the command to connect to the server involves more parameters, but the rest of the
saving/loading code is identical to the SQLite approach. To connect to a MySQL database, you need to provide the
following parameters: host, port, dbname, user, password.

Setup: You need to create a MySQL database (either locally or using a web service that hosts MySQL databases)
and a table that will store the responses. As with the setup for SQLite, you need to make sure the table schema is
properly set up for your intended data.

Code:

library(RMySQL)

options(mysql = list(

 "host" = "127.0.0.1",

Persistent data storage in Shiny apps 105
 "port" = 3306,

 "user" = "myuser",

 "password" = "mypassword"

))

databaseName <- "myshinydatabase"

table <- "responses"

saveData <- function(data) {

 # Connect to the database

 db <- dbConnect(MySQL(), dbname = databaseName, host = options()$mysql$host,

 port = options()$mysql$port, user = options()$mysql$user,

 password = options()$mysql$password)

 # Construct the update query by looping over the data fields

 query <- sprintf(

 "INSERT INTO %s (%s) VALUES ('%s')",

 table,

 paste(names(data), collapse = ", "),

 paste(data, collapse = "', '")

)

 # Submit the update query and disconnect

 dbGetQuery(db, query)

 dbDisconnect(db)

}

loadData <- function() {

 # Connect to the database

 db <- dbConnect(MySQL(), dbname = databaseName, host = options()$mysql$host,

 port = options()$mysql$port, user = options()$mysql$user,

 password = options()$mysql$password)

 # Construct the fetching query

 query <- sprintf("SELECT * FROM %s", table)

 # Submit the fetch query and disconnect

 data <- dbGetQuery(db, query)

 dbDisconnect(db)

 data

}

6. Google Sheets (remote)
If you don’t want to deal with the formality and rigidity of a database, another option for storing tabular data is in a
Google Sheet. One nice advantage of Google Sheets is that they are easy to access from anywhere; but unlike with
databases, with Google Sheets data can be overwritten with multiple concurrent users.

You can use the googlesheets package to interact with Google Sheets from R. To connect to a specific sheet, you
will need either the sheet’s title or key (preferably key, as it is unique). It is very easy to store or retrieve data from a
Google Sheet, as the code below shows.

Setup: All you need to do is create a Google Sheet and set the top row with the names of the fields. You can do
that either via a web browser or by using the googlesheets package. You also need to have a Google account.
The googlesheets package uses a similar approach to authentication as rdrop2 , and thus you also need to
authenticate in a similar fashion, such as by copying a valid .httr-oauth file to your Shiny directory.

Code:

library(googlesheets)

table <- "responses"

Persistent data storage in Shiny apps 106
saveData <- function(data) {

 # Grab the Google Sheet

 sheet <- gs_title(table)

 # Add the data as a new row

 gs_add_row(sheet, input = data)

}

loadData <- function() {

 # Grab the Google Sheet

 sheet <- gs_title(table)

 # Read the data

 gs_read_csv(sheet)

}

Store semi-structured data in a NoSQL database
If you have data that is not fully structured but is also not completely free-form, a good middle ground can be using a
NoSQL database. NoSQL databases can also be referred to as schemaless databases because they do not use a
formal schema. NoSQL databases still offer some of the benefits of a traditional relational database, but are more
flexible because every entry can use different fields. If your Shiny app needs to store data that has several fields but
there is no unifying schema for all of the data to use, then using a NoSQL database can be a good option.

There are many NoSQL databases available, but here we will only show how to use mongoDB.

7. MongoDB (local or remote)
MongoDB is one of the most popular NoSQL databases, and just like MySQL it can be hosted either locally or
remotely. There are many web services that offer mongoDB hosting, including MongoLab which gives you free
mongoDB databases. In mongoDB, entries (in our case, responses) are stored in a collection (the equivalent of an
S3 bucket or a SQL table).

You can use either the rmongodb or mongolite package to interact with mongoDB from R. In this example we will
use rmongodb , but mongolite is a perfectly good alternative. As with the relational database methods, all we need
to do in order to save/load data is connect to the database and submit the equivalent of an update or select query. To
connect to the database you need to provide the following: db, host, username, password. When saving data to
mongoDB, the data needs to be converted to BSON (binary JSON) in order to be inserted into a mongoDB collection.
MongoDB automatically adds a unique “id” field to every entry, so when retrieving data, we manually remove that
field.

Setup: All you need to do is create a mongoDB database—either locally or using a web service such as MongoLab.
Since there is no schema, it is not mandatory to create a collection before populating it.

Code:

library(rmongobd)

options(mongodb = list(

 "host" = "ds012345.mongolab.com:61631",

 "username" = "myuser",

 "password" = "mypassword"

))

databaseName <- "myshinydatabase"

collectionName <- "myshinydatabase.responses"

saveData <- function(data) {

 # Connect to the database

Persistent data storage in Shiny apps 107
 db <- mongo.create(db = databaseName, host = options()$mongodb$host,

 username = options()$mongodb$username, password = options()$mongodb$password)

 # Convert the data to BSON (Binary JSON)

 data <- mongo.bson.from.list(as.list(data))

 # Insert the data into the mongo collection and disconnect

 mongo.insert(db, collectionName, data)

 mongo.disconnect(db)

}

loadData <- function() {

 # Connect to the database

 db <- mongo.create(db = databaseName, host = options()$mongodb$host,

 username = options()$mongodb$username, password = options()$mongodb$password)

 # Get a list of all entries

 data <- mongo.find.all(db, collectionName)

 # Read all entries into a list

 data <- lapply(data, data.frame, stringsAsFactors = FALSE)

 # Concatenate all data together into one data.frame

 data <- do.call(rbind, data)

 # Remove the ID variable

 data <- data[, -1, drop = FALSE]

 # Disconnect

 mongo.disconnect(db)

 data

}

Conclusion
Persistent storage lets you do more with your Shiny apps. You can even use persistent storage to access and write
to remote data sets that would otherwise be too big to manipulate in R.

The following table can serve as a reminder of the different storage types and when to use them. Remember that any
method that uses local storage can only be used on Shiny Server, while any method that uses remote storage can be
also used on shinyapps.io.

Method Data type Local storage Remote storage R package
Local file system Arbitrary data YES -
Dropbox Arbitrary data YES rdrop2
Amazon S3 Arbitrary data YES RAmazonS3
SQLite Structured data YES RSQLite
MySQL Structured data YES YES RMySQL
Google Sheets Structured data YES googlesheets
MongoDB Semi-structured data YES YES rmongodb

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox

Persistent data storage in Shiny apps 108

Shiny is an RStudio project. © 2014 RStudio, Inc.

MarkeDAtHome

We can also add to this list Google's BigQuery, via Hadley's
https://github.com/hadley/bigr... or within dplyr()

Ludovic Kuty

Great article ! It proved really useful to explore a few things and in particular to build
custom-made questionnaires for live statistical lessons

Ben Porter

Another clear and thorough post from Dean Attali.

Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Application layout guide 109

2.9 Application layout guide

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Application layout guide
ADDED: 24 JAN 2014
BY: JJ ALLAIRE

Overview
Shiny includes a number of facilities for laying out the components of an application. This guide describes the
following application layout features:

1. The simple default layout with a sidebar for inputs and a large main area for output.

2. Custom application layouts using the Shiny grid layout system.

3. Segmenting layouts using the tabsetPanel() and navlistPanel() functions.

4. Creating applications with multiple top-level components using the navbarPage() function.

These features were implemented using the layout features available in Bootstrap 2, an extremely popular
HTML/CSS framework (though no prior experience with Bootstrap is assumed).

Sidebar Layout
The sidebar layout is a useful starting point for most applications. This layout provides a sidebar for inputs and a
large main area for output:

Application layout guide 110

Here’s the code used to create this layout:

shinyUI(fluidPage(

 titlePanel("Hello Shiny!"),

 sidebarLayout(

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(

 plotOutput("distPlot")

)

)

))

Note that the sidebar can be positioned to the left (the default) or right of the main area. For example, to position the
sidebar to the right you would use this code:

sidebarLayout(position = "right",

 sidebarPanel(

 # Inputs excluded for brevity

),

 mainPanel(

 # Outputs excluded for brevity

)

)

Application layout guide 111

Grid Layout
The familiar sidebarLayout() described above makes use of Shiny’s lower-level grid layout functions. Rows are
created by the fluidRow() function and include columns defined by the column() function. Column widths are
based on the Bootstrap 12-wide grid system, so should add up to 12 within a fluidRow() container.

To illustrate, here’s the sidebar layout implemented using the fluidRow() , column() and wellPanel()
functions:

shinyUI(fluidPage(

 titlePanel("Hello Shiny!"),

 fluidRow(

 column(4,

 wellPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

)

),

 column(8,

 plotOutput("distPlot")

)

)

))

The first parameter to the column() function is it’s width (out of a total of 12 columns). It’s also possible to offset
the position of columns to achieve more precise control over the location of UI elements. You can move columns to
the right by adding the offset parameter to the column() function. Each unit of offset increases the left-margin of
a column by a whole column.

Here’s an example of a UI with a plot at the top and three columns at the bottom that contain the inputs that drive the
plot:

Application layout guide 112

The code required to implement this UI is as follows:

library(shiny)

library(ggplot2)

dataset <- diamonds

shinyUI(fluidPage(

 title = "Diamonds Explorer",

 plotOutput('plot'),

 hr(),

 fluidRow(

 column(3,

 h4("Diamonds Explorer"),

 sliderInput('sampleSize', 'Sample Size',

 min=1, max=nrow(dataset), value=min(1000, nrow(dataset)),

 step=500, round=0),

Application layout guide 113
 br(),

 checkboxInput('jitter', 'Jitter'),

 checkboxInput('smooth', 'Smooth')

),

 column(4, offset = 1,

 selectInput('x', 'X', names(dataset)),

 selectInput('y', 'Y', names(dataset), names(dataset)[[2]]),

 selectInput('color', 'Color', c('None', names(dataset)))

),

 column(4,

 selectInput('facet_row', 'Facet Row', c(None='.', names(dataset))),

 selectInput('facet_col', 'Facet Column', c(None='.', names(dataset)))

)

)

))

There are a few important things to note here:

1. The inputs are at the bottom and broken into three columns of varying widths.

2. The offset parameter is used on the center input column to provide custom spacing between the first and
second columns.

3. The page doesn’t include a titlePanel() so the title is specified as an explicit argument to fluidPage() .

Grid layouts can be used anywhere within a fluidPage() and can even be nested within each other. You can find
out more about grid layouts in the Grid Layouts in Depth section below.

Tabsets
Often applications need to subdivide their user-interface into discrete sections. This can be accomplished using the
tabsetPanel() function. For example:

Application layout guide 114

The code required to create this UI is:

shinyUI(fluidPage(

 titlePanel("Tabsets"),

 sidebarLayout(

 sidebarPanel(

 # Inputs excluded for brevity

),

 mainPanel(

 tabsetPanel(

 tabPanel("Plot", plotOutput("plot")),

 tabPanel("Summary", verbatimTextOutput("summary")),

 tabPanel("Table", tableOutput("table"))

)

)

)

))

Tabs can be located above (the default), below, left, or to the right of tab content. For example, to position the tabs
below the tab content you would use this code:

tabsetPanel(position = "below",

 tabPanel("Plot", plotOutput("plot")),

 tabPanel("Summary", verbatimTextOutput("summary")),

 tabPanel("Table", tableOutput("table"))

Application layout guide 115
)

Navlists
When you have more than a handful of tabPanels the navlistPanel() may be a good alternative to
tabsetPanel() . A navlist presents the various components as a sidebar list rather than using tabs. It also supports

section heading and separators for longer lists. Here’s an example of a navlistPanel() :

The code required to implement this is as follows (note that the tabPanels are empty to keep the example
uncluttered, typically they’d include additional UI elements):

shinyUI(fluidPage(

 titlePanel("Application Title"),

 navlistPanel(

 "Header A",

 tabPanel("Component 1"),

 tabPanel("Component 2"),

 "Header B",

 tabPanel("Component 3"),

 tabPanel("Component 4"),

 "-----",

 tabPanel("Component 5")

)

))

Navbar Pages
You may want to create a Shiny application that consists of multiple distinct sub-components (each with their own
sidebar, tabsets, or other layout constructs). The navbarPage() function creates an application with a standard
Bootstrap Navbar at the top. For example:

Application layout guide 116

shinyUI(navbarPage("My Application",

 tabPanel("Component 1"),

 tabPanel("Component 2"),

 tabPanel("Component 3")

))

Note that the Shiny tabPanel() is used to specify the navigable components.

Secondary Navigation
You can add a second level of navigation to the page by using the navbarMenu() function. This adds a menu to the
top level navbar which can in turn refer to additional tabPanels.

shinyUI(navbarPage("My Application",

 tabPanel("Component 1"),

 tabPanel("Component 2"),

 navbarMenu("More",

 tabPanel("Sub-Component A"),

 tabPanel("Sub-Component B"))

))

Additional Options
There are several other arguments to navbarPage() that provide additional measures of customization:

ArgumentDescription

Application layout guide 117
header Tag of list of tags to display as a common header above all tabPanels.
footer Tag or list of tags to display as a common footer below all tabPanels
inverse TRUE to use a dark background and light text for the navigation bar

collapsable TRUE to automatically collapse the navigation elements into a menu when the width of the browser is
less than 940 pixels (useful for viewing on smaller touchscreen device)

Grid Layouts in Depth
There are two types of Bootstrap grids, fluid and fixed. The examples so far have used the fluid grid system
exclusively and that’s the system that’s recommended for most applications (and the default for Shiny functions like
navbarPage() and sidebarLayout()).

Both grid systems use a flexibly sub-dividable 12-column grid for layout. The fluid system always occupies the full
width of the web page and re-sizes it’s components dynamically as the size of the page changes. The fixed system
occupies a fixed width of 940 pixels by default and may assume other widths when Bootstrap responsive layout kicks
in (e.g. when on a tablet).

The following sections are a translation of the official Bootstrap 2 grid system documentation, with HTML code
replaced by R code.

Fluid Grid System
The Bootstrap grid system utilizes 12 columns which can be flexibly subdivided into rows and columns. To create a
layout based on the fluid system you use the fluidPage() function. To create rows within the grid you use the
fluidRow() function; to create columns within rows you use the column() function.

For example, consider this high level page layout (the numbers displayed are columns out of a total of 12):

To create this layout in a Shiny application you’d use the following code (note that the column widths within the fluid
row add up to 12):

shinyUI(fluidPage(

 fluidRow(

 column(2,

 "sidebar"

),

 column(10,

 "main"

)

)

Application layout guide 118
))

Column Offsetting
It’s also possible to offset the position of columns to achieve more precise control over the location of UI elements.
Move columns to the right by adding the offset parameter to the column() function. Each unit of offset increases
the left-margin of a column by a whole column. Consider this layout:

To create this layout in a Shiny application you’d using the following code:

shinyUI(fluidPage(

 fluidRow(

 column(4,

 "4"

),

 column(4, offset = 4,

 "4 offset 4"

)

),

 fluidRow(

 column(3, offset = 3,

 "3 offset 3"

),

 column(3, offset = 3,

 "3 offset 3"

)

)

))

Column Nesting
When you nest columns within a fluid grid, each nested level of columns should add up to 12 columns. This is
because the fluid grid uses percentages, not pixels, for setting widths. Consider this page layout:

To create this layout in a Shiny application you’d use the following code:

shinyUI(fluidPage(

 fluidRow(

 column(12,

 "Fluid 12",

 fluidRow(

 column(6,

 "Fluid 6",

Application layout guide 119
 fluidRow(

 column(6,

 "Fluid 6"),

 column(6,

 "Fluid 6")

)

),

 column(width = 6,

 "Fluid 6")

)

)

)

))

Note that each time a fluidRow() is introduced the columns within the row add up to 12.

Fixed Grid System
The fixed grid system also utilizes 12 columns, and maintains a fixed width of 940 pixels by default. If Bootstrap
responsive features are enabled (they are by default in Shiny) then the grid will also adapt to be 724px or 1170px
wide depending on your viewport (e.g. when on a tablet).

The main benefit of a fixed grid is that it provides stronger guarantees about how users will see the various elements
of your UI laid out (this is because it’s not being dynamically laid out according to the width of the browser). The main
drawback is that it’s a bit more complex to work with. In general we recommend using fluid grids unless you
absolutely require the lower level layout control afforded by a fixed grid.

Using Fixed Grids
Using fixed grids in Shiny works almost identically to fluid grids. Here are the differences to keep in mind:

1. You use the fixedPage() and fixedRow() functions to build the grid.

2. Rows can nest, but should always include a set of columns that add up to the number of columns of their
parent (rather than resetting to 12 at each nesting level as they do in fluid grids).

Here’s the code for a fixed grid version of the simple sidebar layout shown earlier:

shinyUI(fixedPage(

 fixedRow(

 column(2,

 "sidebar"

),

 column(10,

 "main"

)

)

))

Column Nesting
In fixed grids the width of each nested column must add up to the number of columns in their parent. Here’s a
fixedRow() with a 9-wide column that contains two other columns of width 6 and 3:

Application layout guide 120
The create this row within a Shiny application you’d use the following code:

fixedRow(

 column(9,

 "Level 1 column",

 fixedRow(

 column(6,

 "Level 2"

),

 column(3,

 "Level 2"

)

)

)

)

Note that the total size of the nested columns is 9, the same as their parent column.

Responsive Layout
The Bootstrap grid system supports responsive CSS, which enables your application to automatically adapt its layout
for viewing on different sized devices. Responsive layout includes the following:

1. Modifying the width of columns in the grid
2. Stack elements instead of float wherever necessary
3. Resize headings and text to be more appropriate for devices

Responsive layout is enabled by default for all Shiny page types. To disable responsive layout you should pass
responsive = FALSE to the fluidPage() or fixedPage() function.

Supported Devices
When responsive layout is enabled here is how the Bootstrap grid system adapts to various devices:

 Layout width Column width Gutter width
Large display 1200px and up 70px 30px
Default 980px and up 60px 20px
Portrait tablets 768px and above 42px 20px
Phones to tablets 767px and below Fluid (no fixed widths) Fluid (no fixed widths)
Phones 480px and below Fluid (no fixed widths) Fluid (no fixed widths)
Note that on smaller screen sizes fluid columns widths are used automatically even if the page uses fixed grid layout.

Application Themes
Shiny applications inherit the default visual theme of the Bootstrap web framework upon which Shiny is based. If you
want to change the look of your application it’s possible to specify an alternate Bootstrap theme. You can do this
using the theme parameter to the fluidPage() , fixedPage() , or navbarPage() function, which specifies an
alternative Bootstrap CSS stylesheet to use for the application.

Bootstrap themes are typically specified using a single CSS source file (although it’s possible for them to have
associated images, css, or fonts as well). If you’ve saved a theme at the location www/bootstrap.css within your
application directory then you would link it in using this code:

shinyUI(fluidPage(theme = "bootstrap.css",

 titlePanel("My Application")

Application layout guide 121

Shiny is an RStudio project. © 2014 RStudio, Inc.

 # application UI

))

When importing a theme it’s important to make sure that it’s compatible with Bootstrap 3. One popular source of
Bootstrap themes is Bootswatch, but there are many others.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

aquacalc

Thanks for the well organized and very useful summary.

lan

hi,I work with shiny ,thanks for your documents . I have trouble when i want display
few charts in one page. for example i have 12 plot in same page,3 rows and 4
columnsã€‚now I just try fluidrow and box ,failed!!
(R code " par(mfrow=c(3,4))",it's ok ,but charts not great)

Dave

This is great, thanks. Quick question: how do I add additional content to a single
tab? So could I have plotOutput and verbatimTextOutput appear within a single tab?

hi im weasel

Im trying to get the FluidRow Column Nesting code to work so I can play with it to
understand what's going on. I'm talking about:

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Display modes 122

2.10 Display modes

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Display modes
ADDED: 03 FEB 2014
BY: GARRETT GROLEMUND

Shiny can display your apps in two different ways. Your app can appear in normal display mode, as pictured below.

Or your app can appear in showcase mode. Showcase mode displays your app alongside the code that generates it;
showcase mode also displays a title, author and description for your app.

Display modes 123

To view an app in showcase mode, launch it with the argument display.mode = "showcase" , e.g.

> runApp("MyApp", display.mode = "showcase")

Apps can be set to open in showcase mode by default. If you would prefer to view such an app in normal mode, use
the argument display.mode = "normal" .

> runApp("MyApp", display.mode = "showcase")

Shiny’s built in example apps will automatically open in showcase mode when you call runExample , e.g.

> runExample("01_hello")

Showcase mode features
When you display your app in showcase mode, Shiny presents the app along with

Display modes 124
the R files in the app’s directory, placed in a shared tabset that your user can place next to the app, or below
it. These files will always contain server.R and ui.R.
a title
an author
a license
explanatory text
code highlighting

Code highlighting
Shiny showcase will highlight lines of code in server.R as it runs them. The highlight will appear in yellow and fade
out after a few moments. This helps reveal how Shiny creates reactivity; when your user manipulates an app, Shiny
reruns parts of server.R to create updated output.

Showcase layout
Once an app is open, you can change its layout the buttons labelled show with app and show below . These will
place the app’s R scripts either next to the app or below it. The app will automatically scale to fit nicely with the code
in your browser window.

Display modes 125

Writing for Showcase mode
You can provide information about your app that Shiny showcase will use by creating a DESCRIPTION file. The file
should be written in plain text and contain Title, Author, and DisplayMode fields in Debian Control File (DCF) format.
You can also include other optional fields, such as AuthorUrl, License, and Tags. The description file of Shiny’s built
in 01_hello example is displayed below

Title: Hello Shiny!

Author: RStudio, Inc.

AuthorUrl: http://www.rstudio.com/

License: GPL-3

DisplayMode: Showcase

Tags: getting-started

Type: Shiny

Shiny will use the DisplayMode field to determine the default display mode for your app. If you set the field to
Showcase, Shiny will open your app in showcase mode. If you set it to Normal, Shiny will open your app in Normal
mode. Your users can override this default by using the display.mode argument of runApp .

Once you’ve written your DESCRIPTION file, place it alongside the server.R and ui.R files in your app’s directory.

Display modes 126

You can also create a readme file for your app. Shiny will display the text of the readme beneath the app in
showcase mode. Write your readme in markdown and save it in your app directory as Readme.md. Shiny will
automatically use any DESCRIPTION and Readme.md files that you place in your app.

Here’s an example of the short readme for 01_hello.

This small Shiny application demonstrates Shiny's automatic UI updates. Move the *Number o

f observations* slider and notice how the `renderPlot` expression is automatically re-evalu

ated when its dependant, `input$obs`, changes, causing a new distribution to be generated

and the plot to be rendered.

Display modes 127

Shiny is an RStudio project. © 2014 RStudio, Inc.

Showcase and privacy
Some developers would prefer not to expose their code with showcase mode. That’s not a problem. Your users will
not be able to turn on showcase mode unless you let them. It is impossible to force an app into Showcase mode
unless (a) you manually launch the app in showcase mode, or (b) the DESCRIPTION file explicitly states that the app
should be shown in showcase mode.

However, it is possible for users to turn off showcase mode if they do not like it. A user can turn off showcase mode
for an app if they add ?showcase=0 to the end of the app’s URL. This won’t affect how other users see the app.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

anchitkolla

how do you put the display mode equal to showcase on shinyapps.io??

Ezriah

You need to create a text file with the filename DESCRIPTION and no file extension.
This file should have the following in it (from above). I don't think you actually need it
all, but DO include the line DisplayMode: Showcase. Save the file in the same
directory as your shiny application and when you publish it, it publishes in showcase
mode.

Title: Hello Shiny!
Author: RStudio, Inc.
AuthorUrl: http://www.rstudio.com/
License: GPL-3
DisplayMode: Showcase
Tags: getting-started
Type: Shiny

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Tabsets 128

2.11 Tabsets

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Tabsets
ADDED: 06 JAN 2014

The Tabsets application demonstrates using tabs to organize output. To run the example type:

> library(shiny)

> runExample("06_tabsets")

Tab Panels
Tabsets are created by calling the tabsetPanel function with a list of tabs created by the tabPanel function. Each
tab panel is provided a list of output elements which are rendered vertically within the tab.

In this example we updated our Hello Shiny application to add a summary and table view of the data, each rendered
on their own tab. Here is the revised source code for the user-interface:

ui.R

Tabsets 129
library(shiny)

Define UI for random distribution application

shinyUI(pageWithSidebar(

 # Application title

 headerPanel("Tabsets"),

 # Sidebar with controls to select the random distribution type

 # and number of observations to generate. Note the use of the br()

 # element to introduce extra vertical spacing

 sidebarPanel(

 radioButtons("dist", "Distribution type:",

 list("Normal" = "norm",

 "Uniform" = "unif",

 "Log-normal" = "lnorm",

 "Exponential" = "exp")),

 br(),

 sliderInput("n",

 "Number of observations:",

 value = 500,

 min = 1,

 max = 1000)

),

 # Show a tabset that includes a plot, summary, and table view

 # of the generated distribution

 mainPanel(

 tabsetPanel(

 tabPanel("Plot", plotOutput("plot")),

 tabPanel("Summary", verbatimTextOutput("summary")),

 tabPanel("Table", tableOutput("table"))

)

)

))

Tabs and Reactive Data
Introducing tabs into our user-interface underlines the importance of creating reactive expressions for shared data. In
this example each tab provides its own view of the dataset. If the dataset is expensive to compute then our user-
interface might be quite slow to render. The server script below demonstrates how to calculate the data once in a
reactive expression and have the result be shared by all of the output tabs:

server.R

library(shiny)

Define server logic for random distribution application

shinyServer(function(input, output) {

 # Reactive expression to generate the requested distribution. This is

 # called whenever the inputs change. The renderers defined

 # below then all use the value computed from this expression

 data <- reactive({

 dist <- switch(input$dist,

Tabsets 130
 norm = rnorm,

 unif = runif,

 lnorm = rlnorm,

 exp = rexp,

 rnorm)

 dist(input$n)

 })

 # Generate a plot of the data. Also uses the inputs to build the

 # plot label. Note that the dependencies on both the inputs and

 # the 'data' reactive expression are both tracked, and all expressions

 # are called in the sequence implied by the dependency graph

 output$plot <- renderPlot({

 dist <- input$dist

 n <- input$n

 hist(data(),

 main=paste('r', dist, '(', n, ')', sep=''))

 })

 # Generate a summary of the data

 output$summary <- renderPrint({

 summary(data())

 })

 # Generate an HTML table view of the data

 output$table <- renderTable({

 data.frame(x=data())

 })

})

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Phillip Manning

Is there a way to hide the scroll bars in a tabset? I am using a tabset to switch
between two charts. The charts fit into the tabset but scroll bars still appear. Any
suggestions?

Garrett

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Tabsets 131

Shiny is an RStudio project. © 2014 RStudio, Inc.

Phillip, this would be a great question for the Shiny Discuss list with a reproducible
example. As far as I know, scroll bars are a feature of your browser, not the Shiny
tabset.

comments powered by Disqus

Customize your UI with HTML 132

2.12 Customize your UI with HTML

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Customize your UI with HTML
ADDED: 16 APR 2014
BY: GARRETT GROLEMUND WITH JOE CHENG

In this article, you will learn how to supplement the functions in ui.R with raw HTML to create highly customized
Shiny apps. You do not need to know HTML to use Shiny, but if you do, you can use the methods in this article to
enhance your app.

The user-interface (UI) of a Shiny app is web document. Shiny developers can provide this document as an
index.html file or assemble it from R code in a ui.R file.

ui.R calls R functions that output HTML code. Shiny turns this code into a web app.

I will use the 01_hello app throughout this article as an example. You can access this app by running:

library(shiny)

runExample("01_hello")

shinyUI
Many Shiny apps come with a ui.R script that determines the layout of the app. The ui.R script for 01_example
looks like the following code:

library(shiny)

Define UI for application that draws a histogram

shinyUI(fluidPage(

 # Application title

 titlePanel("Hello Shiny!"),

 # Sidebar with a slider input for the number of bins

 sidebarLayout(

 sidebarPanel(

 sliderInput("bins",

 "Number of bins:",

 min = 1,

 max = 50,

 value = 30)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

Customize your UI with HTML 133
)

))

The code creates this app:

Each ui.R script calls the function shinyUI . shinyUI then calls R functions that return HTML. In other words,
Shiny lets you generate HTML with R. This is why you do not need to know HTML to use Shiny.

You can see that the functions inside of shinyUI return HTML if you run them. fluidPage returns a chunk of
HTML as does every function inside of fluidPage . For example, the following code returns the HTML output in the
comments below.

fluidPage(

 # Application title

 titlePanel("Hello Shiny!"),

 # Sidebar with a slider input for the number of bins

 sidebarLayout(

 sidebarPanel(

 sliderInput("bins",

 "Number of bins:",

 min = 1,

 max = 50,

 value = 30)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

)

)

<div class="container-fluid">

Customize your UI with HTML 134
<h2 style="padding: 10px 0px;">Hello Shiny!</h2>

<div class="row-fluid">

<div class="span4">

<form class="well">

<div>

<label class="control-label" for="bins">Number of bins:</label>

<input id="bins" type="slider" name="bins" value="30" class="jslider" data-##

from="1" data-to="50" data-step="1" data-skin="plastic" data-round="FALSE## " data-locale=

"us" data-format="#,##0.#####" data-smooth="FALSE"/>

</div>

</form>

</div>

<div class="span8">

<div id="distPlot" class="shiny-plot-output" style="width: 100% ; height: ## 400p

x"></div>

</div>

</div>

</div>

titlePanel("Hello Shiny!")

<h2 style="padding: 10px 0px;">Hello Shiny!</h2>

In R terminology, the output is a list of character strings with a special class that tells Shiny the contents contain
HTML.

class(titlePanel("Hello Shiny!"))

[1] "shiny.tag.list" "list"

Shiny’s UI functions are sufficient for creating most Shiny apps. In 90% of your Shiny apps, you will probably never
think of using anything more complicated. However in some apps, you may want to add custom HTML that is not
provided by the usual Shiny functions. You can do this by passing HTML tags to shinyUI with the tags object.

tags
shiny::tags is a list of 110 functions. Each function builds a specific HTML tag. If you are familiar with HTML, you

will recognize these tags by their names. You can learn what the most common tags do in the Shiny HTML tags
glossary.

names(tags)

[1] "a" "abbr" "address" "area" "article"

[6] "aside" "audio" "b" "base" "bdi"

[11] "bdo" "blockquote" "body" "br" "button"

[16] "canvas" "caption" "cite" "code" "col"

[21] "colgroup" "command" "data" "datalist" "dd"

[26] "del" "details" "dfn" "div" "dl"

[31] "dt" "em" "embed" "eventsource" "fieldset"

[36] "figcaption" "figure" "footer" "form" "h1"

[41] "h2" "h3" "h4" "h5" "h6"

[46] "head" "header" "hgroup" "hr" "html"

[51] "i" "iframe" "img" "input" "ins"

[56] "kbd" "keygen" "label" "legend" "li"

[61] "link" "mark" "map" "menu" "meta"

[66] "meter" "nav" "noscript" "object" "ol"

[71] "optgroup" "option" "output" "p" "param"

Customize your UI with HTML 135
[76] "pre" "progress" "q" "ruby" "rp"

[81] "rt" "s" "samp" "script" "section"

[86] "select" "small" "source" "span" "strong"

[91] "style" "sub" "summary" "sup" "table"

[96] "tbody" "td" "textarea" "tfoot" "th"

[101] "thead" "time" "title" "tr" "track"

[106] "u" "ul" "var" "video" "wbr"

To create a tag, run an element of tags as a function. To create a div tag, you can run:

tags$div()

<div></div>

You can call some of the most popular tags with helper functions (that wrap the appropriate tags functions). For
example, the helper function code calls the tags$code and creates text formatted as computer code. The helper
functions that can call their equivalent tags without using the tag syntex (tags$) are: a , br , code , div , em , h1 ,
h2 , h3 , h4 , h5 , h6 , hr , img , p , pre , span , and strong .

The names of other tags functions conflict with the names of native R functions, so you will need to call them with the
tags$ syntax. For example, to embed a plug-in or third party application call it with tags$embed.

Every tag function will treat its arguments in a special way: it will treat named arguments as HTML attributes and
unnamed arguments as HTML children.

Attributes
A tag function will use each named argument to add an HTML attribute to the tag. The argument name becomes the
attribute name, and the argument value becomes the attribute value. So for example, if you want to create a div with
a class attribute, use:

tags$div(class = "header")

<div class="header"></div>

To add an attribute without a value, set the attribute to NA:

tags$div(class = "header", checked = NA)

<div class="header" checked></div>

Children
Each tag function will add unnamed arguments to your tag as HTML children. This addition lets you nest tags inside
of each other (just as in HTML).

tags$div(class = "header", checked = NA,

 tags$p("Ready to take the Shiny tutorial? If so"),

 tags$a(href = "shiny.rstudio.com/tutorial", "Click Here!")

)

<div class="header" checked>

<p>Ready to take the Shiny tutorial? If so</p>

Click Here!

</div>

withTags
You can save typing by wrapping your HTML objects with withTags . withTags is similar to R’s regular with

Customize your UI with HTML 136
function. R will lookup each tag function mentioned inside withTags in the tags object, even if you do not specify
tags$.

withTags({

 div(class="header", checked=NA,

 p("Ready to take the Shiny tutorial? If so"),

 a(href="shiny.rstudio.com/tutorial", "Click Here!")

)

})

<div class="header" checked>

<p>Ready to take the Shiny tutorial? If so</p>

Click Here!

</div>

Once you have a complete tag, you can add it directly to your app’s shinyUI function. For example, you could add
the tag above to the ui.R file of 01-hello :

library(shiny)

Define UI for application that draws a histogram

shinyUI(fluidPage(

 # Application title

 titlePanel("Hello Shiny!"),

 # Sidebar with a slider input for the number of bins

 sidebarLayout(

 sidebarPanel(

 sliderInput("bins",

 "Number of bins:",

 min = 1,

 max = 50,

 value = 30),

 # adding the new div tag to the sidebar

 tags$div(class="header", checked=NA,

 tags$p("Ready to take the Shiny tutorial? If so"),

 tags$a(href="shiny.rstudio.com/tutorial", "Click Here!")

)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

)

))

Your updated app will contain the new HTML element.

Customize your UI with HTML 137

Conditional attributes and children
If you set an argument of a tag function to NULL, the argument will not appear in the HTML output. NULL gives you a
way to build attributes and children that will appear only under certain conditions.

tags$div(class = "header", id = NULL,

 NULL,

 "line 2"

)

<div class="header">line 2</div>

tags$div(class = "header", id = if (FALSE) 100,

 if (FALSE) "line 1",

 "line 2"

)

<div class="header">line 2</div>

Lists
You can pass a list of children to a tag with R’s list function. The tag function will add each element of the list as a
child of the tag.

tags$div(class="header", checked=NA,

 list(

 tags$p("Ready to take the Shiny tutorial? If so"),

 tags$a(href="shiny.rstudio.com/tutorial", "Click Here!"),

 "Thank you"

)

)

<div class="header" checked>

<p>Ready to take the Shiny tutorial? If so</p>

Click Here!

Thank you

Customize your UI with HTML 138
</div>

Raw HTML
You cannot put raw HTML directly into a tag object or into shinyUI . Shiny will treat raw HTML as a character
string, adding HTML as text to your UI document.

tags$div(

 "Raw HTML!"

)

<div>Raw HTML!</div>

To add raw HTML, use the HTML function. HTML takes a character string and returns it as HTML (a special class of
object in Shiny).

tags$div(

 HTML("Raw HTML!")

)

<div>Raw HTML!</div>

Shiny will assume that the code you pass to HTML is correctly written HTML. Be sure to double check it.

Warning
It is a bad idea to pass an input object to HTML :

tags$div(

 HTML(input$text)

)

This allows the user to add their own HTML to your app, which creates a security vulnerability. What you user enters
could be added to the web document or seen by other users, which might break the app. In the worse case scenario,
a user may try to deploy malicious Cross Site Scripting (XSS), an undesirable security vulnerability.

Recap
You can use HTML to customize your Shiny apps. Every Shiny app is built on an HTML document that creates the
apps’ user interface. Usually, Shiny developers create this document by giving shinyUI R functions that build HTML
output. However, you can supply HTML output directly with Shiny’s tags object.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Customize your UI with HTML 139

Shiny is an RStudio project. © 2014 RStudio, Inc.

Linus

I'm have some HTML code that I'm calling from within Shiny using includeHTML(...).
It's a simple HTML page with a text bar and a button perfectly aligned (I don't want
to recreate this in Shiny, although I know how to do that).

Now I'd like to add reactive functions attached to the button using the text in the
box. How can I reference the pure HTML widgets from with Shiny?
Any help will be much appreciated.

comments powered by Disqus

Build your entire UI with HTML 140

2.13 Build your entire UI with HTML

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Build your entire UI with HTML
ADDED: 06 JAN 2014

The HTML UI application demonstrates defining a Shiny user-interface using a standard HTML page rather than a
ui.R script. To run the example type:

> library(shiny)

> runExample("08_html")

Defining an HTML UI
Many Shiny apps use a ui.R file to build their user-interfaces. While this is a fast and convenient way to build user-

Build your entire UI with HTML 141
interfaces, some appliations will inevitably require more flexiblity. For this type of application, you can define your
user-interface directly in HTML. In this case there is no ui.R file and the directory structure looks like this:

<application-dir>

|-- www

 |-- index.html

|-- server.R

In this example we re-write the front-end of the Tabsets application (runExample("06_tabsets")) using HTML
directly. Here is the source code for the new user-interface definition:

www/index.html

<html>

<head>

 <script src="shared/jquery.js" type="text/javascript"></script>

 <script src="shared/shiny.js" type="text/javascript"></script>

 <link rel="stylesheet" type="text/css" href="shared/shiny.css"/>

</head>

<body>

 <h1>HTML UI</h1>

 <p>

 <label>Distribution type:</label>

 <select name="dist">

 <option value="norm">Normal</option>

 <option value="unif">Uniform</option>

 <option value="lnorm">Log-normal</option>

 <option value="exp">Exponential</option>

 </select>

 </p>

 <p>

 <label>Number of observations:</label>

 <input type="number" name="n" value="500" min="1" max="1000" />

 </p>

 <pre id="summary" class="shiny-text-output"></pre>

 <div id="plot" class="shiny-plot-output"

 style="width: 100%; height: 400px"></div>

 <div id="table" class="shiny-html-output"></div>

</body>

</html>

There are few things to point out regarding how Shiny binds HTML elements back to inputs and outputs:

HTML form elmements (in this case a select list and a number input) are bound to input slots using their name
attribute.
Output is rendered into HTML elements based on matching their id attribute to an output slot and by
specifying the requisite css class for the element (in this case either shiny-text-output, shiny-plot-output, or
shiny-html-output).

Build your entire UI with HTML 142
With this technique you can create highly customized user-interfaces using whatever HTML, CSS, and JavaScript you
like.

Server Script
All of the changes from the original Tabsets application were to the user-interface, the server script remains the
same:

server.R

library(shiny)

Define server logic for random distribution application

shinyServer(function(input, output) {

 # Reactive expression to generate the requested distribution. This is

 # called whenever the inputs change. The output renderers defined

 # below then all used the value computed from this expression

 data <- reactive({

 dist <- switch(input$dist,

 norm = rnorm,

 unif = runif,

 lnorm = rlnorm,

 exp = rexp,

 rnorm)

 dist(input$n)

 })

 # Generate a plot of the data. Also uses the inputs to build the

 # plot label. Note that the dependencies on both the inputs and

 # the data reactive expression are both tracked, and all expressions

 # are called in the sequence implied by the dependency graph

 output$plot <- renderPlot({

 dist <- input$dist

 n <- input$n

 hist(data(),

 main=paste('r', dist, '(', n, ')', sep=''))

 })

 # Generate a summary of the data

 output$summary <- renderPrint({

 summary(data())

 })

 # Generate an HTML table view of the data

 output$table <- renderTable({

 data.frame(x=data())

 })

})

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If

Build your entire UI with HTML 143

Shiny is an RStudio project. © 2014 RStudio, Inc.

you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Eddy F

It's common web dev best practice defer loading of JavaScript blocks by a) using
async/defer attributes (modern approach) or by placing JavaScript Script blocks
within the Body just prior to the <\body> tag (slightly older best practice). Does this
cause any issues with the shiny.js file?

Nirmalya

I am hosting a website. In one page I want to take input from the user process it
online using shiny and reflect the graph back on the webpage. How to do it? Do I
have to put both of my file index.html and server.R in my hosting server space then
it will start working (it is not working I tried). Can you guide me on this.

Guest

What would be the recommended way to have a standard shiny input slider widget
when creating the entire UI with html?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Build a dynamic UI that reacts to user 144

2.14 Build a dynamic UI that reacts to user

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Build a dynamic UI that reacts to user
input
ADDED: 06 JAN 2014

Dynamic UI
Shiny apps are often more than just a fixed set of controls that affect a fixed set of outputs. Inputs may need to be
shown or hidden depending on the state of another input, or input controls may need to be created on-the-fly in
response to user input.

Shiny currently has three different approaches you can use to make your interfaces more dynamic. From easiest to
most difficult, they are:

The conditionalPanel function, which is used in ui.R and wraps a set of UI elements that need to be
dynamically shown/hidden
The renderUI function, which is used in server.R in conjunction with the htmlOutput function in
ui.R , lets you generate calls to UI functions and make the results appear in a predetermined place in the UI
Use JavaScript to modify the webpage directly.

Let’s take a closer look at each approach.

Showing and Hiding Controls With conditionalPanel
conditionalPanel creates a panel that shows and hides its contents depending on the value of a JavaScript

expression. Even if you don’t know any JavaScript, simple comparison or equality operations are extremely easy to
do, as they look a lot like R (and many other programming languages).

Here’s an example for adding an optional smoother to a ggplot, and choosing its smoothing method:

Partial example

checkboxInput("smooth", "Smooth"),

conditionalPanel(

 condition = "input.smooth == true",

 selectInput("smoothMethod", "Method",

 list("lm", "glm", "gam", "loess", "rlm"))

)

In this example, the select control for smoothMethod will appear only when the smooth checkbox is checked. Its
condition is "input.smooth == true" , which is a JavaScript expression that will be evaluated whenever any
inputs/outputs change.

The condition can also use output values; they work in the same way (output.foo gives you the value of the
output foo). If you have a situation where you wish you could use an R expression as your condition argument,
you can create a reactive expression in server.R and assign it to a new output, then refer to that output in your

Build a dynamic UI that reacts to user 145
condition expression. For example:

ui.R

Partial example

selectInput("dataset", "Dataset", c("diamonds", "rock", "pressure", "cars")),

conditionalPanel(

 condition = "output.nrows",

 checkboxInput("headonly", "Only use first 1000 rows"))

server.R

Partial example

datasetInput <- reactive({

 switch(input$dataset,

 "rock" = rock,

 "pressure" = pressure,

 "cars" = cars)

})

output$nrows <- reactive({

 nrow(datasetInput())

})

However, since this technique requires server-side calculation (which could take a long time, depending on what
other reactive expressions are executing) we recommend that you avoid using output in your conditions unless
absolutely necessary.

Creating Controls On the Fly With renderUI
Note: This feature should be considered experimental. Let us know whether you find it useful.

Sometimes it’s just not enough to show and hide a fixed set of controls. Imagine prompting the user for a
latitude/longitude, then allowing the user to select from a checklist of cities within a certain radius. In this case, you
can use the renderUI expression to dynamically create controls based on the user’s input.

ui.R

Partial example

numericInput("lat", "Latitude"),

numericInput("long", "Longitude"),

uiOutput("cityControls")

server.R

Partial example

output$cityControls <- renderUI({

 cities <- getNearestCities(input$lat, input$long)

 checkboxGroupInput("cities", "Choose Cities", cities)

})

renderUI works just like renderPlot , renderText , and the other output rendering functions you’ve seen before,
but it expects the expression it wraps to return an HTML tag (or a list of HTML tags, using tagList). These tags
can include inputs and outputs.

In ui.R , use a uiOutput to tell Shiny where these controls should be rendered.

Build a dynamic UI that reacts to user 146

Use JavaScript to Modify the Page
Note: This feature should be considered experimental. Let us know whether you find it useful.

You can use JavaScript/jQuery to modify the page directly. General instructions for doing so are outside the scope of
this tutorial, except to mention an important additional requirement. Each time you add new inputs/outputs to the
DOM, or remove existing inputs/outputs from the DOM, you need to tell Shiny. Our current recommendation is:

Before making changes to the DOM that may include adding or removing Shiny inputs or outputs, call
Shiny.unbindAll() .

After such changes, call Shiny.bindAll() .

If you are adding or removing many inputs/outputs at once, it’s fine to call Shiny.unbindAll() once at the
beginning and Shiny.bindAll() at the end – it’s not necessary to put these calls around each individual addition
or removal of inputs/outputs.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Christopher Peters

Just want to offer feedback that the uiOutput / renderUI feature is great --- consider
this a vote for further development of the feature.

Garrett

Thank you, Christopher. We're glad to hear that it is useful!

Mona Jalal

Hi Garrett, How can I find a working dynamic UI where in based on the selection of
first menu other menus appear or something like that? Your examples are partial and
I could not run them. Thanks

Alex Lemm

renderUI() + uiOuput() are great. I usually use both to create widgets whose values
are updated regularly by a Cron Job. After using this feature for over a year now, I
hope it will lose its â€˜experimentalâ€™ status soon. :-)

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Shiny HTML Tags Glossary 147

2.15 Shiny HTML Tags Glossary

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Shiny HTML Tags Glossary
ADDED: 16 APR 2014
BY: GARRETT GROLEMUND

In Customize your Shiny UI with HTML you saw that Shiny provides a list of functions named tags . Each function in
the list creates an HTML tag that you can use to layout your Shiny App. But what if you are unfamiliar with HTML
tags? The glossary below explains what the most popular tags in tags do.

tags
The shiny::tags object contains R functions that recreate 110 HTML tags.

names(tags)

[1] "a" "abbr" "address" "area" "article"

[6] "aside" "audio" "b" "base" "bdi"

[11] "bdo" "blockquote" "body" "br" "button"

[16] "canvas" "caption" "cite" "code" "col"

[21] "colgroup" "command" "data" "datalist" "dd"

[26] "del" "details" "dfn" "div" "dl"

[31] "dt" "em" "embed" "eventsource" "fieldset"

[36] "figcaption" "figure" "footer" "form" "h1"

[41] "h2" "h3" "h4" "h5" "h6"

[46] "head" "header" "hgroup" "hr" "html"

[51] "i" "iframe" "img" "input" "ins"

[56] "kbd" "keygen" "label" "legend" "li"

[61] "link" "mark" "map" "menu" "meta"

[66] "meter" "nav" "noscript" "object" "ol"

[71] "optgroup" "option" "output" "p" "param"

[76] "pre" "progress" "q" "ruby" "rp"

[81] "rt" "s" "samp" "script" "section"

[86] "select" "small" "source" "span" "strong"

[91] "style" "sub" "summary" "sup" "table"

[96] "tbody" "td" "textarea" "tfoot" "th"

[101] "thead" "time" "title" "tr" "track"

[106] "u" "ul" "var" "video" "wbr"

You can use any of these functions by subsetting the tags list. For example to create an h1 header in HTML, run:

tags$h1("My header")

<h1>My header</h1>

Some tags functions come with a helper function that makes accessing them easier. For example, the shiny::h1
function is a wrapper for tags$h1 .

Shiny HTML Tags Glossary 148
However, you can access many of the functions in tags only through tags because they share a name with a
common R function.

The glossary below explains what the most popular tag functions do. The tag functions that do not appear here are
less popular, but still useful. You can look them up at an HTML documentation site such as w3schools.

a
Creates a link to a web page. You can access the “a” tag with the helper function a .

Common AttributesDescription
href the address of the web page to link to

tags$a(href="www.rstudio.com", "Click here!")

Click here!

audio
Adds an audio element (e.g., a sound to your app).

Common AttributesDescription
autoplay A valueless attribute. If present, audio starts playing automatically when loaded
controls A valueless attribute. If present, play controls are displayed
src The location of the audio file to play
type The type of file to play

tags$audio(src = "sound.mp3", type = "audio/mp3", autoplay = NA, controls = NA)

<audio src="sound.mp3" type="audio/mp3" autoplay controls></audio>

b
Creates bold text.

tags$b("This text is bold.")

This text is bold.

blockquote
Creates a block of quoted text. Usually it is displayed in a special way.

Common AttributesDescription
cite the source of the quote

tags$blockquote("Tidy data sets are all the same. Each messy data set is messy in its own

way.", cite = "Hadley Wickham")

<blockquote cite="Hadley Wickham">Tidy data sets are all the same. Each messy data set

is messy in its own way.</blockquote>

br
Creates a line break. You can use the helper function br .

tags$div(

 "Some text followed by a break",

 tags$br(),

 "Some text following a break"

Shiny HTML Tags Glossary 149
)

<div>

Some text followed by a break

Some text following a break

</div>

code
Creates text formatted as computer code. You can use the helper function code .

tags$code("This text will be displayed as computer code.")

<code>This text will be displayed as computer code.</code>

div
Creates a section (e.g., “division”) of an HTML document. divs provide a useful hook for CSS styling. You can use the
helper function div .

Common AttributesDescription
class The class of the div, a useful way to style the div with CSS
id The ID of the div, a useful way to style the div with CSS
style CSS styling to apply to the div

tags$code("This text will be displayed as computer code.")

<code>This text will be displayed as computer code.</code>

em
Creates emphasized (e.g., italicized) text. You can use the helper function em .

tags$em("This text is emphasized.")

This text is emphasized.

embed
Embed a plug-in or third party application.

Common AttributesDescription
src The source of the file to embed
type The MIME type of the embedded content
height The height of the embedded content
width The width of the embedded content

tags$embed(src = "animation.swf")

<embed src="animation.swf"/>

h1, h2, h3, h4, h5, h6
Adds hierarchical headings. h1 creates a first level heading and h2 through h6 create a hierarchy of decreasing
subheadings. You can use the helper functions h1 , h2 , h3 , h4 , h5 , h6 .

tags$div(

 tags$h1("Heading"),

Shiny HTML Tags Glossary 150
 tags$h2("Subheading"),

 tags$h3("Subsubheading"),

 tags$h4("Subsubsubheading"),

 tags$h5("Subsubsubsubheading"),

 tags$h6("Subsubsubsubsubheading")

)

<div>

<h1>Heading</h1>

<h2>Subheading</h2>

<h3>Subsubheading</h3>

<h4>Subsubsubheading</h4>

<h5>Subsubsubsubheading</h5>

<h6>Subsubsubsubsubheading</h6>

</div>

hr
Adds a horizontal line (e.g., horizontal rule). You can use the helper function hr .

tags$hr()

<hr/>

i
Creates italicized text.

tags$i("This text is italicized.")

<i>This text is italicized.</i>

iframe
Creates an inline frame to embed an HTML document in.

Common AttributesDescription
src The URL of the HTML document to embed
srcdoc A raw HTML document to embed
scrolling Should iframe display scrollbars (yes , no , auto)
seamless A valueless attribute. Should the iframe seem like part of the web page?
height The height of the iframe
width The width of the iframe
name The name of the iframe

tags$iframe(src = "www.rstudio.com", seamless=NA)

<iframe src="www.rstudio.com" seamless></iframe>

img
Creates an image. You can use the helper function img .

Common AttributesDescription
src The source of the image to embed
height The height of the image
width The width of the image

Shiny HTML Tags Glossary 151
tags$img(src = "www.rstudio.com", width = "100px", height = "100px")

link
Creates a link to a separate document. Normally used with CSS style sheets.

ol and li
Create an ordered list (i.e., a numbered list).

tags$ol(

 tags$li("First list item"),

 tags$li("Second list item"),

 tags$li("Third list item")

)

First list item

Second list item

Third list item

p
Create a paragraph (a block of text that begins on its own line). You can access the p tag with the helper function p
too.

tags$div(

 tags$p("First paragraph"),

 tags$p("Second paragraph"),

 tags$p("Third paragraph")

)

<div>

<p>First paragraph</p>

<p>Second paragraph</p>

<p>Third paragraph</p>

</div>

pre
Create pre-formatted text, text that looks like computer code. You can use the helper function pre .

tags$pre("This text is preformatted.")

<pre>This text is preformatted.</pre>

script
Add a client-side script such as javascript. You must wrap the actual script in HTML to prevent it from being passed
as text.

tags$script(HTML("if (window.innerHeight < 400) alert('Screen too small');"))

span

Shiny HTML Tags Glossary 152
Create a group of inline elements. Normally used to style a string of text. You can use the helper function span .

tags$div(

 HTML(paste("This text is ", tags$span(style="color:red", "red"), sep = ""))

)

<div>This text is red</div>

strong
Create bold text. You can use the helper function strong .

tags$strong("This text is strongly emphasized.")

This text is strongly emphasized.

style
Create style specifications. A way to add CSS styles directly to your Shiny App.

sub, sup
Create subscript or super script.

tags$div(

 HTML(paste("E = mc", tags$sup(2), sep = "")),

 HTML(paste("H", tags$sub(2), "0", sep = ""))

)

<div>

E = mc²

H₂0

</div>

ul and li
Create an unordered list (i.e., a list of bullet points).

tags$ul(

 tags$li("First list item"),

 tags$li("Second list item"),

 tags$li("Third list item")

)

First list item

Second list item

Third list item

video
Add a video.

Common AttributesDescription
autoplay A valueless attribute. If present, video starts playing automatically when loaded
controls A valueless attribute. If present, Shiny will display play controls.

Shiny HTML Tags Glossary 153

Shiny is an RStudio project. © 2014 RStudio, Inc.

src The location of the video file to play
height The height of the video
width The width of the video

tags$video(src = "video.mp4", type = "video/mp4", autoplay = NA, controls = NA)

<video src="video.mp4" type="video/mp4" autoplay controls></video>

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Spencer Boucher

Might be better to link to a more respected source of information than w3schools,
like Mozilla Developer Network for example.

ImAndy

the tags$div example is a repeat of the tags$code

Nat Condit-Schultz

Is there a way to have the audio src be controlled by a widget? I'd like the user to
be able to select from a list of audio files to hear.

Shrimp Fish

I have a sound file, named "testaudio.mp3", in the subdirectory "www". I used the
following syntax:

tags$audio(src ="testaudio.mp3",type ="audio/mp3",autoplay = NA, controls = NA)

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Progress indicators 154

2.16 Progress indicators

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Progress indicators
ADDED: 10 SEP 2014
BY: WINSTON CHANG

If your Shiny app contains computations that take a long time to complete, a progress bar can improve the user
experience by communicating how far along the computation is, and how much is left. Progress bars were added in
Shiny 0.10.2.

To see progress bars in action, see this app in the gallery.

Adding a progress indicator
The simplest way to add a progress indicator is to put withProgress() inside of the reactive() , observer() ,
or renderXx() function that contains the long-running computation. In this example, we’ll simulate a long
computation by creating an empty data frame and then adding one row to it every 0.1 seconds. (Note that this
example is written as a single-file app). To run this, you can copy and paste the code into the R console.)

server <- function(input, output) {

 output$plot <- renderPlot({

 input$goPlot # Re-run when button is clicked

 # Create 0-row data frame which will be used to store data

 dat <- data.frame(x = numeric(0), y = numeric(0))

 withProgress(message = 'Making plot', value = 0, {

 # Number of times we'll go through the loop

 n <- 10

 for (i in 1:n) {

 # Each time through the loop, add another row of data. This is

 # a stand-in for a long-running computation.

 dat <- rbind(dat, data.frame(x = rnorm(1), y = rnorm(1)))

 # Increment the progress bar, and update the detail text.

 incProgress(1/n, detail = paste("Doing part", i))

 # Pause for 0.1 seconds to simulate a long computation.

 Sys.sleep(0.1)

 }

 })

 plot(datx, daty)

 })

}

Progress indicators 155
ui <- shinyUI(basicPage(

 plotOutput('plot', width = "300px", height = "300px"),

 actionButton('goPlot', 'Go plot')

))

shinyApp(ui = ui, server = server)

This is what will happen:

The withProgress() function is used to start a progress bar, and then the value is incremented with
incProgress() . By default, the range of values for the bar goes from 0 to 1, although this can be changed with the
min and max arguments.

There are two levels of messages: message , and detail . The message is presented in bold, and the detail is
presented in normal-weight text.

In the example above, withProgress() is used inside of renderPlot() , but it could also be used inside of any
other render function, like renderTable() , or inside of a reactive() .

It’s possible to nest calls to withProgress ; if you do this, the second-level progress bar will appear directly under
the top-level progress bar, and the second-level text will appear under the top-level text. Further levels of nesting will
have a similar pattern.

Using a Progress object
The withProgress() function is a convenient interface around a Progress object. In most cases, it’s simpler and
easier to use withProgress , but in some cases, you may need the greater level of control provided by the
Progress object. Before we delve into a more complex example, we’ll simply convert the example above from using
withProgress to using a Progress object.

server <- function(input, output) {

 output$plot <- renderPlot({

 input$goPlot # Re-run when button is clicked

Progress indicators 156
 # Create 0-row data frame which will be used to store data

 dat <- data.frame(x = numeric(0), y = numeric(0))

 # Create a Progress object

 progress <- shiny::Progress$new()

 # Make sure it closes when we exit this reactive, even if there's an error

 on.exit(progress$close())

 progress$set(message = "Making plot", value = 0)

 # Number of times we'll go through the loop

 n <- 10

 for (i in 1:n) {

 # Each time through the loop, add another row of data. This is

 # a stand-in for a long-running computation.

 dat <- rbind(dat, data.frame(x = rnorm(1), y = rnorm(1)))

 # Increment the progress bar, and update the detail text.

 progress$inc(1/n, detail = paste("Doing part", i))

 # Pause for 0.1 seconds to simulate a long computation.

 Sys.sleep(0.1)

 }

 plot(datx, daty)

 })

}

ui <- shinyUI(basicPage(

 plotOutput('plot', width = "300px", height = "300px"),

 actionButton('goPlot', 'Go plot')

))

shinyApp(ui = ui, server = server)

Notice that we need to explicitly create the progress object and make sure that it closes properly, using
on.exit() .

A more complex Progress example
In the example below, the renderTable() calls out to another function, compute_data() , to do the long-running
computation. If we were to just update the progress indicator before and after compute_data() were called, then it
would only be updated at the beginning, when nothing has been done yet, and at the end, when the computation is
completed. In some cases, the best we can do may be to set it to a starting value of, say, 0.3, and then move it to 1
at completion. This may be true if, for example, the function is in an external package.

However, if you do have control over the function doing the computation, you may want to modify it to accept either a
Progress object which it will update directly, or to accept a function which it calls each time it does some part of the

computation.

In the example below, we’ll take the latter approach. The compute_data() function accepts an optional
updateProgress function, which it calls periodically as it does the computation. The updateProgress function is

a closure that captures the Progress object; each time it’s called, it updates the progress indicator.

Again, you can copy and paste this code in your R console to see it in action:

Progress indicators 157
This function computes a new data set. It can optionally take a function,

updateProgress, which will be called as each row of data is added.

compute_data <- function(updateProgress = NULL) {

 # Create 0-row data frame which will be used to store data

 dat <- data.frame(x = numeric(0), y = numeric(0))

 for (i in 1:10) {

 Sys.sleep(0.25)

 # Compute new row of data

 new_row <- data.frame(x = rnorm(1), y = rnorm(1))

 # If we were passed a progress update function, call it

 if (is.function(updateProgress)) {

 text <- paste0("x:", round(new_row$x, 2), " y:", round(new_row$y, 2))

 updateProgress(detail = text)

 }

 # Add the new row of data

 dat <- rbind(dat, new_row)

 }

 dat

}

server <- function(input, output) {

 output$table <- renderTable({

 input$goTable

 # Create a Progress object

 progress <- shiny::Progress$new()

 progress$set(message = "Computing data", value = 0)

 # Close the progress when this reactive exits (even if there's an error)

 on.exit(progress$close())

 # Create a callback function to update progress.

 # Each time this is called:

 # - If `value` is NULL, it will move the progress bar 1/5 of the remaining

 # distance. If non-NULL, it will set the progress to that value.

 # - It also accepts optional detail text.

 updateProgress <- function(value = NULL, detail = NULL) {

 if (is.null(value)) {

 value <- progress$getValue()

 value <- value + (progress$getMax() - value) / 5

 }

 progress$set(value = value, detail = detail)

 }

 # Compute the new data, and pass in the updateProgress function so

 # that it can update the progress indicator.

 compute_data(updateProgress)

 })

}

ui <- shinyUI(basicPage(

 tableOutput('table'),

Progress indicators 158
 actionButton('goTable', 'Go table')

))

shinyApp(ui = ui, server = server)

It’s possible to use other constructions for the updateProgress function that have different behavior. In the example
above, each time updateProgress() is called, the progress bar moves 1/5 of the remaining distance. This tells the
user that something is happening, and it’s simple because you don’t need to know ahead of time how many times it’s
goingto run. However, it’s not the most accurate representation of progress, since it approaches the end
asymptotically, whereas a linear approach would be more accurate.

One alternative is to have the external function call updateProgress() with a specific value. If, for example, the
external function knows that it will iterate over the loop 100 times, it could call updateProgress() with
value=0.01 , then value=0.02 , and so on.

Another alternative is to construct a different updateProgress callback, one which increments by a fixed amount
each time. To do this, before you call compute_data() , you must know how many times it will call
updateProgress() in the loop. Let’s assume that it will be called 20 times. Then updateProgress could be

defined like so:

 n <- 20

 updateProgress <- function(detail = NULL) {

 progress$inc(amount = 1/n, detail = detail)

 }

Each time this version of updateProgress() is called, it moves the bar 1/20th of the total distance.

Recap
You can add progress indicators to your app, using the simpler withProgress() interface, or the Progress object
if you need more control. These progress indicators can provide feedback to the user that will make their experience
more satisfying.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Xiushi Le

let's say I want to join two big dataset, how to I slice the join operation so that it
works with the progress feature? Also, is there any function in R that can estimate
the execution time of an operation in R?

Christopher Peters

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Progress indicators 159

Shiny is an RStudio project. © 2014 RStudio, Inc.

I'm curious if there's a simple way to change the color? This progress bar doesn't
feel prominent enough, so I was hoping to make it red.

Dean Attali

If you know a bit of CSS, it should be easy. If you make the shiny progress take a
long enough time (ie. 1 minute), then you'll have enough time to look at the page
DOM to see what the progress bar HTML looks like and to extract which elements
you need to change.

For example, it looks like adding the following CSS (read the article about
customizing CSS if you're not sure how to add it) would make the progress bar

comments powered by Disqus

Getting started with shinyapps.io 160

2.17 Getting started with shinyapps.io

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Getting started with shinyapps.io
ADDED: 18 MAR 2014
BY: ANDY KIPP

Shinyapps.io is a platform as a service (PaaS) for hosting Shiny web apps (applications). This guide will show you
how to create a shinyapps.io account and deploy your first application to the cloud.

Before you get started with shinyapps.io, you will need:

An R development environment, such as the RStudio IDE
(for Windows users only) RTools for building packages
(for Mac users only) XCode Command Line Tools for building packages
(for Linux users only) GCC
The devtools R package (version 1.4 or later)
The latest version of the shinyapps R package

How to install devtools
Shinyapps.io uses the latest improvements to the devtools package. To use shinyapps.io, you must update
devtools to version 1.4 or later. To install devtools from CRAN, run the code below. Then restart your R

session.

install.packages('devtools')

How to install shinyapps
The shinyapps package deploys applications to the shinyapps.io service. Currently, you need to install the
shinyapps package from its development page at Github. You can do this by running the R command:

devtools::install_github('rstudio/shinyapps')

After the shinyapps package has been installed, load it into your R session:

library(shinyapps)

Create a shinyapps.io account
Go to shinyapps.io and click “Log In.” The site will ask you to sign in using your Google Account.

The first time you sign in, shinyapps.io prompts you to setup your account. Shinyapps.io uses the account name as
the domain name for all your apps. Account names must be between four and 63 characters and can contain only
letters, numbers, and dashes (-). Account names may not begin with a number or a dash, and they can not end with
a dash (see RFC 952). Some account names may be reserved.

Getting started with shinyapps.io 161

Configure shinyapps
Once you set up your account in shinyapps.io, you can configure the shinyapps package to use your account.
Shinyapps.io automatically generates a token and secret for you, which the shinyapps package can use to access
your account. Retrieve your token from the shinyapps.io dashboard. Tokens are listed under Tokens in the menu at
the top right of the shinyapps dashboard (under your avatar).

You can configure the shinyapps package to use your account with two methods:

Method 1
Click the show button on the token page. A window will pop up that shows the full command to configure your
account using the appropriate parameters for the shinyapps::setAccountInfo function. Copy this command to
your clip board, and then paste it into the command line of RStudio and click enter.

Getting started with shinyapps.io 162

Method 2
Run the ‘setAccountInfo’ function from the shinyapps package passing in the token and secret from the Profile /
Tokens page.

shinyapps::setAccountInfo(name="<ACCOUNT>", token="<TOKEN>", secret="<SECRET>")

Once you have configured your shinyapps installation, you can use it to upload applications to shinyapps.io. In the
second part of this guide, we will build a demo application, upload it to shinyapps.io, and create a password for the
application.

A Demo app
For this guide, we created an RStudio project named “demo” that contains a Shiny application to upload to
shinyapps.io. Follow these steps to create your own Shiny app.

Install application dependencies
The demo application we will deploy requires the ggplot2 package and the shiny package. Ensure that any
package required by your application is installed locally before you deploy your application:

install.packages(c('ggplot2', 'shiny'))

ui.R and server.R
We placed two Shiny source files, ui.R and server.R , in our demo application. You can cut and paste the code

Getting started with shinyapps.io 163
below to make your own Shiny application:

server.R

library(shiny)

library(ggplot2)

function(input, output) {

 dataset <- reactive({

 diamonds[sample(nrow(diamonds), input$sampleSize),]

 })

 output$plot <- renderPlot({

 p <- ggplot(dataset(), aes_string(x=input$x, y=input$y)) + geom_point()

 if (input$color != 'None')

 p <- p + aes_string(color=input$color)

 facets <- paste(input$facet_row, '~', input$facet_col)

 if (facets != '. ~ .')

 p <- p + facet_grid(facets)

 if (input$jitter)

 p <- p + geom_jitter()

 if (input$smooth)

 p <- p + geom_smooth()

 print(p)

 }, height=700)

}

ui.R

library(shiny)

library(ggplot2)

dataset <- diamonds

fluidPage(

 titlePanel("Diamonds Explorer"),

 sidebarPanel(

 sliderInput('sampleSize', 'Sample Size', min=1, max=nrow(dataset),

 value=min(1000, nrow(dataset)), step=500, round=0),

 selectInput('x', 'X', names(dataset)),

 selectInput('y', 'Y', names(dataset), names(dataset)[[2]]),

 selectInput('color', 'Color', c('None', names(dataset))),

 checkboxInput('jitter', 'Jitter'),

 checkboxInput('smooth', 'Smooth'),

Getting started with shinyapps.io 164
 selectInput('facet_row', 'Facet Row', c(None='.', names(dataset))),

 selectInput('facet_col', 'Facet Column', c(None='.', names(dataset)))

),

 mainPanel(

 plotOutput('plot')

)

)

Test your application
Test that your application works by running it locally. Set your working directory to your app directory, and then run:

library(shiny)

runApp()

Now that the application works, let’s upload it to shinyapps.io.

Deploying apps
To deploy your application, use the deployApp command from the shinyapps packages.

library(shinyapps)

deployApp()

Getting started with shinyapps.io 165

Once the deployment finishes, your browser should open automatically to your newly deployed application.

Congratulations! You’ve deployed your first application. :-)

Feel free to make changes to your code and run deployApp again. shinyapps can deploy an app much more
quickly after the first deployment.

Package dependencies
When you deploy your application, the shinyapps package attempts to detect the packages that your application
uses. shinyapps sends this list of packages and their dependencies along with your application to the shinyapps.io
service. Then shinyapps.io builds and installs the packages into the R library for your application. The first time you
deploy your application, it may take some time to build these packages (depending on how many packages are
used). However, you will not wait for these packages to build during future deployments (unless you upgrade or
downgrade a package).

Package sources
Currently the shinyapps.io service supports deploying packages installed from CRAN, GitHub, and BioConductor. We
will look to add support for R-Forge packages in the future.

Important note on GitHub packages
Only packages installed from GitHub with devtools::install_github in version 1.4 (or later) of devtools are
supported. Packages installed with an earlier version of devtools must be reinstalled before you can deploy your

Getting started with shinyapps.io 166
application. If you get an error such as “PackageSourceError” when you attempt to deploy, check
that you have installed any package from Github with devtools 1.4 or later.

Application instances
Shinyapps.io hosts each app on its own virtualized server, called an instance. Each instance runs an identical copy of
the code and packages that you deployed (called the image).

When you deploy an app, shinyapps.io creates a new image with the updated code and packages, and starts one or
more instances with the new image. If the app was previously deployed, shinyapps.io shuts down and destroys the
old instances. Consider a few implications of this arrangement:

1) Data written by an application to the local filesystem of an instance will be lost when you
re-deploy the app. Additionally, the distributed nature of the shinyapps.io platform means that instances may be
shut down and re-created at any time for maintenance or to recover from server failures.

2) It is possible to have more than one instance of an application. This situation means that multiple instances
of an application do not share a local filesystem. A file written to one instance will not be available to
another instance.

Shinyapps.io limits the amount of system resources an instance can consume. The amount of resources available to
an instance will depend on its type. The table below outlines the various instance types and how much memory is
allowed. By default, shinyapps.io deploys all applications on ‘medium’ instances, which are
allowed to use 512 MB of memory.

Instance Type Memory
small (default) 256 MB
medium 512 MB
large 1024 MB
xlarge 2048 MB
xxlarge 4096 MB
Note: Instance types and limits are not finalized; RStudio may change them in the future.

Application logging
If you’re having problems with your application, it may be helpful to be able to see the log messages it’s producing. If
you deployed your application using shinyapps version 0.3.57 or later, you can now use the
shinyapps::showLogs() function to show the log messages of a deployed application. This log will include both
stdout (log lines producted via print or cat) and stderr (log lines produced by message , warning ,
stop). You can even use the streaming=TRUE option to specify that you want to continuously monitor the file for

changes; this will listen for log messages until you interrupt R (typically by pressing Escape). If you deployed your
application using an older version of the shinyapps package, you will need to redeploy it
(deployApp(upload=FALSE)) before you can use logging.

Configuring applications
You can change the instance type used by an application with the configureApp function from the shinyapps
package. To change the instance type of your application (here from medium to small), run:

shinyapps::configureApp("APPNAME", size="small")

This change will redeploy your application using the small instance type.

You can also change the instance type used by an application from the shinyapps.io dashboard. To do this, log in to
shinyapps.io, select the application that you wish to configure, and then open the Settings tab.

To learn more about instances and other details of the shinyapps.io architecture, read Scaling and Performance

Getting started with shinyapps.io 167
Tuning. The guide will also show you several advanced options for fine tuning the performance of your apps on
shinyapps.io.

Application authentication
With shinyapps.io, you can limit the access to your application by enabling authentication. Only users who log-in with
valid credentials will be able to view or use the app.

To enable authentication in the administrative UI, select the application to modify and click on the Users tab.

Here is a sample application with the default visibility settings:

Change the Application Visibility to Private and click on Save Settings. Changing the visibility of your application will
require a restart of the application. The Owner of the account and other members of the account will automatically be
included in the list of authorized users.

After the application is restarted you can add authorized users by entering their email addresses and clicking on Add
User.

Each user will receive an email from shinyapps.io with an invite to view your application. If a user does not already
have an authenticated account on shinyapps.io, they will be able to create one by authenticating through one of the
following three methods:

Getting started with shinyapps.io 168
Google Authorization
GitHub authorization
Shinyapps.io authentication

Shinyapps.io will prompt each visitor to your app for a username and password if they have not been authenticated.
Only users who log-in with valid credentials will be able to view or use the app.

If you currently use the pre-beta authentication scheme, please upgrade to the new system by January 28, 2015 as
we will be deprecating support for the old authentication system during the beta. For instructions on how to upgrade,
please read the guide here.

Terminate an app
You can remove an app on shinyapps.io from the web with the terminateApp command. To use it, run

terminateApp("<your app's name>")

terminateApp requires one argument, the name of the app that you would like to terminate (as a character string).
This name should correspond with one of the apps in your shinyapps.io account.

When you run terminateApp shinyapps.io will close your app, but the app will remain archived in your shinyapps.io
account. This creates efficiencies if you later decide to redeploy your app with deployApp .

You can also terminate an app from your shinyapps.io dashboard. To do this, log in to shinyapps.io, select the app
that you wish to terminate and then click “Archive.”

Getting help
To seek and share advice about shinyapps.io, please visit the Shinyapps.io google group.

Recap
Shinyapps.io is an online service for hosting Shiny apps in the cloud. RStudio takes care of all of the details of
hosting the app and maintaining the server, which lets you focus on writing great apps!

To use shinyApps.io

Install the shinyapps R package from github
Create an account at shinyapps.io
Use the tokens generated by shinyapps.io to configure your shinyapps package.
Deploy apps with shinyapps::deployApp
Terminate apps with shinyapps::terminateApp

You can also use shinyapps.io to create secure apps, and manage your authorized users.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome

Getting started with shinyapps.io 169

Shiny is an RStudio project. © 2014 RStudio, Inc.

Andrew

How do we deploy with helpers.R files and data not hosted on the web?

Dean Attali

Another question - is there a way to get the name of the currently logged in
authorized user? If someone logs in with username "andy" I want to be able to have
something like getAuthorizedUser()

Dean Attali

As before - found the solution and will post here for anyone else who has this
question. You use the variable session$user (I don't believe it is documented
anywhere, I only found out by debugging the session variable)

Garrett

Dean, Thanks for sharing! You're a great help.

Internet Explorer 10+
Safari

comments powered by Disqus

Setting up custom domains with 170

2.18 Setting up custom domains with

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Setting up custom domains with
shinyapps.io
ADDED: 23 JUN 2015

The shinyapps.io Professional plan offers customers the ability to host their Shiny applications using their own
domains. This can be useful if you want to control the URL that is viewed by the end-user when you share your
application with them.

In order to enable this feature you will want to follow these steps:

1. Decide on domain(s) or subdomain(s) that you would want to host your applications on: (Example:
acmeshinyapps.com or apps.acme.com)

2. Ask your IT administrator to setup a CNAME from that domain/subdomain to your account domain. (Example:
If your account name is acme and your domain you would like to setup is apps.acme.com, then you must
create a CNAME from apps.acme.com to acme.shinyapps.io.) Steps to complete this can vary depending on
domain registrar or DNS provider, so we recommend you consult your provider’s documentation for exact
instructions on completing this step.

3. Once the domain record has been created, log into the shinyapps.io dashboard, and navigate to Account-
>Domains. From here you can add the domain or subdomain from above and then click Add Domain.

4. Now you are ready to add additional URLs to any of your existing applications. Within the dashboard, find your
application in the Applications tab and click on the URLs menu bar choice. You will notice that there is already
a single URL which is the one that is created by default. (Note the default URL cannot be removed)

5. Click on Add URL. You can now select from the list of domains you have entered (Example: apps.acme.com)
and can now specify the path to the application. The URL field below will show you what the final URL would
look like.

Setting up custom domains with 171

Note: a single application can be hosted on multiple domains and using different paths, and that all paths are case
sensitive.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Scaling and Performance Tuning with 172

2.19 Scaling and Performance Tuning with

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Scaling and Performance Tuning with
shinyapps.io
ADDED: 07 JAN 2015

R is a single threaded application which means that a Shiny application cannot serve two different users at precisely
the same time. This is not an issue in most cases because most computations only take tens or hundreds of
milliseconds. As a result, a single R process can usually serve 5 to 30 requests/second. However, as your
applications get more complex, requiring more time to service a single request, and as more users interact with the
application simultaneously, you may find that the user experience for your applications does not meet your
expectations.

Fine-Tuning Your Shiny apps Performance
Shinyapps.io lets you optimize the performance of your apps with several tuning parameters. To see your current
settings go to the Settings page for any application. The default settings have been chosen to address the needs of
most applications.

Key concepts and terms
There are several ideas that are important when considering the various tuning options that are available. Application

Application
Application Instance
Worker
Browser Connection

The diagram below shows how these ideas relate to each other.

Scaling and Performance Tuning with 173

Application
An application is a combination of files that you upload to shinyapps.io. These files must include a ui.R file and a
server.R file, and can also include data files.

A running application will have at least one Application Instance. You can add additional instances if the application is
hosted on a paid tier.

Application Instance
An Application Instance is a single server that responds to requests from end users. Shinyapps.io will start at least
one Application Instance when a user first visits your application, and shinyapps.io will shut down this instance (or
these instances) when the application is idle.

Each Application Instance will run one or more R Workers to fulfill user requests.

Worker
A worker is a special type of R process that an Application Instance runs to service requests to an application. Each
Application Instance can run multiple workers. Each worker process is capable of servicing multiple end users
depending on the configuration and performance requirements of the application. If there are no processes available
to handle a new request, the Application Instance will start a new worker process.

Browser Connection
A browser connection is a connection between a user’s web browser and a worker serving your application.

A user creates a browser connection when they first send a request to your application through their web browser, or
when they refresh their browser after it has gone idle. Shinyapps.io assigns each new browser connection to a
worker. The worker responds by creating a session for the browser connection to use.

Tuning parameters

Scaling and Performance Tuning with 174
The architecture described above uses two load factors to fine tune the performance of your applications.

Worker Load Factor - The threshold percentage after which a new browser connection will trigger the
addition of a new worker.

Instance Load Factor - The threshold percentage after which a new connection will trigger the addition of
a new Application Instance (limited to the maximum instance limit, free tier is 1)

Each load factor is based on the idea of a threshold percentage, which is the percentage of available connections or
processes that are allowed to open before shinyapps.io launches another worker or Application Instance. Both
settings are configurable in the Advanced tab within the Settings page for a given application.

You can also use the Settings page to change:

the size of your Application Instances
the maximum number of workers per Application Instance
the maximum number of connections per worker
the amount of time at which an instance or connection goes idle.

Each of these changes will further fine tune the performance of your application.

Lifecycle of an Application
The diagram below shows how shinyapps.io handles user requests throughout the life cycle of an application.

1. Publisher creates a new application and deploys it to shinyapps.io at https://.shinyapps.io/
2. A request from an end user triggers the start of an Application Instance
3. Application Instance will start with at least one worker
4. The number of connections to the worker increases as additional end users visit the application. When the

Worker Load Factor threshold is exceeded, shinyapps.io adds another worker, so long as the max number of
workers per Application Instance has not been reached. New connections are now assigned to the new
worker.

5. New workers are added when needed as new users continue to visit the application. When the Instance Load
factor is exceeded, shinyapps.io will trigger the addition of another Application Instance, so long as the max
number of Application Instances has not been reached (the max number may be one).

Scaling and Performance Tuning with 175
6. Shinyapps.io closes connections as end users close their browsers or are idle for longer than the Idle Timeout.
7. Shinyapps.io shuts down each worker once it has no further connections open.
8. Shinyapps.io turns off each Application Instance once it has no running workers, or once its workers are idle

for longer than the Instance Idle Timeout. This threshold timeout should be increased if you would like to avoid
restarting the application. Note: Increasing the timeout will use up more active hours.

9. A new request from an end user causes shinyapps.io to turn on an Application Instance, and stages 2-9
repeat.

Examples:
Assuming the following settings:

Instance Load Factor (default is 50%)
Worker Load Factor (default is 5%)
Max worker processes (default is 3)
Max # of concurrent connections supported per worker (default is 50)

Determining when another worker would be started:

Max # of Concurrent connections per worker * Worker Load Factor
50 * 5% = 2.5 (meaning the 3rd Browser Connection would add another worker up to the Max worker processes)

Determining when another Application Instance would be started:

Max # of connections per worker * Max worker processes * Instance Load Factor
50 * 3 * 50% = 75 (meaning the 76th connection would cause an additional instance to be started)

Troubleshooting
When should you worry about tuning your applications? You should consider tuning your applications if:

1. Your application has several requests that are slow and you have enough concurrent usage that people’s
expectations for responsiveness aren’t being met. For example, If your response time for some key
calculations takes one second and you would like to make sure that the average response time for your
application is less than two seconds, you will not want more than two concurrent requests per worker.

Possible Diagnosis: The application performance might be due to R’s single threaded nature.
Spreading the load across additional workers should alleviate the issue.
Remedy: Consider lowering the maximum number of connections per worker, and possibly increasing
the maximum number of workers. Also consider adding additional Application Instances and aggressively
scaling them by tweaking the Instance Load Factor to a lower percentage.

2. Sudden large spikes of traffic have poor performance even though you have configured multiple Application
Instances. However, additional new users have good performance.

Possible Diagnosis: The number of workers within the first container are insufficient for the initial
spike of traffic. When the additional containers are started, new users are routed to the new Application
Instance.
Remedy: Decrease the Instance Load Factor which will aggressively start up additional Application
Instances and spread the load.

3. Your application suddenly goes grey and you see in your logs that the application was “killed”.

Possible Diagnosis: Each Application Instance has a size which corresponds to the amount of RAM
(memory) that is allocated to it. If the amount of memory allocated to this application is exceeded, then
the Application Instance could be shut down by shinyapps.
Remedy: There are two possible solutions:

Increase the size of the Application Instance.
Decrease the number of workers per Application Instance. Since each worker takes up additional

Scaling and Performance Tuning with 176
RAM, you may find that lowering the “Max worker processes” to two or one would help keep each
Application Instance’s memory usage down.

4. An application isn’t fitting in memory even for the largest Application Instance size

Possible Diagnosis: If the application loads correctly with one or two users interacting with it, then it
is possible that your data set sizes on a per worker basis are too big.
Remedy: Decrease the number of workers per Application Instance.

5. Your application stops accepting additional users beyond 150 connections.

Possible Diagnosis: It is likely that you have reached the limit on the number of connections that can
be served by the default settings in an Application Instance.
Remedy: A few things to try would be:

Increase the allowed connections per worker by changing Connections setting for the application.
Increase the number of workers per Application Instance.
Add additional Application Instances.

6. An application that has a significant initialization time (loading lots of data, or talking to 3rd party web services)
sometimes doesn’t load.

Possible diagnosis: Shinyapps.io has an “Instance Startup Timeout” which will stop an application if
it is not responsive within that period of time at startup.
Remedy: Increase the timeout on the Application Settings page.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

romain

Hello,
I am trying to optimize my Shinyapp. As of now it is slow to load and refresh
because I am running a large clustering in the background. I need to increase the
CPU but I don't know how to do so.
I have tried several methods exposed above but nothing really seems to improve the
response time.
If you have any tips, thank you for sharing.
R.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Share data across sessions with 177

2.20 Share data across sessions with

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Share data across sessions with
shinyapps.io
ADDED: 29 SEP 2014
BY: JEFF ALLEN

ShinyApps.io expects your applications to be portable across servers. It uses this feature to maintain a smooth user
experience. For example, shinyapps.io will scale up your application by adding more running instances, or
shinyapps.io will keep your application available by starting your application on a server that has sufficient resources
to host it. Both of these features will fail if your app is not portable.

One of the consequences of this design is that files written to the file system will be deleted when your application
shuts down or moves to another server. These transitions shouldn’t happen while a user’s session is active, so you
can safely write temporary files associated with a particular session to the filesystem and expect to read these files
back in during the same session. However, local files created by your application will not persist beyond the session
in which they are created. If you want to access files after the session has closed, you will need to design your
application so that it saves its temporary files to an external service.

This article will introduce three ways to save—and use—data over multiple sessions. You can:

1. Store arbitrary data of any size in an object storage system—just like you would with a filesystem
2. Store semi-structured data in an easily scalable NoSQL database
3. Store rigidly structured data in a formal relational database like MySQL, SQL Server, or PostgreSQL.

We will not trace out each step required to set up these storage services, but we will provide enough context to help
you determine which options would be most appropriate for your application. We will then point you to the appropriate
resources that will help you store your data.

Regardless of which option you choose, we recommend using a “hosted” solution to store your data if you don’t
already have a server capable of the appropriate option. Amazon Web Services products can support the first and
last options. AWS provides S3 object storage and RDS for a relational database. R has packages to support NoSQL
servers like MongoDB. One hosted provider for MongoDB is MongoLab.

We’ll walk through an example application that collects names and comments from users. We want to accrue all
comments across user sessions. We’ll begin with a functioning app that relies on local file storage, available here

https://gist.github.com/trestletech/3679b34c5a83f521387b

Note that this code is not compatible with ShinyApps, since the modified copy of log.txt would be overwritten with
the original version of log.txt every time the application is stopped or moved. The next three sections will present
three ways to make the application portable for work on ShinyApps.

1. Object Storage (Amazon S3)
Object storage is the simplest of the three alternatives and works the most like a traditional filesystem. You can put
an “object” (file) into the store at a particular location, update it as often as you’d like, and then retrieve it from that

Share data across sessions with 178
same location.

This option allows users to continue to use a local file in their code assuming they

1. retrieve the most updated file when the application starts, and
2. write the updates to the file back to their object storage system before the application closes and the changes

are lost.

You can do this every time the data changes, or every time a session exits (session$onEnded).

We’ll update our comment example from above using the RAmazonS3 package which can be installed using the
following command:

install.packages("RAmazonS3", repos = "http://www.omegahat.org/R")

You can view the updated demo here. In short, rather than reading in the log from a file when the application starts,
we’ll read in the object from S3. And rather than writing out to a file, we’ll write to S3. That way we can be sure that,
when the process closes, our updated log has been written somewhere where it will persist and can be retrieved
later.

One important caveat is that this code is not safe to use in multiple processes simultaneously, so you should be sure
to configure your application to have a maximum of 1 process if you’re using this approach. As an example, if you
started two processes, both would read the up-to-date log file from S3 at startup. They would then write back to S3
any time a comment was posted without ever updating from S3 to capture each other’s updates—meaning that they
would just overwrite each other as long as they were both running.

This problem is solved in more formal database systems as will be discussed below using the concept of
“transactions” which can ensure that only one update occurs to a data set at a time.

2. NoSQL Storage (MongoDB, etc.)
NoSQL databases offer a flexible storage system that offers a bit more control than object storage, but without the
overhead of a formal relational database. NoSQL is an appropriate option if your data can easily be divided into
individual “entries” that can be created, updated, and deleted and there aren’t strong relationships between those
entities.

There are a couple of R packages that will enable you to communicate with MongoDB, one of which is rmongodb,
but you can choose the one that is right for your project.

Adapting our example to use MongoDB storage would be fairly simple. Each comment could be treated as a separate
record (or “document,” in mongoDB parlance) with two fields: name and comment (and perhaps the date-time if it
was posted). To add a comment, we might use mongo.insert . To query the list of comments initially we could use
mongo.find .

Because we’re using a proper database, the information can be maintained more granularly which allows us to get
around the problems we had previously with concurrency. If multiple processes call mongo.insert simultaneously,
both records will get inserted into the data store without any data loss. One possible enhancement to our application
would be to periodically query the MongoDB database to ensure that we’re showing any new comments that have
been written into the database by other processes.

3. Relational Database (MySQL, PostgreSQL, etc. with
Amazon RDS)
The final option for storage would be to use a formal relational database like MySQL or PostgreSQL. Most major
databases have associated R packages to ease interaction from R (see RPostgreSQL or RMySQL.

Relational databases excel when data is highly structured and there are well-defined relationships between entities.

Share data across sessions with 179
However, relational databases are often the most cumbersome of the above options and require the most know-how
to setup and manage. If you do not have any prior experience with relational databases or know someone who does,
you may be better served starting with one of the other options.

The architecture of our sample application using a relational database would be very similar to the solution described
for a NoSQL server—run an INSERT when a new comment is posted and a SELECT to retrieve the existing
comments from the database. Most relational databases include a feature called “transactions” which allow you to
guarantee data accuracy when performing complex operations on your data (like querying a bank account balance,
then updating it). If you find that you’re encountering such problems with NoSQL or an object store, it may be worth
the learning curve to get acquainted with a relational database like PostgreSQL.

Recap
To summarize, shinyapps.io expects your apps to be portable, which means that your app cannot pass data from
session to session with local files. Instead, your app should save data to an external source that future sessions can
access. You can do this by saving different types of data to different storage services.

1. Save arbitrary data of any size in an object storage system like Amazon S3
2. Save semi-structured data in an easily scalable NoSQL database like MongoDB
3. Save rigidly structured data in a formal relational database like MySQL, SQL Server, or PostgreSQL.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Jen Underwood

I'd love to see a demo with a database, ggplot and possiblly integrate/pass variable
parameters like start date and end date from a web page. Basically putting all the
elements together with web app integration. To take it one step further, passing
authentication or credentials to the cloud app for integration scenarios. Thanks.

pcavatore

It would be great to have a tutorial documenting option 3 in more details considering
the comments from https://groups.google.com/foru... using Amazon RDS

Dean Attali

There is a new article that's a follow-up to this one that documents option 3 with a
few different databases, but not Amazon RDS specifically. Hopefully it's still useful.

http://shiny.rstudio.com/artic...

pcavatore

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Migrating shinyapps.io authentication 180

2.21 Migrating shinyapps.io authentication

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Migrating shinyapps.io authentication
ADDED: 07 JAN 2015

The general release of shinyapps.io introduces a new mechanism for authentication and authorization. This system
replaces the existing rscrypt based approach and provides a more flexible and manageable flow.

The new authentication system provides several advantages. With it you can: * Add or remove authorized users
without restarting the application thereby preserving the sessions of logged in users. * Manage application access
through the admin interface (new) * Leverage Google or Github authentication to improve security for your users. *
Save your users the burden of managing and maintaining their own user authentication information.

To migrate your application from the old authentication system to the new one you will need to follow these steps:

1. Set the Application Visibility setting to Private in the Users tab for that application and click Save Settings. This
will restart the application and apply the new setting. Note, once you do this, none of the existing users will be
able to authenticate.

2. On your local system, rename the passwords.txt file in /shinyapps to old_passwords.txt .
3. Re-deploy your application using shinyapps::deployApp()
4. In the Users tab, add the email addresses for the individuals that were in your old_passwords.txt file. If

you were not using email addresses before, you will need to do so at this time. Don’t worry if your users don’t
have Google or GitHub accounts, they can always use local authentication through shinyapps.io.

5. Your users should now be able to authenticate and see your application.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Introduction to Shiny Server 181

2.22 Introduction to Shiny Server

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Introduction to Shiny Server
ADDED: 25 FEB 2014
BY: JEFF ALLEN

Shiny Server is a back end program that makes a big difference. It builds a web server specifically designed to host
Shiny apps. With Shiny Server you can host your apps in a controlled environment, like inside your organization, so
your Shiny app (and whatever data it needs) will never leave your control. You can also use Shiny Server to make
your apps available across the Internet when you choose. Shiny Server will host each app at its own web address
and automatically start the app when a user visits the address. When the user leaves, Shiny Server will automatically
stop the app.

The professional version of Shiny Server offers even more features. With Shiny Server Pro, you can password
protect your apps and use an administrative dashboard to learn who is using your apps and how (below).

This article will demonstrate some of the features of Shiny Server and introduce you to the deep literature that is
waiting to help you download, install, and configure your own Shiny Server.

Shiny Server, Shiny Server Pro, and shinyapps.io
You can use the free Community Edition of Shiny Server to begin hosting your Shiny applications, or you can
leverage Shiny Server Professional to scale your applications to a broader audience, restrict access to particular
applications, or control the resources consumed by your Shiny applications. You can see a full breakdown of the
differences between the two editions here; we’ll discuss the features of both editions of Shiny Server in this article.
We hope to highlight some features of Shiny Server here, but for a full discussion on how to manage and configure
your server, please see the official Admin Guide.

Shiny Server runs on a variety on Linux distributions. If you’re not comfortable with Linux or would prefer to have
someone else manage the server on which your Shiny applications are hosted, check out ShinyApps.io to learn about

Introduction to Shiny Server 182
hosting your applications in an environment that is managed and maintained by RStudio for you. ShinyApps.io lets
you use a pay-as-you-go model to tap into some of the features only available in Shiny Server Professional, an
arrangement that is more approachable for some organizations.

Shiny Server Professional offers a variety of nice features that build on top of the open source Shiny Server
including:

A dashboard to help understand the activity on your server (as shown above)
The ability to secure your Shiny applications using SSL (HTTPS)
The ability to control which users are allowed to access which applications
Priority support from RStudio
Controls to fine-tune resource consumption per Shiny application

Below we’ll demonstrate a few examples of using Shiny Server to make your Shiny applications available in different
ways.

Host a Directory of Applications
(See this page for a complete step-by-step walkthrough of this example.)

Shiny Server allows you to host a directory full of Shiny applications and other web assets (HTML files, CSS files,
etc.) using the site_dir configuration. By default, Shiny Server will use a site_dir to make any applications and
assets stored in /srv/shiny-server/ available. You can begin placing Shiny applications inside this directory then
referencing them on your server. For instance, a Shiny application stored in /srv/shiny-server/myApp would be
available at http://myserver.org:3838/myApp , (where myserver.org is the name of your server) by default.
You could also place HTML files in this directory to make them available on your server, as well.

Let Users Manage Their Own Applications
(See this page for a complete step-by-step walkthrough of this example.)

In some cases, it may be desirable to allow users on a system to manage and update their own Shiny applications
stored in their home directories; the user_apps configuration allows you to do just that. Shiny applications hosted
inside users’ ShinyApps directory will be available online. For instance, a user who stored a Shiny application in
/home/kim/ShinyApps/myApp would be able to access it at http://myserver.org:3838/kim/myApp on a

server configured to use user_apps .

Require User Authentication On An Application
(See this page for a complete step-by-step walkthrough of this example.)

Shiny Server Professional supports various forms of user authentication which can be used to require your users to
login before being able to access particular Shiny applications on your server.

As of Shiny Server v1.1.0, you can even change the appearance of the login page using the template_dir
configuration to make your login page look something like this:

Introduction to Shiny Server 183

(Inspired by Thibaut Courouble and Orman Clark.)

Or this:

(Inspired by Ionut Zamfir.)

Summary
To recap, Shiny Server is a useful way to share your Shiny applications in a controlled environment. It lets you

Automatically start and stop your applications as needed on a Linux server
Provide a unique URL for each application
Restrict access to particular applications, if using Shiny Server Professional

Introduction to Shiny Server 184

Shiny is an RStudio project. © 2014 RStudio, Inc.

If you have any questions or would like more information, please visit http://www.rstudio.com/shiny/server/ or email us
at sales@rstudio.com.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Yerviz

This is more their way of making you pay if you want a viable production server :P

Thomas

I don't consider SSL to be a Professional feature, but rather a basic requirement for
most any realized web services.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Save your app as a function 185

2.23 Save your app as a function

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Save your app as a function
ADDED: 11 JUL 2014
BY: GARRETT GROLEMUND

Shiny apps are a great way to build interactive data analysis tools, but they require a bit of set up to use. Or do they?
This article will show you how to write R functions that launch Shiny apps.

The result is a quick tool that you can reuse on any data set (or with any set of arguments that you like). Moreover,
you can use this method to share your Shiny apps as straightforward R functions.

An example
rmdexamples::kmeans_cluster is a function that launches a Shiny app. It takes one argument, a data frame, and

launches a cluster analysis app that explores the data frame.

You can install the rmdexamples library from github. To do so, run

devtools::install_github("rmdexamples", "rstudio")

library(rmdexamples)

kmeans_cluster(iris)

Save your app as a function 186

The following sections will show you how to

1. Define a Shiny app in a single script with shinyApp
2. Save your app as a parameterized function
3. Launch your app from the command line or inside an interactive document

shinyApp
shinyApp is a function that builds Shiny apps. You can use shinyApp to define a complete app in a single R

script, or even at the command line.

shinyApp builds an app from two arguments that parallel the structure of a standard Shiny app. The ui argument
takes code that builds the user interface for your app, and the server argument takes code that sets up the server
for your Shiny app.

When you build a standard Shiny app, you save two files in your working directory and then call runApp() . One file,
named ui.R, contains a call to shinyUI . The second file, named server.R, contains a call to shinyServer .

Save your app as a function 187

To build an app with shinyApp , give ui the code that you would normally pass to shinyUI in a ui.R file. Then
give server the code that you would normally pass to shinyServer in a server.R file.

shinyApp(

 ui = fluidPage(

 sidebarLayout(

 sidebarPanel(sliderInput("n", "Bins", 5, 100, 20)),

 mainPanel(plotOutput("hist"))

)

),

 server = function(input, output) {

 output$hist <- renderPlot(

 hist(faithful[[2]], breaks = input$n,

 col = "skyblue", border = "white")

)

 }

)

R will build and launch your app when you run the complete shinyApp call at the command line.

For example, the code above will build a minimal Shiny app. When you run the code, your app will look like this.

Save your app as a function 188

shinyApp also uses an option argument, which takes a list of named options. You can use the option
argument to set any options that you would normally set in a runApp call.

In addition, you can use the option argument to provide a hint to the browser environment about the ideal height
and width of your Shiny app. This becomes very useful when you embed Shiny apps in R Markdown documents
(described below). The code below will launch an app that has a suggested size of 600 by 500 pixels.

shinyApp(

 ui = fluidPage(

 sidebarLayout(

 sidebarPanel(sliderInput("n", "Bins", 5, 100, 20)),

 mainPanel(plotOutput("hist"))

)

),

 server = function(input, output) {

 output$hist <- renderPlot(

 hist(faithful[[2]], breaks = input$n,

 col = "skyblue", border = "white")

)

 },

 options = list(height = 600, width = 500)

)

Save your app as a function
To turn your app into a function, write a function that calls shinyApp . Parameterize your app by passing function
arguments to shinyApp .

The code below saves the histogram app as a function named binner that takes a vector named var . The
function passes its var argument to shinyApp , which then launches an app that visualizes var .

Save your app as a function 189
binner <- function(var) {

 require(shiny)

 shinyApp(

 ui = fluidPage(

 sidebarLayout(

 sidebarPanel(sliderInput("n", "Bins", 5, 100, 20)),

 mainPanel(plotOutput("hist"))

)

),

 server = function(input, output) {

 output$hist <- renderPlot(

 hist(var, breaks = input$n,

 col = "skyblue", border = "white")

)

 }

)

}

Since var is a function argument, you can supply it at runtime. This means you can reuse the app on many
different data frames.

Call your app as a function
You can launch your app from the command line once you define your function. To do this, call the function and
supply a value for each function argument.

For example, you can now use binner to explore various vectors.

binner(faithful$eruptions)

Save your app as a function 190

Embed your app in an interactive document
You can also embed your app in R Markdown reports. Define the function that launches your app in an R code
chunk (by including the definition, or loading a package that has the function). Then call the function.

The R Markdown script below places binner in an interactive document.

runtime: shiny

output: html_document

```{r echo = FALSE}

binner <- function(var) {

  require(shiny)

  shinyApp(

    ui = fluidPage(

      sidebarLayout(

        sidebarPanel(sliderInput("n", "Bins", 5, 100, 20)),

        mainPanel(plotOutput("hist"))

      )

    ), 

    server = function(input, output) {

      output$hist <- renderPlot( 

        hist(var, breaks = input$n,

          col = "skyblue", border = "white") 

      )



Save your app as a function 191
    }

  )

}

```

Old Faithful

Old faithful is known for erupting at regular intervals. But how regular are these interva

ls?

I went Yellowstone national park and monitored the old faithful geyser for fourteen days s

traight. During this time I wrote down the exact number of minutes that passed between eac

h eruption.

Just kidding, I used the `faithful` data set which comes in R. It contains the same inform

ation. Below is a histogram of the results. As you can see the times are bimodal. Old fait

hful is not entirely faithful; it appears to have a mistress on the side.

```{r echo = FALSE}

binner(faithful$waiting)

```

The document looks like this when you render the report. The binner app is interactive in the final document.

Save your app as a function 192

Recap
You can package your Shiny apps as parameterized R functions. To do this, define a function that builds your app
with shinyApp .

Why would you save your Shiny apps this way? Saving your app as a function opens several opportunities

Easy to share - you can share your apps with other R users just as you would share functions. For example,
you can put your apps in an R package very easily.

Reusable - it is very easy to reuse your apps on new data sets, or with new conditions, by parameterizing
your apps.

A Chance to be a Hero - you can create and share apps that any R user can use. Your users do not need
to know Shiny; they only need to call a function. You can use this method to make packages that contain
interactive data exploration tools, teaching examples and quizzes, gui versions of R programs, and much more.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If

Save your app as a function 193

Shiny is an RStudio project. © 2014 RStudio, Inc.

you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Thomas Rosendal

Is it possible to deploy the app in a function with shiny server? We have an app that
we currently deploy using shiny server that I would like to place inside an R
package. I would like to avoid having parallel code ie. having both the server.R and
ui.R as well as the functions in the package that do the same thing.

jwarrick

This was a great suggestion. However, it doesn't seem to always work. When I call
my shiny app function from the commandline, it works, but when I source a file that
calls the shiny app function, it doesn't. Suggestions?

ImAndy

how do I add, say, library(dplyr) in the above code, if the app requires additional
manipulation?

spencer

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Sharing apps to run locally 194

2.24 Sharing apps to run locally

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Sharing apps to run locally
ADDED: 06 JAN 2014

Once you’ve written your Shiny app, you can distribute it for others to run on their own computers—they can
download and run Shiny apps with a single R command. This requires that they have R and Shiny installed on their
computers.

If you want your Shiny app to be accessible over the web, so that users only need a web browser, see

Introduction to Shiny Server (to host your own apps), or
Getting started with shinyapps.io (to use RStudio’s hosting service)

Here are some ways to deliver Shiny apps to run locally:

Gist
One easy way is to put your code on gist.github.com, a code pasteboard service from GitHub. Both server.R and ui.R
must be included in the same gist, and you must use their proper filenames. See
https://gist.github.com/jcheng5/3239667 for an example.

Your recipient must have R and the Shiny package installed, and then running the app is as easy as entering the
following command:

shiny::runGist('3239667')

In place of '3239667' you will use your gist’s ID; or, you can use the entire URL of the gist (e.g.
'https://gist.github.com/jcheng5/3239667').

Pros
Source code is easily visible by recipient (if desired)
Easy to run (for R users)
Easy to post and update

Cons
Code is published to a third-party server

GitHub repository
If your project is stored in a git repository on GitHub, then others can download and run your app directly. An
example repository is at https://github.com/rstudio/shiny_example. The following command will download and run the
application:

shiny::runGitHub('shiny_example', 'rstudio')

Sharing apps to run locally 195
In this example, the GitHub account is 'rstudio' and the repository is 'shiny_example' ; you will need to
replace them with your account and repository name.

Pros
Source code is easily visible by recipient (if desired)
Easy to run (for R users)
Very easy to update if you already use GitHub for your project
Git-savvy users can clone and fork your repository

Cons
Developer must know how to use git and GitHub
Code is hosted by a third-party server

Zip File, delivered over the web
If you store a zip or tar file of your project on a web or FTP server, users can download and run it with a command
like this:

runUrl('https://github.com/rstudio/shiny_example/archive/master.zip')

The URL in this case is a zip file that happens to be stored on GitHub; replace it with the URL to your zip file.

Pros
Only requires a web server for delivery

Cons
To view the source, recipient must first download and unzip it

Zip File, copied to recipient’s computer
Another way is to simply zip up your project directory and send it to your recipient(s), where they can unzip the file
and run it the same way you do (shiny::runApp).

Pros
Share apps using e-mail, USB flash drive, or any other way you can transfer a file

Cons
Updates to app must be sent manually

Package
If your Shiny app is useful to a broader audience, it might be worth the effort to turn it into an R package. Put your
Shiny application directory under the package’s inst directory, then create and export a function that contains
something like this:

shiny::runApp(system.file('appdir', package='packagename'))

where appdir is the name of your app’s subdirectory in inst , and packagename is the name of your package.

Pros
Publishable on CRAN
Easy to run (for R users)

Cons

Sharing apps to run locally 196

Shiny is an RStudio project. © 2014 RStudio, Inc.

More work to set up
Source code is visible by recipient (if not desired)

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

cmd

You can also just type runApp() in the code folder

Guest

hello,
haw to host my to install shiny server on Windows 7 ?

Thanks in advance

matt

Introduction to Shiny Server (to host your own apps), or
link broken

Garrett

Thanks. Fixed now.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Introduction to R Markdown 197

2.25 Introduction to R Markdown

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Introduction to R Markdown
ADDED: 16 JUL 2014
BY: GARRETT GROLEMUND

Interactive documents are a new way to build Shiny apps. An interactive document is an R Markdown file that
contains Shiny widgets and outputs. You write the report in markdown, and then launch it as an app with the click of
a button.

This article will show you how to write an R Markdown report.

The companion article, Introduction to interactive documents, will show you how to turn an R Markdown report into an
interactive document with Shiny components.

R Markdown
R Markdown is a file format for making dynamic documents with R. An R Markdown document is written in markdown
(an easy-to-write plain text format) and contains chunks of embedded R code, like the document below.

output: html_document

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML,

PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rst

udio.com>.

When you click the **Knit** button a document will be generated that includes both content

as well as the output of any embedded R code chunks within the document. You can embed an

R code chunk like this:

```{r}

summary(cars)

```

You can also embed plots, for example:

```{r, echo=FALSE}

plot(cars)

```

Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of

the R code that generated the plot.

R Markdown files are designed to be used with the rmarkdown package. rmarkdown comes installed with the
RStudio IDE, but you can acquire your own copy of rmarkdown from github with the command

Introduction to R Markdown 198
devtools:install_github("rmarkdown", "rstudio")

R Markdown files are the source code for rich, reproducible documents. You can transform an R Markdown file in two
ways.

1. knit - You can knit the file. The rmarkdown package will call the knitr package. knitr will run each
chunk of R code in the document and append the results of the code to the document next to the code chunk.
This workflow saves time and facilitates reproducible reports.

Consider how authors typically include graphs (or tables, or numbers) in a report. The author makes the graph,
saves it as a file, and then copy and pastes it into the final report. This process relies on manual labor. If the
data changes, the author must repeat the entire process to update the graph.

In the R Markdown paradigm, each report contains the code it needs to make its own graphs, tables, numbers,
etc. The author can automatically update the report by re-knitting.

2. convert - You can convert the file. The rmarkdown package will use the pandoc program to transform the
file into a new format. For example, you can convert your .Rmd file into an HTML, PDF, or Microsoft Word file.
You can even turn the file into an HTML5 or PDF slideshow. rmarkdown will preserve the text, code results,
and formatting contained in your original .Rmd file.

Conversion lets you do your original work in markdown, which is very easy to use. You can include R code to
knit, and you can share your document in a variety of formats.

In practice, authors almost always knit and convert their documents at the same time. In this article, I will use the
term render to refer to the two step process of knitting and converting an R Markdown file.

You can manually render an R Markdown file with rmarkdown::render() . This is what the above document looks
like when rendered as a HTML file.

Introduction to R Markdown 199

In practice, you do not need to call rmarkdown::render() . You can use a button in the RStudio IDE to render your
reprt. R Markdown is heavily integrated into the RStudio IDE.

Getting started
To create an R Markdown report, open a plain text file and save it with the extension .Rmd. You can open a plain text
file in your scripts editor by clicking File > New File > Text File in the RStudio toolbar.

Introduction to R Markdown 200

Be sure to save the file with the extension .Rmd. The RStudio IDE enables several helpful buttons when you save
the file with the .Rmd extension. You can save your file by clicking File > Save in the RStudio toolbar.

R Markdown reports rely on three frameworks

1. markdown for formatted text
2. knitr for embedded R code
3. YAML for render parameters

The sections below describe each framework.

Markdown for formatted text
.Rmd files are meant to contain text written in markdown. Markdown is a set of conventions for formatting plain text.
You can use markdown to indicate

bold and italic text
lists
headers (e.g., section titles)
hyperlinks
and much more

The conventions of markdown are very unobtrusive, which make Markdown files easy to read. The file below uses
several of the most useful markdown conventions.

Say Hello to markdown

Introduction to R Markdown 201
Markdown is an **easy to use** format for writing reports. It resembles what you naturally

write every time you compose an email. In fact, you may have already used markdown *withou

t realizing it*. These websites all rely on markdown formatting

* [Github](www.github.com)

* [StackOverflow](www.stackoverflow.com)

* [Reddit](www.reddit.com)

The file demonstrates how to use markdown to indicate:

1. headers - Place one or more hashtags at the start of a line that will be a header (or sub-header). For
example, # Say Hello to markdown . A single hashtag creates a first level header. Two hashtags, ## ,
creates a second level header, and so on.

2. italicized and bold text - Surround italicized text with asterisks, like this *without realizing it* .
Surround bold text with two asterisks, like this **easy to use** .

3. lists - Group lines into bullet points that begin with asterisks. Leave a blank line before the first bullet, like this

 This is a list

 * item 1

 * item 2

 * item 3

4. hyperlinks - Surround links with brackets, and then provide the link target in parentheses, like this
[Github](www.github.com) .

You can learn about more of markdown’s conventions in the Markdown Quick Reference guide, which comes with the
RStudio IDE.

To access the guide, open a .md or .Rmd file in RStudio. Then click the question mark that appears at the top of the
scripts pane. Next, select “Markdown Quick Reference”. RStudio will open the Markdown Quick Reference guide in
the Help pane.

Introduction to R Markdown 202

Rendering
To transform your markdown file into an HTML, PDF, or Word document, click the “Knit” icon that appears above
your file in the scripts editor. A drop down menu will let you select the type of output that you want.

When you click the button, rmarkdown will duplicate your text in the new file format. rmarkdown will use the
formatting instructions that you provided with markdown syntax.

Once the file is rendered, RStudio will show you a preview of the new output and save the output file in your working
directory.

Here is how the markdown script above would look in each output format.

Introduction to R Markdown 203

Note: RStudio does not build PDF and Word documents from scratch. You will need to have a distribution of Latex
installed on your computer to make PDFs and Microsoft Word (or a similar program) installed to make Word files.

knitr for embedded R code
The knitr package extends the basic markdown syntax to include chunks of executable R code.

When you render the report, knitr will run the code and add the results to the output file. You can have the output
display just the code, just the results, or both.

To embed a chunk of R code into your report, surround the code with two lines that each contain three backticks.
After the first set of backticks, include {r} , which alerts knitr that you have included a chunk of R code. The
result will look like this

Here’s some code

```{r}

dim(iris)

```

When you render your document, knitr will run the code and append the results to the code chunk. knitr will
provide formatting and syntax highlighting to both the code and its results (where appropriate).

As a result, the markdown snippet above will look like this when rendered (to HTML).

Introduction to R Markdown 204

To omit the results from your final report (and not run the code) add the argument eval = FALSE inside the
brackets and after r . This will place a copy of your code into the report.

To omit the code from the final report (while including the results) add the argument echo = FALSE . This will place
a copy of the results into your report.

Introduction to R Markdown 205

echo = FALSE is very handy for adding plots to a report, since you usually do not want to see the code that
generates the plot.

echo and eval are not the only arguments that you can use to customize code chunks. You can learn more about
formatting the output of code chunks at the rmarkdown and knitr websites.

Inline code
To embed R code in a line of text, surround the code with a pair of backticks and the letter r , like this.

Two plus two equals `r 2 + 2`.

knitr will replace the inline code with its result in your final document (inline code is always replaced by its result).
The result will appear as if it were part of the original text. For example, the snippet above will appear like this:

Introduction to R Markdown 206

YAML for render parameters
You can use a YAML header to control how rmarkdown renders your .Rmd file. A YAML header is a section of
key: value pairs surrounded by --- marks, like below

title: "Untitled"

author: "Garrett"

date: "July 10, 2014"

output: html_document

Some inline R code, `r 2 + 2`.

The output: value determines what type of output to convert the file into when you call rmarkdown::render() .
Note: you do not need to specify output: if you render your file with the RStudio IDE knit button.

output: recognizes the following values:

html_document , which will create HTML output (default)
pdf_document , which will create PDF output
word_document , which will create Word output

If you use the RStudio IDE knit button to render your file, the selection you make in the gui will override the output:
setting.

Slideshows
You can also use the output: value to render your document as a slideshow.

output: ioslides_presentation will create an ioslides (HTML5) slideshow
output: beamer_presentation will create a beamer (PDF) slideshow

Note: The knit button in the RStudio IDE will update to show slideshow options when you include one of the above
output values and save your .Rmd file.

rmarkdown will convert your document into a slideshow by starting a new slide at each header or horizontal rule
(e.g., ***).

Introduction to R Markdown 207
Visit rmakdown.rstudio.com to learn about more YAML options that control the render process.

Recap
R Markdown documents provide quick, reproducible reporting from R. You write your document in markdown and
embed executable R code chunks with the knitr syntax.

You can update your document at any time by re-knitting the code chunks.

You can then convert your document into several common formats.

R Markdown documents implement Donald’s Knuth’s idea of literate programming and take the manual labor out of
writing and maintaining reports. Moreover, they are quick to learn. You already know ecnough about markdown, knitr,
and YAML to begin writing your own R Markdown reports.

In the next article, Introduction to interactive documents, you will learn how to add interactive Shiny components to an
R Markdown report. This creates a quick workflow for writing light-weight Shiny apps.

To learn more about R Markdown and interactive documents, please visit rmarkdown.rstudio.com.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Lee Zamparo

Great tutorial, but you're missing a ':' in the installation code block:

```

devtools:install_github("rmarkdown", "rstudio")

```

should be

```
devtools::install_github("rmarkdown", "rstudio")
```

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Introduction to interactive documents 208

2.26 Introduction to interactive documents

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Introduction to interactive documents
ADDED: 09 JUL 2014
BY: GARRETT GROLEMUND

Interactive documents are a new way to build Shiny apps. An interactive document is an R Markdown file that
contains Shiny widgets and outputs. You write the report in markdown, and then launch it as an app with the click of
a button.

R Markdown
The previous article, Introduction to R Markdown, described how to write R Markdown files. R Markdown files are
useful because

They are quick and easy to write.
You can embed executable R code into your file, which saves manual labor and creates a reproducible report.
You can convert R Markdown files into HTML, PDF, and Word documents with the click of a button.
You can convert R Markdown files into ioslides and beamer slideshows with the click of a button.

In fact, R Markdown files are the ultimate R reporting tool.

This article will show you one more thing that R Markdown files can do: you can embed Shiny components in an R
Markdown file to create an interactive report or slideshow.

Your report will be a complete Shiny app. In fact, R Markdown provides the easiest way to build light-weight Shiny
apps. I will refer to apps that combine Shiny with R Markdown as interactive documents.

Interactive documents
You can make an R Markdown document interactive in two steps:

1. add runtime: shiny to the document’s YAML header.
2. add Shiny widgets and Shiny render functions to the file’s R code chunks

The rmarkdown package will compile your document into a reactive Shiny app. The document will look just as it
would otherwise, but it will include reactive components.

runtime: shiny
Notify rmarkdown that your file contains Shiny components by adding runtime: shiny to the file’s YAML header.
RStudio will change its “Knit” icon to a “Run Document” icon when you save this change.

Introduction to interactive documents 209

“Run Document” is a cue that rmarkdown will no longer compile your document into a static file. Instead it will “run”
the document as a live Shiny app.

Since the document is a Shiny app, you must render it into an HTML format. Do this by selecting either
html_document or ioslides_presentation for your final output.

Widgets
To add a widget to your document, call a Shiny widget function in an R code chunk. R Markdown will add the widget
to the code chunk’s output.

For example, the file below creates an HTML document with two widgets.

runtime: shiny

output: html_document

Here are two Shiny widgets

```{r echo = FALSE}

selectInput("n_breaks", label = "Number of bins:",

              choices = c(10, 20, 35, 50), selected = 20)

  

sliderInput("bw_adjust", label = "Bandwidth adjustment:",

              min = 0.2, max = 2, value = 1, step = 0.2)

```

The document looks like this when rendered. (This is a static image of the output, the actual widgets are “live”; you
can manipulate them).

Introduction to interactive documents 210

Rendered output
To add reactive output to your document, call one of the render* functions below in an R code chunk.

render function creates
renderImage images (saved as a link to a source file)
renderPlot plots
renderPrint any printed output
renderTable data frame, matrix, other table like structures
renderText character strings
renderUI a Shiny tag object or HTML

R Markdown will include the rendered output in the result of the code chunk.

This output will behave like rendered output in a standard Shiny app. The output will automatically update whenever
you change a widget value or a reactive expression that it depends on.

The file below uses renderPlot to insert a histogram that reacts to the two widgets.

runtime: shiny

output: html_document

Here are two Shiny widgets

```{r echo = FALSE}

selectInput("n_breaks", label = "Number of bins:",

              choices = c(10, 20, 35, 50), selected = 20)

  

sliderInput("bw_adjust", label = "Bandwidth adjustment:",

              min = 0.2, max = 2, value = 1, step = 0.2)

```

...that build a histogram.

```{r echo = FALSE}

renderPlot({

  hist(faithful$eruptions, probability = TRUE, breaks = as.numeric(input$n_breaks),

       xlab = "Duration (minutes)", main = "Geyser eruption duration")

  

  dens <- density(faithful$eruptions, adjust = input$bw_adjust)

  lines(dens, col = "blue")

})

```

The document creates the app below when you click “Run Document.”

Introduction to interactive documents 211

The structure of an interactive document
When you run an interactive document, rmarkdown extracts the code in your code chunks and places them into a
pseudo server.R file. R Markdown uses the html output of the markdown file as an index.html file to place the reactive
elements into.

Introduction to interactive documents 212

As a result, outputs in one code chunk can use widgets and reactive expressions that occur in other code chunks.

Since the R Markdown document provides a layout for the app, you do not need to write a ui.R file.

Sharing interactive documents
Interactive documents are a type of Shiny app, which means that you can share them in the same way that you
share other Shiny apps. You can

1. Email a .Rmd file to a colleague. He or she can run the file locally by opening the file and clicking “Run
Document”

2. Host the document with Shiny Server or Shiny Server Pro
3. Host the document at ShinyApps.io

Note: If you are familiar with R Markdown, you might expect RStudio to save an HTML version of an interactive
document in your working directory. However, this only works with static HTML documents. Each interactive
document must be served by a computer that manages the document. As a result, interactive documents cannot be
shared as a standalone HTML file.

Conclusion
Interactive documents provide a new and easy way to make Shiny apps.

Introduction to interactive documents 213
Interactive documents will not replace standard Shiny apps since they cannot provide the design options that come
with a ui.R or index.html file. However, interactive documents do create some easy wins:

The R Markdown workflow makes it easy to build light-weight apps. You do not need to worry about laying out
your app or building an HTML user interface for the app.

You can use R Markdown to create interactive slideshows, something that is difficult to do with Shiny alone. To
create a slideshow, change output: html_document to output: ioslides_presentation in the YAML
front matter of your .Rmd file. R Markdown will divide your document into slides when you click “Run
Document.” A new slide will begin whenever a header or horizontal rule (***) appears.

Interactive documents enhance the existing R Markdown workflow. R Markdown makes it easy to write literate
programs and reproducible reports. You can make these reports even more effective by adding Shiny to the
mix.

To learn more about R Markdown and interactive documents, please visit rmarkdown.rstudio.com.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

gjthompson1

Is it a pipe dream to have an interactive document with shiny widgets embedded?

Behrooz Mirmolavi

It would be truly valuable to have an interactive document with shiny widgets
embedded. Else R Markdown is just a different way of deploying a Shiny App? And
really it looks like Shiny Apps are more customisable.

Sudipta Banerjee

I have installed R shiny server on my Ubuntu OS. How can I use markdown to write
my first program

Yahia

I tried it. It is really nice. But for some reason caching doesn't work when I choose
runtime: shiny. Any fix for that problem?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

R Markdown integration in the 214

2.27 R Markdown integration in the

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

R Markdown integration in the
RStudio IDE
ADDED: 10 JUL 2014
BY: GARRETT GROLEMUND

Introduction to interactive documents describes how to use R Markdown to build light-weight Shiny apps that are
easy to assemble.

The RStudio IDE contains many features that make it easy to write and run interactive documents. This article will
highlight some of the most useful:

1. File templates
2. Using R Markdown
3. Markdown Quick Reference
4. The Run Document button
5. The Viewer Pane
6. Document options
7. Insert Chunk
8. Deploy to shinyapps.io
9. The R Markdown console

R Markdown integration in the 215

1. File templates
The RStudio IDE provides a template document when you open a new .Rmd file. To open a new file, click File > New
File > R Markdown in the RStudio menu bar.

A window will pop up that helps you build the YAML frontmatter for the .Rmd file.

R Markdown integration in the 216

From the window’s sidebar, select the category of output that you plan to convert your .Rmd file into. You can select

Document - a static document
Presentation - an ioslides or beamer slideshow
Shiny - an interactive document
From Template - a format that you have pre-saved as a template (if you have one)

Use the radio buttons to select the specific type of output that you wish to build. Your options will depend on the
category you selected in the sidebar.

You can also use the window to give your file a title and author field.

To make an interactive document, select Shiny from the sidebar and Shiny Document from the radio buttons. Then
click OK.

RStudio will open a new .Rmd file for you to use. The file will contain a YAML header that includes all of the
parameters that your file will need to correctly render with rmarkdown::render() . You can manually change these
parameters afterwords if you like.

RStudio will fill the rest of the file with a template that demonstrates the basic features of .Rmd files. The templates
work right out of the box, which means that you can immediately knit or run one. The image below shows the
template for interactive documents.

R Markdown integration in the 217

Study the template as a refresher on R Markdown, or erase it and begin writing your own document.

2. Using R Markdown
The IDE places a question mark icon in the scripts pane whenever you open a .Rmd file. The question mark opens a
drop down menu with two helpful resources.

The first option, “Using R Markdown,” opens the development website for the rmarkdown package,
rmarkdown.rstudio.com. Here you can look up the many useful features of R Markdown.

3. Markdown Quick Reference
The second link, “Markdown Quick Reference,” opens a reference guide to the markdown syntax. This guide will
appear in the help pane of the RStudio IDE.

The guide uses examples to explain the different formatting options of markdown. It is like a markdown cheatsheet
that is built right in to the RStudio IDE.

R Markdown integration in the 218

4. The Run Document button
If your .Rmd file contains runtime: shiny in its YAML header, the RStudio IDE will display a “Run Document”
button at the top of the scripts pane.

The “Run Document” button is a shortcut for the rmarkdown::render command. It let’s you quickly render your
.Rmd file into an interactive document hosted locally on your computer. The RStudio IDE will diplay your document in
a preview window.

You can edit the .Rmd file while the preview is running. To see your changes, save the .Rmd file. Then click the
refresh icon in the top left corner of the preview window.

If your .Rmd file does not contain runtime: shiny , the RStudio IDE will display a “Knit HTML” button in place of
the “Run Document” button. The “Knit HTML” button works in the same way. It renders your .Rmd file and launches a
preview of your output document.

The Knit HTML button contains a dropdown menu that let’s you choose which type of output to knit your file into (this
will override the output type specified in your file’s YAML header).

5. Viewer Pane
By default, the RStudio IDE opens a preview window to display the output of your .Rmd file. However, you can
choose to display the output in a dedicated viewer pane.

R Markdown integration in the 219
To do this, select “View in Pane” for m the drop down menu that appears when you click on the “Run Document”
button (or “Knit HTML” button).

The viewer pane provides a side-by-side view that resembles some text and Latex editors.

6. Document options
The gear icon beside “Run Document” opens a wizard that lets you customize your interactive document. You can
use this wizard to

Include a table of contents
Apply syntax highlighting to code chunks
Apply one of eight built in bootstrap CSS themes to your document
Link to your own custom CSS file to style your document
Number section headings
Size figures and add captions, and
Tweak the render process

R Markdown integration in the 220

Set the features you like, and the RStudio IDE will apply them when you click “Run Document”.

7. Insert Chunk
The Chunks button in the top left corner of the Scripts pane opens a dropdown menu that you can use to manage
code chunks in your .Rmd file.

The first option in the menu is the most useful. “Insert Chunk” will insert a blank code chunk into your .Rmd file at the
location of your cursor. You can then fill this chunk with code.

You can use basic RStudio tab completion to write arguments inside the {r} braces at the top of each code chunk.

8. Deploy to shinyapps.io
If you’ve set up the shinyapps package as described in Getting started with shinyapps.io, the RStudio IDE will
place a deploy button at the top of your interactive document’s preview window.

R Markdown integration in the 221

You can click this button to deploy your document directly to your shinyapps.io account. Shinyapps.io will host the
document at its own web URL for people to visit.

9. The R Markdown console
When you render a .Rmd file, the RStudio IDE opens a second console pane that displays R Markdown output. This
pane shows the status of the render process and displays any errors or warnings that occur while rendering your
document. If your document is an interactive document, the pane will also display errors that occur while you
navigate the app.

This extra pane keeps your original R console clean and uncluttered.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

glenn.vdl

Step 8 indicates there should be a deploy button. For me this isn't the case (even
after adding 'runtime: shiny' to the header. What could be causing this?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

The R Markdown Cheat sheet 222

2.28 The R Markdown Cheat sheet

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

The R Markdown Cheat sheet
ADDED: 01 AUG 2014
BY: GARRETT GROLEMUND

The R Markdown cheat sheet is a quick reference guide for writing reports with R Markdown.

Download Notify me when you make new cheat sheets

The R Markdown Cheat sheet 223

Check out all of our cheat sheets:

The Shiny cheat sheet
The R Markdown cheat sheet

Pete

What did you use to make the sheet ? It's nice.

Garrett

Thanks, Pete. I used keynote.

Arun Soni

Could you add a section on how to customise fonts and other css items when
publishing to a pdf document?

Karthik

Thanks a ton mate! Incredibly useful!

oraclemaster

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Using Action Buttons 224

2.29 Using Action Buttons

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Using Action Buttons
ADDED: 26 MAR 2015

This article describes five patterns to use with Shiny’s action buttons and action links. Action buttons and action links
are different from other Shiny widgets because they are intended to be used exclusively with observeEvent() or
eventReactive() .

How action buttons work
Create an action button with actionButton() and an action link with actionLink() . Each of these functions
takes two arguments:

inputId - the ID of the button or link
label - the label to display in the button or link

actionButton("button", "An action button")

actionLink("button", "An action link")

An action button appears as a button in your app.

An action link appears as a hyperlink, but behaves in the same way as an action button.

Like all widgets, action buttons have a value. The value is an integer that changes each time a user clicks the button.
You can access this value from within your app as input$<inputId> where <inputId> is the ID that you
assigned to your action button.

Action buttons are different from other widgets because the value of an action button is almost never meaningful by
itself. The value is designed to be observed by one of observeEvent() or eventReactive() . These functions
monitor the value, and when it changes they run a block of code.

The patterns below explain this arrangement and illustrate the most popular ways to use an action button or an action
link.

Pattern 1 - Command
Use observeEvent() to trigger a command with an action button.

Example

Using Action Buttons 225
In the code above, session$setCustomMessage() generates a popup message.
tags$head(tags$script(src = "message-handler.js")) supplies the JavaScript that makes this possible.

See this example to learn more about sendCustomMessage() .

Why the pattern works
Action buttons do not automatically generate actions in Shiny. Like other widgets, action buttons maintain a state (a
value). The state changes when a user clicks the button.

observeEvent() observes a reactive value, which is set in the first argument of observeEvent() . Whenever the
value changes, observeEvent() will run its second argument, which should be a block of code surrounded in
braces.

This pattern uses observeEvent() to connect the change in an action button’s value to the code that the action
button should trigger.

Tips
observeEvent() isolates the block of code in its second argument with isolate() .

observeEvent() only notices changes in the value of the action button. It does not matter what the actual
value of the button is. If your code depends on the value of the action button, it may be mis-written.

Pattern 2 - Delay reactions
Use eventReactive() to delay reactions until a user clicks the action button.

Example

Using Action Buttons 226

Why the pattern works
eventReactive() creates a reactive expression that monitors a reactive value, which is set in the first argument of
eventReactive() . The expression will be invalidated whenever the value changes, but it will ignore changes in

other reactive values.

Complete this pattern by using the reactive expression created by eventReactive() in rendered output. Output
that depends on the expression will not update until the expression is invalidated, i.e. until the action button is clicked.

Tips
Like observeEvent() , eventReactive() isolates the block of code in its second argument with
isolate() .

eventReactive() returns NULL until the action button is clicked. As a result, the graph does not appear
until the user asks for it by clicking “Go”.

Pattern 3 - Dueling buttons
To build several action buttons that control the same object, combine observeEvent() calls with
reactiveValues() .

Example

Using Action Buttons 227

Why the pattern works
reactiveValues() creates a reactive values object, a list of reactive values that you can update and call

programmatically. These values are like the values stored in Shiny’s input object with one difference: you can
update the values of a reactive values object, but you cannot normally update the values of the input object (those
values are reserved for the user to update interactively).

To complete the pattern, monitor each button with its own observeEvent() call. Arrange for the calls to update the
object created by reactiveValues() . Reactive values obey reference class semantics, which means that you can
update them from within the scope of an observeEvent() function.

Pattern 4 - Reset buttons
To create a reset button, use the above pattern to assign NULL to a reactive values object.

Example

Using Action Buttons 228
this, arrange for a button to assign NULL to the reactive values object with the help of observeEvent() .

Pattern 5 - Reset on tab change
Observe the value of a tabsetPanel() , navlistPanel() , or navbarPage() with observeEvent() to rest the
value of an object each time your user switches tabs.

Example

Using Action Buttons 229

Why this pattern works
This pattern extends the previous reset pattern. You use observeEvent() to reset an element of a reactive values
object. However, instead of observing the value of an action button, you observe the value of a tab function.

tabsetPanel() , navlistPanel() , and navbarPage() each combine multiple tabs (created with tabPanel())
into a single ui object. These functions maintain a reactive value that contains the title of the current tab. When your
user navigates to a new tab, this value changes. observeEvent() resets the reactive value to NULL when it does.

As with the patterns above, this pattern requires you to store and manipulate a value created with
reactiveValues() .

Using Action Buttons 230

Tips
Although the example uses tabsetPanel() , you can acheive the same effect with navlistPanel() and
navbarPage() .

Recap
Action buttons and action links are meant to be used with one of observeEvent() or eventReactive() . You can
extend the effects of an action button with reactiveValues() .

Use observeEvent() to trigger a block of code with an action button.
Use eventReactive() to update rendered output with an action button.
Use reactiveValues() to maintain an object for multiple action buttons to interact with.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

akshay madiwale

Hi, I have one screen where there are two tabPanel . I am selecting some columns
from these two tabPanel . In the end there is submitButton , if that is pressed then it
will display the columns choosed. It should make the screen blank and give the
columns choosed as output. Can we delete the tabPanel ?

Thomas Rampley

I copied the first action button example verbatim into RStudio and nothing happens
when I click the action button. This is consistent with other attempts to insert one in
my own apps. Anyone else have this issue? Running 3.2 on the latest version of
RStudio, Windows 7.

Garrett

Thomas, You would need to do more than copy and paste the code to get Example
1 to work. You'd also need to write the script message-handler.js and save it in a
folder named www alongside the app. The example is a live app in this page---try
clicking the button. I only meant for you to use the app in this page and see the

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Using sliders 231

2.30 Using sliders

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Using sliders
ADDED: 06 JAN 2014

The Sliders application demonstrates the many capabilities of slider controls, including the ability to run an animation
sequence. To run the example type:

> library(shiny)

> runExample("05_sliders")

Customizing Sliders
Shiny slider controls are extremely capable and customizable. Features supported include:

The ability to input both single values and ranges
Custom formats for value display (e.g for currency)
The ability to animate the slider across a range of values

Slider controls are created by calling the sliderInput function. The ui.R file demonstrates using sliders with a
variety of options:

ui.R

Using sliders 232
library(shiny)

Define UI for slider demo application

shinyUI(pageWithSidebar(

 # Application title

 headerPanel("Sliders"),

 # Sidebar with sliders that demonstrate various available options

 sidebarPanel(

 # Simple integer interval

 sliderInput("integer", "Integer:",

 min=0, max=1000, value=500),

 # Decimal interval with step value

 sliderInput("decimal", "Decimal:",

 min = 0, max = 1, value = 0.5, step= 0.1),

 # Specification of range within an interval

 sliderInput("range", "Range:",

 min = 1, max = 1000, value = c(200,500)),

 # Provide a custom currency format for value display, with basic animation

 sliderInput("format", "Custom Format:",

 min = 0, max = 10000, value = 0, step = 2500,

 format="$#,##0", locale="us", animate=TRUE),

 # Animation with custom interval (in ms) to control speed, plus looping

 sliderInput("animation", "Looping Animation:", 1, 2000, 1, step = 10,

 animate=animationOptions(interval=300, loop=T))

),

 # Show a table summarizing the values entered

 mainPanel(

 tableOutput("values")

)

))

Server Script
The server side of the Slider application is very straightforward: it creates a data frame containing all of the input
values and then renders it as an HTML table:

server.R

library(shiny)

Define server logic for slider examples

shinyServer(function(input, output) {

 # Reactive expression to compose a data frame containing all of the values

 sliderValues <- reactive({

 # Compose data frame

 data.frame(

 Name = c("Integer",

Using sliders 233
 "Decimal",

 "Range",

 "Custom Format",

 "Animation"),

 Value = as.character(c(input$integer,

 input$decimal,

 paste(input$range, collapse=' '),

 input$format,

 input$animation)),

 stringsAsFactors=FALSE)

 })

 # Show the values using an HTML table

 output$values <- renderTable({

 sliderValues()

 })

})

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

JosÃ© BayoÃ¡n Santiago CalderÃ³n

Any way to pass it the min_interval argument from ion.rangeSlider?

mwalkup55

Is it possible to rotate the slider, so that it is arranged vertically?

danbro

I am using slider inputs in my shiny application as weights for a mathematical
model. I want to create an action button to set the sliders to their initial start
positions. Any ideas on how to do this?

Emil Kirkegaard

Use updateSliderInput(). Live example: http://shiny.rstudio.com/galle...

rhleu

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Help users download data from your 234

2.31 Help users download data from your

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Help users download data from your
app
ADDED: 06 JAN 2014

Shiny has the ability to offer file downloads that are created on the fly, which makes it easy to build data exporting
features. See here for an example app with file downloads.

To run the example below, type:

> library(shiny)

> runExample("10_download")

You define a download using the downloadHandler function on the server side, and either downloadButton or
downloadLink in the UI:

Help users download data from your 235

ui.R

shinyUI(pageWithSidebar(

 headerPanel('Download Example'),

 sidebarPanel(

 selectInput("dataset", "Choose a dataset:",

 choices = c("rock", "pressure", "cars")),

 downloadButton('downloadData', 'Download')

),

 mainPanel(

 tableOutput('table')

)

))

server.R

shinyServer(function(input, output) {

 datasetInput <- reactive({

 switch(input$dataset,

 "rock" = rock,

 "pressure" = pressure,

 "cars" = cars)

 })

 output$table <- renderTable({

 datasetInput()

 })

 output$downloadData <- downloadHandler(

 filename = function() { paste(input$dataset, '.csv', sep='') },

 content = function(file) {

 write.csv(datasetInput(), file)

 }

)

})

As you can see, downloadHandler takes a filename argument, which tells the web browser what filename to
default to when saving. This argument can either be a simple string, or it can be a function that returns a string (as is
the case here).

The content argument must be a function that takes a single argument, the file name of a non-existent temp file.
The content function is responsible for writing the contents of the file download into that temp file.

Both the filename and content arguments can use reactive values and expressions (although in the case of
filename , if you are using a reactive value, be sure your argument is an actual function;
filename = paste(input$dataset, '.csv') will not work the way you want it to, since it is evaluated only

once, when the download handler is being defined).

Generally, those are the only two arguments you’ll need. There is an optional contentType argument; if it is NA or
NULL , Shiny will attempt to guess the appropriate value based on the filename. Provide your own content type string

(e.g. "text/plain") if you want to override this behavior.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If

Help users download data from your 236

Shiny is an RStudio project. © 2014 RStudio, Inc.

you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

mdimi

I would like to implement a download link for files that already exists on the file
system. In other words, I want to skip writing a new file to the disk. How do I go
about that?

Artem Klevtsov

The download button does not work in the RStudio viewer. Details:
http://stackoverflow.com/q/259...

dl7631

What if I want to give the user a chance to download more than one file? Do I have
to create a separate button for each file or is it possible to create a button with a
pull-down so that the user can download any of several files?

Gordon Arsenoff

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Using selectize input 237

2.32 Using selectize input

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Using selectize input
ADDED: 04 JUN 2014
BY: YIHUI XIE

The JavaScript library selectize.js provides a much more flexible interface compared to the basic select input. It
allows you to type and search in the options, use placeholders, control the number of options/items to show/select,
and so on. See here for an example app.

To create a selectize input, you can use the function selectizeInput() , and the usage is very similar to
selectInput() :

selectizeInput(inputId, label, choices, selected = NULL, multiple = FALSE,

 options = NULL)

A major difference between the usage of selectizeInput() and selectInput() is the options argument,
which is a list of parameters to initialize the selectize input. Please check out the usage documentation of selectize.js
for all the possible parameters. This example shows a side by side comparision between selectize and select input.

When we type in the input box, selectize will start searching for the options that partially match the string we typed.
The searching can be done on the client side (default behavior), when all the possible options have been written on
the HTML page. It can also be done on the server side, using R to match the string and return results. This is
particularly useful when the number of choices is very large. For example, when there are 100,000 choices for the
selectize input, it will be slow to write all of them at once into the page, but we can start from an empty selectize
input, and only fetch the choices that we may need, which can be much faster. We will introduce both types of the
selectize input below.

Client-side selectize
The selectize input returns the item(s) that you selected, but keep in mind that it may also return an empty string
when all the selected items are deleted using the key Backspace or Delete .

We can make use of the options argument to specify a list of initialization options. Here are some quick examples:

allow creation of new items in the drop-down list

Using selectize input 238
selectizeInput(

 'foo', label = NULL, choices = state.name,

 options = list(create = TRUE)

)

show at most 5 options in the list

selectizeInput(..., options = list(maxOptions = 5))

allow at most 2 items to be selected

selectizeInput(..., options = list(maxItems = 2))

add a placeholder in the text box

selectizeInput(..., options = list(placeholder = 'select a state name'))

Of course, you can combine multiple options, e.g.

selectizeInput(..., options = list(maxItems = 3, placeholder = 'hi there'))

Server-side selectize
The client-side selectize input relies solely on JavaScript to process searching on typing. The server-side selectize
input uses R to process searching, and R will return the filtered data to selectize. To use the server version, you
need to create a selectize instance in the UI, and update it to the server version:

in ui.R

selectizeInput('foo', choices = NULL, ...)

in server.R

shinyServer(function(input, output, session) {

 updateSelectizeInput(session, 'foo', choices = data, server = TRUE)

})

You may use choices = NULL to create an empty selectize instance, so that it will load quickly initially, then use
updateSelectize(server = TRUE) to pass the choices data to R. Here data can be an arbitrary R data

object, such as a (named) character vector, or a data frame. Note the client-side selectize can only accept a
character vector for the choices argument.

What happens when we type in the text box is:

1. the character string in the text box is sent to R, and split into multiple keywords using white spaces;
2. R matches each keyword in the variable(s) specified in the searchField option of selectize initialization

options;
3. depending on the searchConjunction option ('and' or 'or'), the results from each keyword are

combined using AND or OR ;
4. the first maxOptions records of the data is returned (as JSON);

When we use the server version of selectize, we may want to define the render method for selectize, although
normally the default rendering method should just work. A custom rendering method allows us to create richer
content in the drop-down list, instead of just some plain text options. This example shows how we can render images
in the options.

updateSelectizeInput(..., options = list(render = I(

 '{

 options: function(item, escape) {

 // your own code to generate HTML here for each option item

Using selectize input 239
 }

 }'

)))

The options element of the render object is a JavaScript function that has two arguments, item and escape .
Please read the selectize.js documentation to understand what they mean. Basically you can treat item as a record
in the data that we passed in as choices . For example, if choices = state.name , an item might be

{

 label: "California",

 value: "California"

}

You can define the rendering method for options as

function(item, escape) {

 return "<div>" + escape(item.value) + "</div>";

}

This means we create a div for each of the items, and the div contains their values. This is a very simple
example, and we can use more complicated data objects, and write rendering methods accordingly. Here is a quick
example:

updateSelectizeInput(

 ...,

 choices = cbind(name = rownames(mtcars), mtcars),

 options = list(render = I(

 '{

 options: function(item, escape) {

 return "<div>" + escape(item.name) + " (" +

 "MPG: " + item.mpg +

 ", Transmission: " + item.am == 1 ? "automatic" : "manual" + ")"

 }

 }'))

)

Then in the drop-down list, we will see the name of the car in bold text, and the variables mpg and am in the
parentheses (e.g. Mazda RX4 (MPG: 21.0, Transmission: manual)).

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Using selectize input 240

Shiny is an RStudio project. © 2014 RStudio, Inc.

Mahender

Currently i am using selectize.js in one of our project. I am facing one issue with the
duplication of tags. For Ex: if i type test in the input field it is taking the value as
testand if i type the Test in the input field, this is also taking. Here duplication in my
tags list like test and Test.
Please help me how can i avoid duplication with in the tags if i type uppercase or
lower case.

Regis A. James

Another tip (something I learned the hairpullingly-hard way):

When using the server-side management of selectable options, it should be noted
that in order for already selected entries to remain selected options are updated, you
MUST set the value of updateSelectizeInput's "selected" argument to
input$[nameOfSelectizeInputBeingUpdated], or else your selections will be
automatically deselected, driving you CRAZY! Also, to prevent the inevitable infinite
loop that occurs when the browser's Javascript sends the Shiny server an update
faster than the server can send an update to the browser (resulting in a constant

comments powered by Disqus

Render images in a Shiny app 241

2.33 Render images in a Shiny app

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Render images in a Shiny app
ADDED: 06 JAN 2014

Sending Images
When you want to have R generate a plot and send it to the client browser, the renderPlot() function will in most
cases do the job. But when you need finer control over the process, you might need to use the renderImage()
function instead. This is demonstrated in the image output demo application.

About renderPlot()
renderPlot() is useful for any time where R generates an image using its normal graphical device system. In

other words, any plot-generating code that would normally go between png() and dev.off() can be used in
renderPlot() . If the following code works from the console, then it should work in renderPlot() :

png()

Your plotting code here

dev.off()

This would go in shinyServer()

output$myPlot <- renderPlot({

 # Your plotting code here

})

renderPlot() takes care of a number of details automatically: it will resize the image to fit the output window, and
it will even increase the resolution of the output image when displaying on high-resolution (“Retina”) screens.

The limitation to renderPlot() is that it won’t send just any image file to the browser – the image must be
generated by code that uses R’s graphical output device system. Other methods of creating images can’t be sent by
renderPlot() . For example, the following won’t work:

Image files generated by the writePNG() function from the png package.
Image files generated by the rgl.snapshot() function, which creates images from 3D plots made with the
rgl package.
Images generated by an external program.
Pre-rendered images.

The solution in these cases is the renderImage() function.

Using renderImage()
Image files can be sent using renderImage() . The expression that you pass to renderImage() must return a list
containing an element named src , which is the path to the file. Here is a very basic example of a Shiny app with an
output that generates a plot and sends it with renderImage() :

Render images in a Shiny app 242

server.R

shinyServer(function(input, output, session) {

 output$myImage <- renderImage({

 # A temp file to save the output.

 # This file will be removed later by renderImage

 outfile <- tempfile(fileext='.png')

 # Generate the PNG

 png(outfile, width=400, height=300)

 hist(rnorm(input$obs), main="Generated in renderImage()")

 dev.off()

 # Return a list containing the filename

 list(src = outfile,

 contentType = 'image/png',

 width = 400,

 height = 300,

 alt = "This is alternate text")

 }, deleteFile = TRUE)

})

ui.r

shinyUI(pageWithSidebar(

 headerPanel("renderImage example"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 0, max = 1000, value = 500)

),

 mainPanel(

 # Use imageOutput to place the image on the page

 imageOutput("myImage")

)

))

Each time this output object is re-executed, it creates a new PNG file, saves a plot to it, then returns a list containing
the filename along with some other values.

Because the deleteFile argument is TRUE , Shiny will delete the file (specified by the src element) after it sends
the data. This is appropriate for a case like this, where the image is created on-the-fly, but it wouldn’t be appropriate
when, for example, your app sends pre-rendered images.

In this particular case, the image file is created with the png() function. But it just as well could have been created
with writePNG() from the png package, or by any other method. If you have the filename of the image, you can
send it with renderImage() .

Structure of the returned list
The list returned in the example above contains the following:

src : The output file path.
contentType : The MIME type of the file. If this is missing, Shiny will try to autodetect the MIME type, from

the file extension.
width and height : The desired output size, in pixels.
alt : Alternate text for the image.

Render images in a Shiny app 243
Except for src and contentType , all values are passed through directly to the DOM element on the web
page. The effect is similar to having an image tag with the following:

Note that the src="..." is shorthand for a longer URL. For browsers that support the data URI scheme, the src
and contentType from the returned list are put together to create a special URL that embeds the data, so the
result would be similar to something like this:

<img src="

TAAALEwEAmpwYAAAgAElEQVR4nOydd3ic1ZX/P2+ZKmlU"

 width="400" height="300" alt="This is alternate text">

For browsers that don’t support the data URI scheme, Shiny sends a URL that points to the file.

Sending pre-rendered images with renderImage()
If your Shiny app has pre-rendered images saved in a subdirectory, you can send them using renderImage() .
Suppose the images are in the subdirectory images/ , and are named image1.jpeg , image2.jpeg , and so on.
The following code would send the appropriate image, depending on the value of input$n :

server.R

shinyServer(function(input, output, session) {

 # Send a pre-rendered image, and don't delete the image after sending it

 output$preImage <- renderImage({

 # When input$n is 3, filename is ./images/image3.jpeg

 filename <- normalizePath(file.path('./images',

 paste('image', input$n, '.jpeg', sep='')))

 # Return a list containing the filename and alt text

 list(src = filename,

 alt = paste("Image number", input$n))

 }, deleteFile = FALSE)

})

In this example, deleteFile is FALSE because the images aren’t ephemeral; we don’t want Shiny to delete an
image after sending it.

Note that this might be less efficient than putting images in www/images and emitting HTML that points to the
images, because in the latter case the image will be cached by the browser.

Using clientData values
In the first example above, the plot size was fixed at 400 by 300 pixels. For dynamic resizing, it’s possible to use
values from session$clientData to detect the output size.

In the example below, the output object is output$myImage , and the width and height on the client browser are
sent via session$clientData$output_myImage_width and session$clientData$output_myImage_height .
This example also uses session$clientData$pixelratio to multiply the resolution of the image, so that it
appears sharp on high-resolution (Retina) displays:

server.R

shinyServer(function(input, output, session) {

Render images in a Shiny app 244
 # A dynamically-sized plot

 output$myImage <- renderImage({

 # Read myImage's width and height. These are reactive values, so this

 # expression will re-run whenever they change.

 width <- session$clientData$output_myImage_width

 height <- session$clientData$output_myImage_height

 # For high-res displays, this will be greater than 1

 pixelratio <- session$clientData$pixelratio

 # A temp file to save the output.

 outfile <- tempfile(fileext='.png')

 # Generate the image file

 png(outfile, width=width*pixelratio, height=height*pixelratio,

 res=72*pixelratio)

 hist(rnorm(input$obs))

 dev.off()

 # Return a list containing the filename

 list(src = outfile,

 width = width,

 height = height,

 alt = "This is alternate text")

 }, deleteFile = TRUE)

 # This code reimplements many of the features of `renderPlot()`.

 # The effect of this code is very similar to:

 # renderPlot({

 # hist(rnorm(input$obs))

 # })

})

The width and height values passed to png() specify the pixel dimensions of the saved image. These can
differ from the width and height values in the returned list: those values are the pixel dimensions to used display
the image. For high-res displays (where pixelratio is 2), a “virtual” pixel in the browser might correspond to 2 x 2
physical pixels, and a double-resolution image will make use of each of the physical pixels.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Shami Gupta

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Render images in a Shiny app 245

Shiny is an RStudio project. © 2014 RStudio, Inc.

I am trying to show selective image as a result of outcome from a predictive model.
The images are predefined and stored in www folder. While using renderImage I had
to specifically mention the path - it is not taking the image from the default www
folder. This solution is working fine with the local machine - but when I deploy to
shinyapps.io, it not able to find the image (showing alternate text)... what is the way
out ?

Juan Pedro Luengas GarcÃa

How can I tell shiny where do I want an image? I'm trying to place a logo in the right
side of the title panel but I haven't found the instruction. Any help? Thanks!!!

Abhijit Sahay

Thank you for creating this wonderful tool.

I am using renderPlot to show different plots in response to changes in a selectInput,
but for one of the choices, I would like to show a pre-computed image (using

comments powered by Disqus

How to use DataTables in a Shiny 246

2.34 How to use DataTables in a Shiny

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to use DataTables in a Shiny
App
ADDED: 06 JAN 2014
BY: YIHUI XIE

Basic Usage
The DataTables application demonstrates HTML tables using the jQuery library DataTables.

The basic usage is to create an output element in the UI using dataTableOutput(id = 'foo') , and render a
table on the server side using output$foo <- renderDataTable({ data }) . Normally renderDataTable()
takes an expression that returns a rectangular data object with column names, such as a data frame or a matrix.
Below is a minimal example:

How to use DataTables in a Shiny 247
library(shiny)

runApp(list(

 ui = basicPage(

 h2('The mtcars data'),

 dataTableOutput('mytable')

),

 server = function(input, output) {

 output$mytable = renderDataTable({

 mtcars

 })

 }

))

By default, the data is paginated, showing 25 rows per page. The number of rows to display can be changed through
the drop down menu in the top-left. We can sort the columns by clicking on the column headers, and sort multiple
columns by holding the Shift key while clicking (the sorting direction loops through ascending , descending ,
and none if we keep on clicking). We can search globally in the table using the text input box in the top-right, or
search individual columns using the text boxes at the bottom. Currently the searching terms are treated as regular
expressions in R. Since searching can be time-consuming in large datasets, there is a delay of 0.5 seconds
(customizable) before searching is really processed; that means if we type fast enough in the search box, searching
may be processed only once on the server side even if we have typed more than one character.

Customizing DataTables
There are a large number of options in DataTables that are customizable (see its website for details). In this example,
we show a few possibilities. First, we create the UI to display three datasets diamonds , mtcars , and iris , with
each dataset in its own tab:

ui.R

library(shiny)

library(ggplot2) # for the diamonds dataset

shinyUI(pageWithSidebar(

 headerPanel('Examples of DataTables'),

 sidebarPanel(

 checkboxGroupInput('show_vars', 'Columns in diamonds to show:', names(diamonds),

 selected = names(diamonds)),

 helpText('For the diamonds data, we can select variables to show in the table;

 for the mtcars example, we use orderClasses = TRUE so that sorted

 columns are colored since they have special CSS classes attached;

 for the iris data, we customize the length menu so we can display 5

 rows per page.')

),

 mainPanel(

 tabsetPanel(

 tabPanel('diamonds',

 dataTableOutput("mytable1")),

 tabPanel('mtcars',

 dataTableOutput("mytable2")),

 tabPanel('iris',

 dataTableOutput("mytable3"))

)

)

))

How to use DataTables in a Shiny 248
We also added a checkbox group to select the columns to show in the diamonds data.

Server Script
The options argument in renderDataTable() can take a list (literally an R list) of options, and pass them to
DataTables when the table is initialized. For example, for the mtcars data, we pass orderClasses = TRUE to
DataTables so that the sorted columns will have CSS classes attached on them (this is disabled by default); in this
example, we can see the sorted columns are highlighted by darker colors. For the iris data, we pass the options
lengthMenu and pageLength to customize the drop down menu, which has items [10, 25, 50, 100] by

default; now the menu has three items [5, 30, 50] , and 5 is selected as the default value.

server.R

library(shiny)

shinyServer(function(input, output) {

 # a large table, reative to input$show_vars

 output$mytable1 = renderDataTable({

 library(ggplot2)

 diamonds[, input$show_vars, drop = FALSE]

 })

 # sorted columns are colored now because CSS are attached to them

 output$mytable2 = renderDataTable({

 mtcars

 }, options = list(orderClasses = TRUE))

 # customize the length drop-down menu; display 5 rows per page by default

 output$mytable3 = renderDataTable({

 iris

 }, options = list(lengthMenu = c(5, 30, 50), pageLength = 5))

})

For more DataTable options, please refer to its full reference on its website.

Upgrading from DataTables v1.9 to v1.10
Shiny (>= v1.10.2) currently uses DataTables v1.10. If you have used DataTables in Shiny before (specifically, before
Shiny v0.10.2), you may need to change some parameter names for your DataTables, because Shiny (<= v0.10.1)
was using DataTables v1.9, and DataTables v1.10 has changed the parameter names.

A guide for upgrading parameter names from DataTables 1.9 to 1.10 is here: https://datatables.net/upgrade/1.10-
convert. Shiny will try to automatically correct some of the old parameter names, but this automatic correction
certainly will not work for all use cases, especially if you have deeply customized your DataTables using complicated
JavaScript options. You can see this GIT commit for examples of converting DataTables 1.9 names to 1.10 names.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

How to use DataTables in a Shiny 249

Shiny is an RStudio project. © 2014 RStudio, Inc.

pami

Hello,

First thanks for the wonderful work being done here.
My question is : When an object is created through a renderDataTable, say
"MyTable" , can we use it later elsewhere or do we have to re-create the table
through old-fashioned ways?
To be more clear, is there an "input$MyTable" or a MyTable() sort of thing to be
used later on in the programme?

Thanks in advance

Ravi Chetan

Hi, just curious to know if you found any solution to your query above?

Xiushi Le

Would it be possible to allow mouse event on Output objects such as the table

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Reactivity: An overview 250

2.35 Reactivity: An overview

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reactivity: An overview
ADDED: 06 JAN 2014

It’s easy to build interactive applications with Shiny, but to get the most out of it, you’ll need to understand the
reactive programming model used by Shiny.

In Shiny, there are three kinds of objects in reactive programming: reactive sources, reactive conductors, and reactive
endpoints, which are represented with these symbols:

Reactive sources and endpoints
The simplest structure of a reactive program involves just a source and an endpoint:

In a Shiny application, the source typically is user input through a browser interface. For example, when the selects
an item, types input, or clicks on a button, these actions will set values that are reactive sources. A reactive endpoint
is usually something that appears in the user’s browser window, such as a plot or a table of values.

In a simple Shiny application, reactive sources are accessible through the input object, and reactive endpoints are
accessible through the output object. (Actually, there are other possible kinds of sources and endpoints, which we’ll
talk about later, but for now we’ll just talk about input and output .)

This simple structure, with one source and one endpoint, is used by the 01_hello example. The server.R code
for that example looks something like this:

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs))

 })

})

Reactivity: An overview 251

You can see it in action at http://glimmer.rstudio.com/shiny/01_hello/.

The output$distPlot object is a reactive endpoint, and it uses the reactive source input$obs . Whenever
input$obs changes, output$distPlot is notified that it needs to re-execute. In traditional program with an

interactive user interface, this might involve setting up event handlers and writing code to read values and transfer
data. Shiny does all these things for you behind the scenes, so that you can simply write code that looks like regular
R code.

A reactive source can be connected to multiple endpoints, and vice versa. Here is a slightly more complex Shiny
application:

shinyServer(function(input, output) {

 output$plotOut <- renderPlot({

 hist(faithful$eruptions, breaks = as.numeric(input$nBreaks))

 if (input$individualObs)

 rug(faithful$eruptions)

 })

 output$tableOut <- renderTable({

 if (input$individualObs)

 faithful

 else

 NULL

 })

})

In a Shiny application, there’s no need to explictly describe each of these relationships and tell R what to do when
each input component changes; Shiny automatically handles these details for you.

In an app with the structure above, whenever the value of the input$nBreaks changes, the expression that
generates the plot will automatically re-execute. Whenever the value of the input$individualObs changes, the
plot and table functions will automatically re-execute. (In a Shiny application, most endpoint functions have their
results automatically wrapped up and sent to the web browser.)

Reactive conductors
So far we’ve seen reactive sources and reactive endpoints, and most simple examples use just these two
components, wiring up sources directly to endpoints. It’s also possible to put reactive components in between the
sources and endpoints. These components are called reactive conductors.

A conductor can both be a dependent and have dependents. In other words, it can be both a parent and child in a

Reactivity: An overview 252
graph of the reactive structure. Sources can only be parents (they can have dependents), and endpoints can only be
children (they can be dependents) in the reactive graph.

Reactive conductors can be useful for encapsulating slow or computationally expensive operations. For example,
imagine that you have this application that takes a value input$n and prints the _n_th value in the Fibonacci
sequence, as well as the inverse of _n_th value in the sequence plus one (note the code in these examples is
condensed to illustrate reactive concepts, and doesn’t necessarily represent coding best practices):

Calculate nth number in Fibonacci sequence

fib <- function(n) ifelse(n<3, 1, fib(n-1)+fib(n-2))

shinyServer(function(input, output) {

 output$nthValue <- renderText({ fib(as.numeric(input$n)) })

 output$nthValueInv <- renderText({ 1 / fib(as.numeric(input$n)) })

})

The graph structure of this app is:

The fib() algorithm is very inefficient, so we don’t want to run it more times than is absolutely necessary. But in
this app, we’re running it twice! On a reasonably fast modern machine, setting input$n to 30 takes about 15
seconds to calculate the answer, largely because fib() is run twice.

The amount of computation can be reduced by adding a reactive conductor in between the source and endpoints:

fib <- function(n) ifelse(n<3, 1, fib(n-1)+fib(n-2))

shinyServer(function(input, output) {

 currentFib <- reactive({ fib(as.numeric(input$n)) })

 output$nthValue <- renderText({ currentFib() })

 output$nthValueInv <- renderText({ 1 / currentFib() })

})

Here is the new graph structure:

Keep in mind that if your application tries to access reactive values or expressions from outside a reactive context —
that is, outside of a reactive expression or observer — then it will result in an error. You can think of there being a

Reactivity: An overview 253
reactive “world” which can see and change the non-reactive world, but the non-reactive world can’t do the same to
the reactive world. Code like this will not work, because the call to fib() is not in the reactive world (it’s not in a
reactive() or renderXX() call) but it tries to access something that is, the reactive value input$n :

shinyServer(function(input, output) {

 # Will give error

 currentFib <- fib(as.numeric(input$n))

 output$nthValue <- renderText({ currentFib })

})

On the other hand, if currentFib is a function that accesses a reactive value, and that function is called within the
reactive world, then it will work:

shinyServer(function(input, output) {

 # OK, as long as this is called from the reactive world:

 currentFib <- function() {

 fib(as.numeric(input$n))

 }

 output$nthValue <- renderText({ currentFib() })

})

Summary
In this section, we’ve learned about:

Reactive sources can signal objects downstream that they need to re-execute.
Reactive conductors are placed somewhere in between sources and endpoints on the reactive graph.
They are typically used for encapsulating slow operations.
Reactive endpoints can be told to re-execute by the reactive environment, and can request upstream
objects to execute.
Invalidation arrows diagram the flow of invalidation events. It can also be said that the child node is a
dependent of or takes a dependency on the parent node.

Implementations of sources, conductors, and endpoints: values,
expressions, and observers
We’ve discussed reactive sources, conductors, and endpoints. These are general terms for parts that play a particular
role in a reactive program. Presently, Shiny has one class of objects that act as reactive sources, one class of
objects that act as reactive conductors, and one class of objects that act as reactive endpoints, but in principle there
could be other classes that implement these roles.

Reactive values are an implementation of Reactive sources; that is, they are an implementation of that role.
Reactive expressions are an implementation of Reactive conductors. They can access reactive values or
other reactive expressions, and they return a value.
Observers are an implementation of Reactive endpoints. They can access reactive sources and reactive
expressions, and they don’t return a value; they are used for their side effects.

Reactivity: An overview 254
All of the examples use these three implementations, as there are presently no other implementations of the source,
conductor, and endpoint roles.

Reactive values
Reactive values contain values (not surprisingly), which can be read by other reactive objects. The input object is
a ReactiveValues object, which looks something like a list, and it contains many individual reactive values. The
values in input are set by input from the web browser.

Reactive expressions
We’ve seen reactive expressions in action, with the Fibonacci example above. They cache their return values, to
make the app run more efficiently. Note that, abstractly speaking, reactive conductors do not necessarily cache return
values, but in this implementation, reactive expressions, they do.

A reactive expressions can be useful for caching the results of any procedure that happens in response to user input,
including:

accessing a database
reading data from a file
downloading data over the network
performing an expensive computation

Observers
Observers are similar to reactive expressions, but with a few important differences. Like reactive expressions, they
can access reactive values and reactive expressions. However, they do not return any values, and therefore do not
cache their return values. Instead of returning values, they have side effects – typically, this involves sending data to
the web browser.

The output object looks something like a list, and it can contain many individual observers.

If you look at the code for renderText() and friends, you’ll see that they each return a function which returns a
value. They’re typically used like this:

output$number <- renderText({ as.numeric(input$n) + 1 })

This might lead you to think that the observers do return values. However, this isn’t the whole story. The function
returned by renderText() is actually not an observer/endpoint. When it is assigned to output$x , the function
returned by renderText() gets automatically wrapped into another function, which is an observer. The wrapper
function is used because it needs to do special things to send the data to the browser.

Differences between reactive expressions and observers
Reactive expressions and observers are similar in that they store expressions that can be executed, but they have
some fundamental differences.

Observers (and endpoints in general) respond to reactive flush events, but reactive expressions (and
conductors in general) do not. We’ll learn more about flush events in the next section. If you want a reactive
expression to execute, it must have an observer as a descendant on the reactive dependency graph.
Reactive expressions return values, but observers don’t.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If

Reactivity: An overview 255

Shiny is an RStudio project. © 2014 RStudio, Inc.

you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

GruntledEmployee

How does one represent (graphically) a conditional input (e.g., input widgets within a
`conditionalPanel')?

Jaroslaw Piskorski

Hi!

One remark - in the Summary section you talk about "Invalidation arrows". I don't
think these are mentioned in the text before.

regards
Jarek

Bill Jackson

Re: "Weâ€™ll learn more about flush events in the next section." - I got to this
article from a google search, can you add a link to where the next section materials
are?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Stop reactions with isolate() 256

2.36 Stop reactions with isolate()

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Stop reactions with isolate()
ADDED: 06 JAN 2014

Isolation: avoiding dependency
Sometimes it’s useful for an observer/endpoint to access a reactive value or expression, but not to take a
dependency on it. For example, if the observer performs a long calculation or downloads large data set, you might
want it to execute only when a button is clicked.

For this, we’ll use actionButton . We’ll define a ui.R that is a slight modification of the one from 01_hello – the
only difference is that it has an actionButton labeled “Go!”. You can see it in action here.

The actionButton includes some JavaScript code that sends numbers to the server. When the web browser first
connects, it sends a value of 0, and on each click, it sends an incremented value: 1, 2, 3, and so on.

shinyUI(pageWithSidebar(

 headerPanel("Click the button"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 0, max = 1000, value = 500),

 actionButton("goButton", "Go!")

),

 mainPanel(

 plotOutput("distPlot")

)

))

In our server.R , there are two changes to note. First, output$distPlot will take a dependency on
input$goButton , simply by accessing it. When the button is clicked, the value of input$goButton increases, and

so output$distPlot re-executes.

The second change is that the access to input$obs is wrapped with isolate() . This function takes an R
expression, and it tells Shiny that the calling observer or reactive expression should not take a dependency on any
reactive objects inside the expression.

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 # Take a dependency on input$goButton

 input$goButton

 # Use isolate() to avoid dependency on input$obs

 dist <- isolate(rnorm(input$obs))

 hist(dist)

 })

})

Stop reactions with isolate() 257

In the actionButton example, you might want to prevent it from returning a plot the first time, before the button has
been clicked. Since the starting value of an actionButton is zero, this can be accomplished with the following:

 output$distPlot <- renderPlot({

 if (input$goButton == 0)

 return()

 # plot-making code here

 })

Reactive values are not the only things that can be isolated; reactive expressions can also be put inside an
isolate() . Building off the Fibonacci example from above, this would calculate the _n_th value only when the

button is clicked:

output$nthValue <- renderText({

 if (input$goButton == 0)

 return()

 isolate({ fib(as.numeric(input$n)) })

})

Stop reactions with isolate() 258
It’s also possible to put multiple lines of code in isolate() . For example here are some blocks of code that have
equivalent effect:

Separate calls to isolate -------------------------------

x <- isolate({ input$xSlider }) + 100

y <- isolate({ input$ySlider }) * 2

z <- x/y

Single call to isolate ----------------------------------

isolate({

 x <- input$xSlider + 100

 y <- input$ySlider * 2

 z <- x/y

})

Single call to isolate, use return value ----------------

z <- isolate({

 x <- input$xSlider + 100

 y <- input$ySlider * 2

 x/y

})

In all of these cases, the calling function won’t take a reactive dependency on either of the input variables.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Yuji Zhang

Hi Garrett, great post! Thanks for sharing. I tested a little bit and understand that,
without isolate(), any change in the reactive variable will immediately automatically
trigger render to re-execute. With isolate(), the render only go check if the reactive
variable is out of date when we tell it to re-execute.

This maybe quite subject, but I though if you add in the graph something like (plot
500) / (plot 1000), it would be a lot easier to read...

Martin Johnson

Hello, I've been trying to use an action button to trigger the plotting of a line on an
otherwise blank plot and has taken me ages to realise that the logic is slightly wrong
in the example above (for the 2 examples under the schematic).

To get it to work for me I needed to use

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Stop reactions with isolate() 259

Shiny is an RStudio project. © 2014 RStudio, Inc.

if(input$goButton[1]==0)

not
comments powered by Disqus

Execution scheduling 260

2.37 Execution scheduling

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Execution scheduling
ADDED: 06 JAN 2014

At the core of Shiny is its reactive engine: this is how Shiny knows when to re-execute each component of an
application. We’ll trace into some examples to get a better understanding of how it works.

A simple example
At an abstract level, we can describe the 01_hello example as containing one source and one endpoint. When we
talk about it more concretely, we can describe it as having one reactive value, input$obs , and one reactive
observer, output$distPlot .

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 hist(rnorm(input$obs))

 })

})

As shown in the diagram below, a reactive value has a value. A reactive observer, on the other hand, doesn’t have a
value. Instead, it contains an R expression which, when executed, has some side effect (in most cases, this involves
sending data to the web browser). But the observer doesn’t return a value. Reactive observers have another
property: they have a flag that indicates whether they have been invalidated. We’ll see what that means shortly.

After you load this application in a web page, it be in the state shown above, with input$obs having the value 500
(this is set in the ui.r file, which isn’t shown here). The arrow represents the direction that invalidations will flow. If
you change the value to 1000, it triggers a series of events that result in a new image being sent to your browser.

When the value of input$obs changes, two things happen: * All of its descendants in the graph are invalidated.
Sometimes for brevity we’ll say that an observer is dirty, meaning that it is invalidated, or clean, meaning that it is not
invalidated. * The arrows that have been followed are removed; they are no longer considered descendants, and
changing the reactive value again won’t have any effect on them. Notice that the arrows are dynamic, not static.

In this case, the only descendant is output$distPlot :

Execution scheduling 261

Once all the descendants are invalidated, a flush occurs. When this happens, all invalidated observers re-execute.

Remember that the code we assigned to output$distPlot makes use of input$obs :

output$distPlot <- renderPlot({

 hist(rnorm(input$obs))

})

As output$distPlot re-executes, it accesses the reactive value input$obs . When it does this, it becomes a
dependent of that value, represented by the arrow . When input$obs changes, it invalidates all of its children; in
this case, that’s just output$distPlot .

As it finishes executing, output$distPlot creates a PNG image file, which is sent to the browser, and finally it is
marked as clean (not invalidated).

Now the cycle is complete, and the application is ready to accept input again.

When someone first starts a session with a Shiny application, all of the endpoints start out invalidated, triggering this
series of events.

An app with reactive conductors
Here’s the code for our Fibonacci program:

Execution scheduling 262
fib <- function(n) ifelse(n<3, 1, fib(n-1)+fib(n-2))

shinyServer(function(input, output) {

 currentFib <- reactive({ fib(as.numeric(input$n)) })

 output$nthValue <- renderText({ currentFib() })

 output$nthValueInv <- renderText({ 1 / currentFib() })

})

Here’s the structure. It’s shown in its state after the initial run, with the values and invalidation flags (the starting value
for input$n is set in ui.r , which isn’t displayed).

Suppose the user sets input$n to 30. This is a new value, so it immediately invalidates its children, currentFib ,
which in turn invalidates its children, output$nthValue and output$nthValueInv . As the invalidations are made,
the invalidation arrows are removed:

After the invalidations finish, the reactive environment is flushed, so the endpoints re-execute. If a flush occurs when
multiple endpoints are invalidated, there isn’t a guaranteed order that the endpoints will execute, so nthValue may
run before nthValueInv , or vice versa. The execution order of endpoints will not affect the results, as long as they
don’t modify and read non-reactive variables (which aren’t part of the reactive graph).

Suppose in this case that nthValue() executes first. The next several steps are straightforward:

Execution scheduling 263

As output$nthValueInv() executes, it calls currentFib() . If currentFib() were an ordinary R expression, it
would simply re-execute, taking another several seconds. But it’s not an ordinary expression; it’s a reactive
expression, and it now happens to be marked clean. Because it is clean, Shiny knows that all of currentFib ’s
reactive parents have not changed values since the previous run currentFib() . This means that running the
function again would simply return the same value as the previous run. (Shiny assumes that the non-reactive objects
used by currentFib() also have not changed. If, for example, it called Sys.time() , then a second run of
currentFib() could return a different value. If you wanted the changing values of Sys.time() to be able to

invalidate currentFib() , it would have to be wrapped up in an object that acted as a reactive source. If you were
to do this, that object would also be added as a node on the reactive graph.)

Acting on this assumption. that clean reactive expressions will return the same value as they did the previous run,
Shiny caches the return value when reactive expressions are executed. On subsequent calls to the reactive
expression, it simply returns the cached value, without re-executing the expression, as long as it remains clean.

In our example, when output$nthValueInv() calls currentFib() , Shiny just hands it the cached value,
832040. This happens almost instantaneously, instead of taking several more seconds to re-execute
currentFib() :

Finally, output$nthValueInv() takes that value, finds the inverse, and then as a side effect, sends the value to
the browser.

Execution scheduling 264

Summary
In this section we’ve learned about:

Invalidation flags: reactive expressions and observers are invalidated (marked dirty) when their parents
change or are invalidated, and they are marked as clean after they re-execute.
Arrow creation and removal: After a parent object invalidates its children, the arrows will be removed.
New arrows will be created when a reactive object accesses another reactive object.
Flush events trigger the execution of endpoints. Flush events occur whenever the browser sends data to the
server.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Yuji Zhang

nice article! Thank you Garrett!
A question: how do we access the flag of a reactive object? For example in server I
have something like:

get input data from file upload

getData = reactive({
inFile = input$file1
if (is.null(inFile)) return(NULL)
read.csv(inFile$datapath)
})

display input data
output$table = renderTable({ getData() })
do calculation based on input data

result = reactive({ BigCalculation(getData()) })
When some input data gets in, Shiny will run renderTable and the Calculation at the

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Execution scheduling 265

Shiny is an RStudio project. © 2014 RStudio, Inc.

same time. As a result renderTable will be slow. I want renderTable to run first, and
comments powered by Disqus

How to understand reactivity in R 266

2.38 How to understand reactivity in R

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to understand reactivity in R
ADDED: 21 MAY 2015
BY: GARRETT GROLEMUND

Reactivity is what makes your Shiny apps responsive. It lets the app instantly update itself whenever the user makes
a change. You don’t need to know how reactivity occurs to use it (just follow the steps laid out in Lesson 4), but
understanding reactivity will make you a better Shiny programmer. You’ll be able to

1. create more efficient and sophisticated Shiny apps, and
2. avoid the errors that come from misusing reactive values in R (which is easy to do!).

Let’s take a look at reactivity by building a very simple Shiny app. You can use the app.R file below to make this
app.

app.R

library(shiny)

ui <- fluidPage(

 headerPanel("basic app"),

 sidebarPanel(

 sliderInput("a",

 label = "Select an input to display",

 min = 0, max = 100, value = 50)

),

 mainPanel(h1(textOutput("text")))

How to understand reactivity in R 267
)

server <- function(input, output) {

 output$text <- renderText({

 print(input$a)

 })

}

shinyApp(ui = ui, server = server)

The app sets up a very basic reactive system: it has a single input value that can change (input$a); it has a single
output value that can respond (print(input$a)); and it has a server that can oversee the process. Every Shiny
app will have these same components, although most apps will have multiple input values and multiple output
expressions.

When you move the slider, you can see reactivity in action: the number to the left of the slider automatically updates
to show the current slider value. This may seem simple, but it is very special. Let’s look at why.

Reactivity is unexpected
Reactivity creates the illusion that changes in input values automatically flow to the plots, text, and tables that use the
input—and cause them to update. You can think of this flow as a current of electricity, or a stream of water that
pushes information from input to output. You saw this illusion in action when you moved the slider bar. Changes in
the slider bar seemed to automatically propagate to the number beside the bar.

How to understand reactivity in R 268

This illusion is amazing, because information in R only travels through pull mechanisms, not push mechanisms. In
other words, if you have a simple R expression like {a + 1} , R will retrieve information from a to evaluate the
expression, but R won’t modify the result of {a + 1} if you later change the value of a .

a <- 1

a + 1

2

a <- 2

(nothing happens)

Pictorially, the system looks like this. Notice that the arrow in the diagram goes from right to left. This is to imply that
the expression on the right is doing the work. It is telling R to look up the value of a . a is just sitting passively in
memory.

For our app, this suggests that R should look up the value of input$a once, print the value, and then not notice
when input$a changes.

How to understand reactivity in R 269

Incredibly, this isn’t what happens, as you saw above. Reactivity appears to reverse the flow of information in R. How
does it do that?

What is reactivity?
Think of reactivity as a magic trick: reactivity creates the illusion that one thing is happening, when in fact something
else is going on. The illusion is that information is being pushed from inputs to outputs (or at least that inputs and
outputs are linked in an inseperable way). The reality is that Shiny is re-running your R expressions in a carefully
scheduled way.

I’ve prepared four maxims to help you understand this process. We’ll look at each of them (and the process itself),
with a simple thought experiment: how could we recreate our basic app without breaking the rules of R?

Here are our maxims

1. R expressions update themselves, if you ask
2. Nothing needs to happen instantly
3. The app must do as little as possible
4. Think carrier pigeons, not electricity

1. R expressions update themselves, if you ask
Reactivity ensures that the output of print(input$a) is always up to date, but what does it mean for output to be
out of date? Let’s consider output – and the expression that made it – to be out of date if one of the objects in the
expression has been given a new value since the expression was called. For example, at the end of this code, the
expression print(a) is out of date. The last time print(a) ran, a was 1.

a <- 1

print(a)

1

a <- 2

Updating an out of date expression is not hard: you just need to re-run the expression. Everything in R updates itself
each time it is run. This isn’t reactivity; it’s just standard R behavior.

a <- 1

print(a)

1

How to understand reactivity in R 270
a <- 2

print(a)

2

Think of it like this: every time you run an expression, the expression updates itself. It looks up the current value of
each object that it uses and computes new ouput. However, you must tell R to run the expresssion for this to happen
because R uses a style of execution known as lazy evaluation. In other words, R will not execute an expression until
you force it to.

You could use this behavior – and nothing else – to create a reactive web app. All you need to do is manually re-run
the expressions in the app whenever the user makes a change.

2. Nothing needs to happen instantly
How quickly do you need to re-run an expression after a user makes a change? If the update appears instantaneous,
the user will feel like they caused it. In other words, the update will create the illusion of reactivity. However, humans
aren’t very good at noticing small windows of time. You could actually let a few microseconds pass between change
and update and your user wouldn’t notice. This suggests a new feature for our plan.

Instead of watching the user (which would require logistics we haven’t thought through), you could just have your
server re-run each expression in the app every few microseconds. That way whenever the user makes a change, an
update will follow within a few microseconds. If you re-run every expression in the app, you don’t even need to worry
about which part of the app the user is changing.

What if the user doesn’t make a change? Then the expressions will re-compute their previous results and the app will
appear to be in the same state it was before.

This plan creates the illusion of reactivity without violating the rules of R. Information still travels from input to output
in a pull fashion. For example, print(input$a) only learns the new value of input$a because the server re-
executes print(input$a) . Since print(input$a) is re-executed so often, it seems to learn of the change very
fast, as if it were connected to input$a or as if input$a pushed its new value to print(input$a) .

Shiny uses this approach to create reactivity. That is why your R session becomes busy when you launch a Shiny
app. Your server is using the R session to monitor the app and re-run expressions. However, Shiny takes this
approach one step further. It creates an alert system that lets Shiny know exactly which expressions need to be re-
run.

3. The app must do as little as possible
It takes a very powerful computer to re-run every expression in an app every few microseconds without bogging
down. If you used our approach in reality, your app would quickly become slow and unresponsive, which would
destroy the illusion of reactivity.

If you want your updates to run so fast that they appear instantaneous, you’ll need to save your computer power for
just the expressions that are out of date. However, your app may use hundreds of expressions. How will you know
which ones are out of date?

Shiny solves this problem by creating a system of alerts that lets the server know when an expression becomes out
of date. The server still checks in on your app every few microseconds, but instead of re-running each expression
each time, it only runs the expressions that the alert system has flagged as out of date. If no alerts have appeared,
the server does not have to run anything at all. It can rest until the next check. If alerts have appeared, the server
runs all of the expressions that are out of date at that moment, an event known as a flush.

This alert system is the key to reactivity. It allows your server to update your app as fast as possible, so fast that
changes seem to travel instantly from inputs to outputs. Let’s not try to brainstorm our own alert system. Instead let’s
examine the system that Shiny uses.

How to understand reactivity in R 271

4. Think carrier pigeons, not electricity
The details of the alert system are fairly complicated. If they sound confusing in this next paragraph, don’t worry.
We’re going to break them down step by step with an analogy that will make them more transparent.

Shiny implements reactivity with two special object classes, reactivevalues and observers . In our example
input$a is a reactive values object and print(input$a) is an observer. These two classes behave like regular R

values and R expressions with a few exceptions. Whenever an observer uses a reactive value, it registers a reactive
context with the value. This context contains an expression to be run if the value ever changes. The expression is
called a callback and it is always a command to re-run the observer. A single reactive value can hold many contexts
if multiple observers use that value.

When the value of a reactive values object changes, the object will send any callbacks that it has collected to the
server. Lets look at how this happens.

A reactive values object is a type of list. In R, you change the value of a list by calling a settor function, either $<- or
[[<- . These are the functions that R calls in the background whenever you combine the assignment arrow, <- ,

with the subsetting symbols $ or [[]] . For example, R will call $<- when you run the second line of code
below.

myList <- list(a = 1, b = 2)

myList$b <- 3

Since reactive values objects are a special class of object, they have their own settor methods. The settor methods
of reactive values objects ($<- and [[<-) include instructions to send any callbacks that the reactive value has
received to the server. If the reactive values object is set to a new value, it executes these instructions and the server
receives the callbacks.

How to understand reactivity in R 272

The server saves the callbacks in a queue which acts as a list of observers that have become out of date. On the
next flush, the server runs each callback in the queue which re-runs each out of date observer, which restarts the
cycle.

If this seems complicated, think of reactivity as a carrier pigeon system between three objects. If you don’t know what
carrier pigeons are, check out this link – it’s pretty fascinating. Basically, you can take a carrier pigeon anywhere and
when you release it, it will always fly back to the same location. Soldiers on the move used carrier pigeons to deliver
messages to their headquarters. We’re going to use them to deliver messages to the server.

A context is like a virtual carrier pigeon that an observer leaves with a reactive value. The context contains a
message (its callback) that it will deliver to the server when released. The observer writes this message for the
context, and it is a simple instruction to re-run the observer. An observer leaves behind a context each time it looks
up a reactive values object. In fact, a reactive values object will return an error if an expression tries to access its
value without leaving behind a context.

How to understand reactivity in R 273

When a reactive values object receives a context, it simply holds onto it. It will collect multiple contexts if other
observers look up the object as well. If the reactive value object ever changes, it will release all of the contexts it has
collected (a process known as invalidating the contexts). This behavior is like releasing carrier pigeons, the pigeons
are free to fly back to the server and deliver the callbacks that they have been holding onto. When a context is
invalidated, it places its callback in the server’s queue to be run on the next flush. Then the context ceases to be
relevant, just like a pigeon that has delivered its message.

The callback of a context is an R command that when run, will re-execute the observer that created the context. This
will cause the observer to update itself with the new value of the reactive values object. When the server checks in on
the app, all it needs to do is run any callbacks that have arrived. This will automatically update the app.

Running the callbacks also sets up a new reactive cycle. When an observer is re-run, it looks up the reactive value
objects that it uses, which causes it to register new contexts with each value. In short, the observer leaves a new
homing pigeon behind and the cycle is ready to repeat itself.

How to understand reactivity in R 274

This system enables reactivity because it lets your server work fast enough to create the illusion of instant responses.
Instead of re-running every expression in your app every few seconds, the server only needs to check its queue for
new callbacks. The result is the quick, responsive updates you see in your Shiny app.

Now you know how reactivity works in Shiny. Notice that this system doesn’t ask R to behave in a new way. Your
observers are still looking up information from the reactive values. The values are not being pushed to the observer
like a flow of electricity, or a stream—they only appear to be doing that. The key to this system is speed. Shiny
enacts the pull mechanisms of R so fast that they look like push mechanisms.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Jackie C

There is some valuable information in this article, but IMHO they are really not
making it easier to understand with the carrier pigeon stuff. There has to be a short
and simpler explanation.

Something like...
- Reactive Values(inputs) contain 2 pieces of data,
1) the actual value and
2) a list of all reactive observers (outputs) which depend on that value.
- The shiny server looks for updates to observers in a iterative cycle, once per cycle
it checks its update queue to see if any of the observers need to be updated.

- The queue is a list of observers that will need to be updated that iteration.
- The list is empty if nothing has changed since the last iteration.
- Each time an reactive value is changed by the user:

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

How to understand reactivity in R 275

Shiny is an RStudio project. © 2014 RStudio, Inc.

1) the value is updated and
2) each observer in its list of dependent observes is added to the servers update
queue.
They will be updated on the next iteration.

comments powered by Disqus

Write error messages for your UI with 276

2.39 Write error messages for your UI with

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Write error messages for your UI with
validate
ADDED: 20 MAY 2014
BY: GARRETT GROLEMUND WITH JOE CHENG

Note: This article requires Shiny version 0.9.1.9008 (not yet released). You can install the development version of
Shiny (>= 0.9.1.9008) with: devtools::install:_github("shiny", "rstudio") .

Have you ever seen a Shiny app go wrong? Shiny delivers a bold red error message to your user. This message is
often unhelpful because it mentions things that you may understand as a developer, but that your user may not.

This article will show you how to craft “validation errors,” errors designed to lead your user through the UI of your
Shiny app. Validation errors are user-friendly and, unlike the bold red error message, pleasing to the eye. Best of all,
validation errors respond directly to your user’s input.

We’ll start by creating an app that quickly returns an error message. The server.R and ui.R scripts below make
a simple app that displays a table and draws a plot. To make this app, copy these scripts into your working directory
and run:

library(shiny)

runApp()

Note: these files need to be the only ones named server.R and ui.R in your working directory.

server.R

shinyServer(function(input, output) {

 data <- reactive({ get(input$data, 'package:datasets') })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

ui.R

shinyUI(fluidPage(

Write error messages for your UI with 277
 titlePanel("Validation App"),

 sidebarLayout(

 sidebarPanel(

 selectInput("data", label = "Data set",

 choices = c("", "mtcars", "faithful", "iris"))

),

 # Show a plot of the generated distribution

 mainPanel(

 tableOutput("table"),

 plotOutput("plot")

)

)

))

When you first launch the app, it should look like this picture:

The app displays a table and then draws a plot beneath it, but both the table and plot depend on the value of the
select box. Until your user selects a data set, the app will display two red error messages.

Our goal is to replace these error messages. We want messages that:

Help the user understand what went wrong
Do not cause panic (i.e., are not bold red)

You can write these more helpful messages with Shiny’s new validate function.

Note: validate requires Shiny version 0.9.1.9008 or greater. You can install the most recent
development version of Shiny with: devtools::install_github("shiny", "rstudio") .

validate
validate tests a condition and returns a validation error if the test fails. Validation errors are designed to interact

with the Shiny framework in a pleasing way. Shiny will:

recognize a validation error
display a validation error in a neutral grey color
pass a validation error to any reactive expression or observer object that depends on it

validate takes one or more specially formatted arguments. You can provide these arguments need , a new
function designed to work with validate . You can also provide these arguments with your own functions if you like.

Write error messages for your UI with 278

need
need provides a simple way to tell Shiny what to test and what to return if the test goes wrong. need uses two

arguments

An R expression that returns TRUE or FALSE .
A character string. Shiny will display this string as a validation error message if the R expression returns
FALSE . If the R expression returns TRUE , Shiny treats the validation test as if it passed and continues with

the app.

Let’s put these ideas all together.

You can create a complete validation test by calling validate and passing it the output of need :

validate(

 need(input$data != "", "Please select a data set")

)

The validation test above checks whether an object named input$data is an empty string. If the object is an empty
string, the test returns the message: “Please select a data set.”

To use this validation test in your app, place it at the start of any reactive or render* expression that calls
input$data . In our app, our validation test appears in this server.R script after reactive({ :

server.R

shinyServer(function(input, output) {

 data <- reactive({

 validate(

 need(input$data != "", "Please select a data set")

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

Modify your script and relaunch the app. Now Shiny runs the validation test before it uses input$data and
encounters an error, and the app does not show the bold red error message. Instead it displays your user-friendly
validation error message.

Write error messages for your UI with 279

Best practices
Notice that neither output$plot nor output$table call the validation test. However, both the plot and table
objects display the validation error message.

When these objects call data() , data() retrieves the value of the reactive expression data . In our example, the
value of the reactive expression data is the validation error message because the validation test fails.

You can use this arrangement to write efficient apps: one that fail fast and in a useful manner. To do this:

1. Separate input objects that might cause trouble into their own reactive expressions.
2. Have each reactive expression run a validation test on the input .
3. Arrange for other objects to access the input by calling the reactive expression.

This arrangement will let you use one validation test per input to catch any errors generated by your apps UI.

Labels
You do not have to provide need with a full message to display. If you prefer, you can skip the message and pass
need a label argument. If you do, need will construct a message by adding “must be provided” to the end of

your label.

You can see this behavior in this app:

It uses this server.R file.

server.R

shinyServer(function(input, output) {

 data <- reactive({

 validate(

Write error messages for your UI with 280
 need(input$data != "", label = "data set")

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

Errors vs. Validation errors
Validation tests do not remove the possibility of other types of errors. Shiny will still display system error messages in
the familiar bold red font (designed to catch the developer’s eye) when they happen.

For example, Shiny will display a red error message if the R expression in need returns an error. In the code below,
the need expression calls the object foo , but foo does not exist.

server.R

shinyServer(function(input, output) {

 data <- reactive({

 validate(

 need(input$data != foo, "Please select a data set")

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

Since Shiny cannot find foo , it displays a system error message.

Write error messages for your UI with 281

You can prevent validation tests from generating system errors by wrapping the first argument of need in try :

 validate(

 need(try(input$data != foo), "Please select a data set")

)

try returns a try error if input$data != foo fails. need treats try errors the same way it treats FALSE s. If the
first argument of need returns a try error, need returns a validation error that displays its message.

Several other types of output also trigger need to return a validation error. You can write the first argument of need
to return any output from the list below (if the validation fails). need returns a validation error for each of these
outputs.

FALSE

NULL

””
An empty atomic vector
An atomic vector that contains only missing values
A logical vector that contains all FALSE or missing values
An object of class try-error
A value that represents an unclicked actionButton

Write your own tests
Shiny power users can write their own need functions. This can be useful if you test for the same conditions across
many apps. You can use any function in place of need as long as your function returns one of three objects:

1. NULL

2. A character string
3. FALSE

validate will run the function and then proceed in one of three ways.

If your function returns NULL , validate will consider the check to have passed, and proceed as normal.
If your function returns a character string, validate will consider the check to have failed and will return the
string as a validation error to be displayed.
If your function returns FALSE , validate will fail silently. Shiny will not continue with the app (which would
result in a red error message), but it will not display a grey validation error message either.

Here is an example of a need type function:

not_mtcars <- function(input) {

 if (input == "mtcars") {

 "Choose another data set. No mtcars please!"

Write error messages for your UI with 282
 } else if (input == "") {

 FALSE

 } else {

 NULL

 }

}

Here is the function in use:

server.R

not_mtcars <- function(input) {

 if (input == "mtcars") {

 "Choose another data set. No mtcars please!"

 } else if (input == "") {

 FALSE

 } else {

 NULL

 }

}

shinyServer(function(input, output) {

 data <- reactive({

 validate(

 not_mtcars(input$data)

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

When this app first launches, it looks like this app:

When you select mtcars in the select box, the app looks like this:

Write error messages for your UI with 283

Multiple conditions
You can check multiple conditions in a single validate call. To do this, pass validate multiple need statements
(or similar functions, as described above) separated by commas. Shiny will display the message of every condition
that fails.

This code contains three conditions that fail and one that passes:

server.R

shinyServer(function(input, output) {

 data <- reactive({

 validate(

 need(input$data != "", "Please select a data set"),

 need(input$data %in% c("mtcars", "faithful", "iris"),

 "Unrecognized data set"),

 need(input$data, "Input is an empty string"),

 need(!is.null(input$data),

 "Input is not an empty string, it is NULL")

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

When you run it, the code creates this app:

%then%
If you prefer to display one validation error message at a time, you may chain conditions together with the %then%
operator.

Note: %then% does not exist in current preview implementations of Shiny. You can use the
first line of code below to create a %then% operator.

Write error messages for your UI with 284
server.R

`%then%` <- shiny:::`%OR%`

shinyServer(function(input, output) {

 data <- reactive({

 validate(

 need(input$data != "", "Please select a data set") %then%

 need(input$data %in% c("mtcars", "faithful", "iris"),

 "Unrecognized data set") %then%

 need(input$data, "Input is an empty string") %then%

 need(!is.null(input$data),

 "Input is not an empty string, it is NULL")

)

 get(input$data, 'package:datasets')

 })

 output$plot <- renderPlot({

 hist(data()[, 1], col = 'forestgreen', border = 'white')

 })

 output$table <- renderTable({

 head(data())

 })

})

Shiny will display only the message of the first condition that fails. Here is an example:

Be careful not to use %then% in a way that might frustrate your user. A user may not enjoy fixing one validation
error to find another (and then another) take its place.

Style validation errors
Once you create a validation test, you can style its output with CSS (just as you can style any element in the Shiny
user-interface).

Validation errors are HTML div objects with the class shiny-output-error-validation . Provide a CSS style for
this class to change the appearance of every validation error message. For example, this ui.R script adds CSS that
colors the messages green.

Note: if your server.R script matches the last script (above), you need to select mtcars in your select box before

Write error messages for your UI with 285
you see the validation error message.

ui.R

shinyUI(fluidPage(

 tags$head(

 tags$style(HTML("

 .shiny-output-error-validation {

 color: green;

 }

 "))

),

 titlePanel("Validation App"),

 sidebarLayout(

 sidebarPanel(

 selectInput("data", label = "Data set",

 choices = c("", "mtcars", "faithful", "iris"))

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("plot"),

 tableOutput("table")

)

)

))

If you would like to style an individual validate message, give the message its own class with the errorClass of
validate . Shiny will assign the message a class that begins with “shiny-output-error-“ and ends with the character

string that you pass errorClass .

For example, this validate call returns a message of class “shiny-output-error-myclass” that you can style with
CSS.

 validate(

 need(input$data != "", "Please select a data set"),

 errorClass = "myClass"

)

Write error messages for your UI with 286

Shiny is an RStudio project. © 2014 RStudio, Inc.

Recap
You can make your Shiny apps more attractive and user friendly with validate . validate tests inputs and
delivers messages to your user, which creates an agreeable alternative to Shiny’s default error messages.

Pair validate with one or more need calls to validate an input. You need to validate an input only once (in a
reactive or render* expression). Shiny will pass the valuation results to any observer or expression that calls

upon the input.

You can personalize validation error messages by writing your own need functions or by styling validation output
with CSS.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

aquacalc

Just what I was looking for.

Thanks for adding these features and explaining their use in this article with practical
examples.

Garrett

Aquacalc,

I'm glad you found this useful. We're very happy to get the word out about
validate. It's such a useful feature.

Amos

Can you explain how this interacts with ggvis? It seems that if ggvis is passed a
reactive closure as its data (i.e., myData instead of myData()), that a validation failure
in the closure or in any reactive dependency of the closure will not get propagated,
and shiny either fails with an error or the plot just freezes. I tried asking about this

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Scoping rules for Shiny apps 287

2.40 Scoping rules for Shiny apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Scoping rules for Shiny apps
ADDED: 06 JAN 2014

Scoping
Where you define objects will determine where the objects are visible. There are three different levels of visibility that
you’ll want to be aware of when writing Shiny apps. Some objects are visible within the server.R code of each user
session; other objects are visible in the server.R code across all sessions (multiple users could use a shared
variable); and yet others are visible in the server.R and the ui.R code across all user sessions.

Per-session objects
In server.R , when you call shinyServer() , you pass it a function func which takes two arguments, input
and output :

shinyServer(func = function(input, output) {

 # Server code here

 # ...

})

The function that you pass to shinyServer() is called once for each session. In other words, func is called each
time a web browser is pointed to the Shiny application.

Everything within this function is instantiated separately for each session. This includes the input and output
objects that are passed to it: each session has its own input and output objects, visible within this function.

Other objects inside the function, such as variables and functions, are also instantiated for each session. In this
example, each session will have its own variable named startTime , which records the start time for the session:

shinyServer(function(input, output) {

 startTime <- Sys.time()

 # ...

})

Objects visible across all sessions
You might want some objects to be visible across all sessions. For example, if you have large data structures, or if
you have utility functions that are not reactive (ones that don’t involve the input or output objects), then you can
create these objects once and share them across all user sessions, by placing them in server.R , but outside of the
call to shinyServer() .

For example:

Scoping rules for Shiny apps 288
A read-only data set that will load once, when Shiny starts, and will be

available to each user session

bigDataSet <- read.csv('bigdata.csv')

A non-reactive function that will be available to each user session

utilityFunction <- function(x) {

 # Function code here

 # ...

}

shinyServer(function(input, output) {

 # Server code here

 # ...

})

You could put bigDataSet and utilityFunction inside of the function passed to shinyServer() , but doing so
will be less efficient, because they will be created each time a user connects.

If the objects change, then the changed objects will be visible in every user session. But note that you would need to
use the <<- assignment operator to change bigDataSet , because the <- operator only assigns values in the
local environment.

varA <- 1

varB <- 1

listA <- list(X=1, Y=2)

listB <- list(X=1, Y=2)

shinyServer(function(input, output) {

 # Create a local variable varA, which will be a copy of the shared variable

 # varA plus 1. This local copy of varA is not be visible in other sessions.

 varA <- varA + 1

 # Modify the shared variable varB. It will be visible in other sessions.

 varB <<- varB + 1

 # Makes a local copy of listA

 listA$X <- 5

 # Modify the shared copy of listB

 listB$X <<- 5

 # ...

})

Things work this way because server.R is sourced when you start your Shiny app. Everything in the script is run
immediately, including the call to shinyServer() —but the function which is passed to shinyServer() is called
only when a web browser connects and a new session is started.

Global objects
Objects defined in global.R are similar to those defined in server.R outside shinyServer() , with one
important difference: they are also visible to the code in ui.R . This is because they are loaded into the global
environment of the R session; all R code in a Shiny app is run in the global environment or a child of it.

In practice, there aren’t many times where it’s necessary to share variables between server.R and ui.R . The
code in ui.R is run once, when the Shiny app is started and it generates an HTML file which is cached and sent to

Scoping rules for Shiny apps 289
each web browser that connects. This may be useful for setting some shared configuration options.

Scope for included R files
If you want to split the server or ui code into multiple files, you can use source(local=TRUE) to load each file. You
can think of this as putting the code in-line, so the code from the sourced files will receive the same scope as if you
copied and pasted the text right there.

This example server.R file shows how sourced files will be scoped:

Objects in this file are shared across all sessions

source('all_sessions.R', local=TRUE)

shinyServer(function(input, output) {

 # Objects in this file are defined in each session

 source('each_session.R', local=TRUE)

 output$text <- renderText({

 # Objects in this file are defined each time this function is called

 source('each_call.R', local=TRUE)

 # ...

 })

})

If you use the default value of local=FALSE , then the file will be sourced in the global environment.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

aduncan5

This is a very well written help file. Super clear and very crisp. Chapeau.

Dean Attali

This is a great technique to split up your UI as well, really useful. If anyone is
running into the problem that their UI includes a TRUE/FALSE value at the end, it's
because you want to use the `value` of the object returned from `source. For
example, `source("file.R", local=TRUE)$value`. See this answer on SO for more
details http://stackoverflow.com/a/305...

ArjunaCap

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Scoping rules for Shiny apps 290

Shiny is an RStudio project. © 2014 RStudio, Inc.

to be clear, server.R is run before global.R?

tom

in server.R

comments powered by Disqus

Debugging techniques for Shiny apps 291

2.41 Debugging techniques for Shiny apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Debugging techniques for Shiny apps
ADDED: 06 JAN 2014

Printing
There are several techniques available for debugging Shiny applications. The first is to add calls to the cat function
which print diagnostics where appropriate. For example, these two calls to cat print diagnostics to standard output
and standard error respectively:

cat("foo\n")

cat("bar\n", file=stderr())

Using browser
The second technique is to add explicit calls to the browser function to interrupt execution and inspect the
environment where browser was called from. Note that using browser requires that you start the application from an
interactive session (as opposed to using R -e as described above).

For example, to unconditionally stop execution at a certain point in the code:

Always stop execution here

browser()

You can also use this technique to stop only on certain conditions. For example, to stop the MPG application only
when the user selects “Transmission” as the variable:

Stop execution when the user selects "am"

browser(expr = identical(input$variable, "am"))

Establishing a custom error handler
You can also set the R "error" option to automatically enter the browser when an error occurs:

Immediately enter the browser when an error occurs

options(error = browser)

Alternatively, you can specify the recover function as your error handler, which will print a list of the call stack and
allow you to browse at any point in the stack:

Call the recover function when an error occurs

options(error = recover)

If you want to set the error option automatically for every R session, you can do this in your .Rprofile file as described
in this article on R Startup.

Debugging techniques for Shiny apps 292

Shiny is an RStudio project. © 2014 RStudio, Inc.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Dean Attali

One extremely useful debugging tool is to set `options(shiny.error=browser)` so that
RStudio will enter its debug mode and show you where an error occurs when a
Shiny app crashes.

Thanks to Joe for mentioning this, in my opinion it's the best shiny-specific
debugging tool

Mithilesh Kumar

hi Garrett,
I am facing the same problem:

My codes are as under:
Error MEssage: ERROR: non-numeric argument to binary operator

ui.R

shiny plots on top_docs data
library(shiny)

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Learn about your user with 293

2.42 Learn about your user with

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Learn about your user with
session$clientData
ADDED: 06 JAN 2014

Getting Non-Input Data From the Client
On the server side, Shiny applications use the input object to receive user input from the client web browser. The
values in input are set by UI objects on the client web page. There are also non-input values (in the sense that the
user doesn’t enter these values through UI components) that are stored in an object called session$clientData .
These values include the URL, the pixel ratio (for high-resolution “Retina” displays), the hidden state of output
objects, and the height and width of plot outputs. You can see an example app which uses client data here.

Using session$clientData
To access session$clientData values, you need to pass a function to shinyServer() that takes session as
an argument (session is a special object that is used for finer control over a user’s app session). Once it’s in there,
you can access session$clientData just as you would input .

In the example below, the client browser will display out the components of the URL and also parse and print the
query/search string (the part of the URL after a “ ? ”):

server.R

shinyServer(function(input, output, session) {

 # Return the components of the URL in a string:

 output$urlText <- renderText({

 paste(sep = "",

 "protocol: ", session$clientData$url_protocol, "\n",

 "hostname: ", session$clientData$url_hostname, "\n",

 "pathname: ", session$clientData$url_pathname, "\n",

 "port: ", session$clientData$url_port, "\n",

 "search: ", session$clientData$url_search, "\n"

)

 })

 # Parse the GET query string

 output$queryText <- renderText({

 query <- parseQueryString(session$clientData$url_search)

 # Return a string with key-value pairs

 paste(names(query), query, sep = "=", collapse=", ")

 })

})

Learn about your user with 294
ui.R

shinyUI(bootstrapPage(

 h3("URL components"),

 verbatimTextOutput("urlText"),

 h3("Parsed query string"),

 verbatimTextOutput("queryText")

))

This app will display the following:

Viewing all available values in clientData
The values in session$clientData will depend to some extent on the outputs. For example, a plot output object
will report its height, width, and hidden status. The app below has a plot output, and displays all the values in
session$clientData :

shinyServer(function(input, output, session) {

 # Store in a convenience variable

 cdata <- session$clientData

 # Values from cdata returned as text

 output$clientdataText <- renderText({

 cnames <- names(cdata)

 allvalues <- lapply(cnames, function(name) {

 paste(name, cdata[[name]], sep=" = ")

 })

 paste(allvalues, collapse = "\n")

 })

Learn about your user with 295
 # A histogram

 output$myplot <- renderPlot({

 hist(rnorm(input$obs), main="Generated in renderPlot()")

 })

})

Notice that, just as with input , values in session$clientData can be accessed with
session$clientData$myvar or session$clientData[['myvar']] . Or, equivalently, since we’ve saved it into a

convenience variable cdata , we can use cdata$myvar or cdata[['myvar']] .

ui.R

shinyUI(pageWithSidebar(

 headerPanel("Shiny Client Data"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 0, max = 1000, value = 500)

),

 mainPanel(

 h3("clientData values"),

 verbatimTextOutput("clientdataText"),

 plotOutput("myplot")

)

))

For the plot output output$myplot , there are three entries in clientData :

output_myplot_height : The height of the plot on the web page, in pixels.
output_myplot_width : The width of the plot on the web page, in pixels.
output_myplot_hidden : If the object is hidden (not visible), this is TRUE. This is used because Shiny will by

default suspend the output object when it is hidden. When suspended, the observer will not execute even
when its inputs change.

Here is the view from the client, with all the clientData values:

Learn about your user with 296

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Leighton

Hi,

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Learn about your user with 297

Shiny is an RStudio project. © 2014 RStudio, Inc.

I've been trying to obtain the url search field (which changes according to user input)
with session$clientData$url_search. However the returned result is always empty. I
suspect that it's because the webpage starts off with an empty url_search. I have
tried reactiveEvent and observe but neither works in retrieving it after I make my
input. Any ideas?
Thank you!

Abhijit Sahay

Hi Garrett:

I changed the original example slightly -- adding a selectInput control, whose choices
and label I would like to update based on the query part of the URL. The choices
change successfully but the label does not?

Thank you for any help,
Abhijit
--------comments powered by Disqus

Unicode characters in Shiny apps 298

2.43 Unicode characters in Shiny apps

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Unicode characters in Shiny apps
ADDED: 09 JUL 2014
BY: YIHUI XIE

Since Shiny v0.10.1, we have added support for multi-byte characters in Shiny apps on Windows. Linux and Mac OS
X users normally do not need to worry about character encodings or non-ASCII characters, and they can basically
ignore this article, since their system locale is often UTF-8 based. However, Windows does not have a single
consistent locale or native character encoding, which makes it tricky to support multi-byte characters there. For the
sake of consistency and portability, Shiny requires the character encoding of all its components to be UTF-8, which
include ui.R , server.R , global.R , DESCRIPTION , and/or README.md . Note a Shiny app may not contain all
of these files, but all of them must be encoded in UTF-8 if they exist.

Text Editors
A modern text editor should allow you to save a text file with a specified encoding. For example, if you use the
RStudio IDE, you can click the menu File -> Save with Encoding to (re)save a file with the UTF-8 encoding:

Unicode characters in Shiny apps 299

If you do not use RStudio, there is one more thing to keep in mind: when you save a file with UTF-8, you should
make sure not to include the byte order mark (BOM). Some text editors do include it by default, such as Notepad (the
default text editor on Windows). Shiny will try to detect the BOM character, and give a warning if it exists. For a file
that is encoded in UTF-8 with BOM, you can open it with the UTF-8 encoding in RStudio, re-save it with the UTF-8
encoding, and the BOM will be removed. There are many other text editors that support UTF-8 with or without BOM,
such as Notepad++:

Unicode characters in Shiny apps 300

An Example (Chinese Characters)
There is an example in the gallery demonstrating Simplified Chinese characters in a Shiny app, in which we used
Chinese characters in many places, such as R comments, the title of the page, the label and choices of the select
input, the JavaScript condition of the conditional panel, the id of the verbatim text output, the R formula, and so on.

File Input/Output
When your Shiny app involves file input/output, the character encoding does not have to be UTF-8. Although we
recommend UTF-8 in Shiny, it is not the default encoding on Windows anyway, so your app users may have trouble
especially when they have file interactions with your app.

Many I/O functions in R have an argument named encoding (sometimes fileEncoding). If the data to be read or
written is not encoded with the native encoding of your system, you may have to use the encoding argument. For
example, when reading a text file encoded in UTF-8 into a Shiny app, you may use
readLines('foo.txt', encoding = 'UTF-8') . Similarly, when writing a CSV file with the GB2312 encoding (a

commonly used encoding for Simplified Chinese), you can use write.csv(data, fileEncoding = 'GB2312') .
This is very important when using the fileInput() or downloadHandler() functions in the shiny package.

If you read a file into R as a character vector, and the file is not encoded with your system’s native encoding, you are
recommended to convert the encoding of the character vector to your system’s native encoding before you process
the text data. Some character string processing functions such as gsub(..., fixed = TRUE) may not work if the
string does not have the native encoding.

x <- readLines('foo.txt', encoding = 'UTF-8')

x <- enc2native(x)

gsub(' ', '-', x, fixed = TRUE)

The Global encoding Option

Unicode characters in Shiny apps 301
The function options() in base R can be used to set some global options for the current R session, among which
there is an encoding option. Its default value is native.enc (native encoding), which is not really a standard
encoding name, and its meaning differs on different platforms. On Linux and Mac OS X, the native encoding is often
UTF-8. If you are not sure what your native encoding is, the function localeToCharset() in base R should give a
reasonable guess in most cases.

When dealing with encoding problems, you are not recommended to set the encoding option to a specific encoding
name, e.g. options(encoding = 'UTF-8') . This may have very bad consequences, since it makes a strong
assumption that all file connections and character manipulations should use this encoding by default.

Shinyapps.io
For shinyapps.io users, the platform is based on Linux containers, and has a UTF-8 locale. If your app reads/writes
data files that contain multi-byte characters, you are strongly recommended to be specific about the encodings when
calling the I/O functions, because your local environment may not be based on UTF-8. The functions iconv() ,
iconvlist() , enc2native() , and enc2utf8() may be useful if you need to convert the encoding from one to

another.

Summary
To sum up, three things to keep in mind when dealing with character strings in R:

1. The encoding should be specified explicitly per (file) connection basis, if you want your R code to be portable;
2. After you read Unicode characters into R, convert them to the native encoding of your system, e.g. using

enc2native() ;
3. Do not set options(encoding) .

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

milkfan

With regard to Chinese Characters. I am able to run the shiny app locally but once I
run the deployApp() command to deploy to shinyapps.io, it starts to complain about
"invalid multibyte string." Any suggestions?

milkfan

I solved this by running deployApp(lint=F)

Xiushi Le

Didn't work as intended. I was trying the following code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Unicode characters in Shiny apps 302

Shiny is an RStudio project. © 2014 RStudio, Inc.

i <- 1, j <- 1
val <- 'val'
a <- 'æµ‹è¯•'
actionButton(paste0(l[i], '_val_', j), label=a, value=val)
<button id="B_val_1" type="button" class="btn action-button"
value="BO"><u+6d4b><u+8 warning="" message:="" in="" readlines(conn)="" :=""
incomplete="" final="" line="" found="" on="" ''="">

comments powered by Disqus

Style your apps with CSS 303

2.44 Style your apps with CSS

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Style your apps with CSS
ADDED: 06 MAY 2014
BY: GARRETT GROLEMUND WITH JOE CHENG

You can give your Shiny app a special look with cascading style sheets (CSS).

CSS is a style language which gives HTML documents a sophisticated look. Since the Shiny app user-interface (UI)
is an HTML document, you can use CSS to control how you want your Shiny app to look.

The CSS language is easy to learn and widely used. If you would like to learn CSS code, I recommend the free
interactive codecademy tutorial. There is also a free concise tutorial at udemy.com.

In this article, I describe the three ways Shiny works with CSS. To get CSS into your Shiny App, you can:

1. Add style sheets with the www directory
2. Add CSS to your HTML header
3. Add styling directly to HTML tags

These methods correspond to the three ways that you can add CSS to an HTML document. In HTML, you can:

1. Link to a stylesheet file
2. Write CSS in the document’s header, and
3. Write CSS in the style attribute of an HTML element.

Recall that the C in CSS refers to “cascading”. CSS in a style attribute will overrule CSS in a document’s header,
which will overrule CSS in an external file. This cascading arrangement lets you create global style rules (in an
external file, or header), and special cases (elements that have their own style attribute).

1. Add style sheets with the www directory

Style your apps with CSS 304

These two ‘New Application’ Shiny apps are identical, except for the appearance of the UI. The basic one on the left
is the default Shiny App. The one on the right uses a CSS file to enhance its look.

You can apply a CSS file to your entire Shiny app by linking to it from within your Shiny App.

Create a subdirectory named www in your Shiny app directory. This subdirectory name www is special. Shiny
makes every file in www available to your user’s browser. The www subdirectory is a great place to put CSS
files, images, and other things a browser needs to build your Shiny App.
Place your CSS file in the www subdirectory.

For this UI change, I am using a CSS file named bootstrap.css . I downloaded it from Bootswatch, a great place to
get free CSS themes for bootstrap webpages.

Note: The Shiny UI is built with the Bootstrap 3.3.1 HTML/CSS framework. CSS files designed to work with Bootstrap
3.3.1 will work best with Shiny.

After you get bootstrap.css and put it in your www subdirectory, your Shiny app directory should look like mine:

Style your apps with CSS 305

Once your Shiny app directory is set, you have two choices to link to your CSS file (your app won’t use the CSS until
you do). You can:

1. set the theme argument of fluidPage to your document’s name or
2. include the file with the tags object.

The theme argument
The simplest choice is to set the theme argument of fluidPage to your document’s name (as a character string).
Your ui.R script will look like the following code:

shinyUI(fluidPage(theme = "bootstrap.css",

 headerPanel("New Application"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(plotOutput("distPlot"))

))

I used this code to make the ‘New Application’ Shiny app on the right. To make the default Shiny app (the one on
the left), remove theme = "bootstrap.css" .

Link to a stylesheet with tags
You can link to the CSS file with the tags object too. tags recreates popular HTML tags, and has its own article
here.

The standard way to link to a CSS file in an HTML document is with a link tag embedded inside a head tag. For
example, you might write an HTML document like the one below:

<!DOCTYPE html>

<html>

 <head>

Style your apps with CSS 306
 <link type="text/css" rel="stylesheet" href="bootstrap.css"/>

 </head>

 <body>

 </body>

</html>

You can recreate this arrangement in Shiny with:

shinyUI(fluidPage(

 tags$head(

 tags$link(rel = "stylesheet", type = "text/css", href = "bootstrap.css")

),

 headerPanel("New Application"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(plotOutput("distPlot"))

))

This code will make the ‘New Application’ Shiny app on the right.

Notice that bootstrap.css is stored in the www subdirectory. You do not need to add www/ to the file path that
you give href . Shiny places the files in your Shiny App’s home directory before sending them to your user’s
browser.

Remember that I said www is a special subdirectory name and important to use. Shiny will share a file with your
user’s browser if the file appears in www . Shiny will not share files that you do not place in www .

Both the theme argument of fluidPage and the href argument of tags$link can point to a URL (that contains
a CSS file). You may find this method a convenient way to share the same CSS file across many Shiny apps.

2. Add CSS to your HTML header
You can also add add CSS directly to your Shiny UI. This is the equivlent of adding CSS to the head tag of an HTML
document. This CSS will override any CSS imported from an external file (should a conflict arise).

As before, you have two options for adding CSS at this level. You can

1. Add CSS with tags , or
2. Include a whole file of CSS with includeCSS

Add CSS to the header with tags
Use tags$style instead of tags$link to include raw CSS. Write the CSS as a character string wrapped in
HTML() to prevent Shiny from escaping out HTML specific characters.

As with tags$link, nest tags$style inside of tags$head`.

shinyUI(fluidPage(

 tags$head(

 tags$style(HTML("

Style your apps with CSS 307
 @import url('//fonts.googleapis.com/css?family=Lobster|Cabin:400,700');

 h1 {

 font-family: 'Lobster', cursive;

 font-weight: 500;

 line-height: 1.1;

 color: #48ca3b;

 }

 "))

),

 headerPanel("New Application"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(plotOutput("distPlot"))

))

This code makes the following Shiny App. Note that I changed only the title’s appearance.

Add CSS to the header with includeCSS
If you have CSS saved in a file, you can add it to the header of your Shiny app with includeCSS .

Shiny will place the contents of the file into the header of the HTML document it gives to web browsers, as if you had
used tags$style . You do not need to save the file in www . Shiny will expect it in your Shiny app directory unless
you specify otherwise.

For example, I’ve placed a lightweight style sheet named styles.css in my app directory below.

Style your apps with CSS 308

This CSS file changes the title of a Shiny app and nothing else. Here is the actual CSS saved in the file.

@import url("//fonts.googleapis.com/css?family=Lobster|Cabin:400,700");

h1 {

 font-family: 'Lobster', cursive;

 font-weight: 500;

 line-height: 1.1;

 color: #ad1d28;

}

body {

 background-color: #fff;

}

The code below includes styles.css to make the app in the next image.

shinyUI(fluidPage(

 includeCSS("styles.css"),

 headerPanel("New Application"),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(plotOutput("distPlot"))

))

Style your apps with CSS 309

3. Add styling directly to HTML tags
You can add CSS styling directly to individual HTML elements in your UI, just as you add styling directly to HTML
tags in a web document. CSS provided at this level takes precedence over any other sources of CSS (should a
conflict occur).

To add CSS to an individual element, pass it to the style argument of the Shiny function that you use to create that
element.

In the script below, I set the style of the title of the Shiny app with the style argument of h1 in headerPanel . The
style relies on a font that I import with tags$style in tags$head .

shinyUI(fluidPage(

 tags$head(

 tags$style(HTML("

 @import url('//fonts.googleapis.com/css?family=Lobster|Cabin:400,700');

 "))

),

 headerPanel(

 h1("New Application",

 style = "font-family: 'Lobster', cursive;

 font-weight: 500; line-height: 1.1;

 color: #4d3a7d;")),

 sidebarPanel(

 sliderInput("obs", "Number of observations:",

 min = 1, max = 1000, value = 500)

),

 mainPanel(plotOutput("distPlot"))

))

Style your apps with CSS 310
Here’s what the Shiny app looks like with this code:

Recap
Add CSS to a Shiny UI just as you would add CSS to a web page.

To get CSS into your Shiny App, you can:

1. Link to an external CSS file
2. Include CSS in the header of the web page that the app is built on, or
3. Pass style information to individual HTML elements in your app.

My examples give a glimpse into the options CSS offers your Shiny App. Explore more at Bootswatch and see what
you can create.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Brent Sitterly

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Style your apps with CSS 311

Shiny is an RStudio project. © 2014 RStudio, Inc.

In the google groups theres a discussion about navbarPages and how some of the
methods in this article can cause a ghost tab to appear. If you take the title out of
the navbarPage command than no ghost tab appears. Seems to be a bug. Is there
a better place to call this out?

Laurent Franckx

Nice, but do you have any illustration of how you can for instance change the width
of an textInput field?

Aurora Data

It looks like changing the title font no longer working. I was able to get it to work last
week. Did somethings got changed?

Mona Jalal

comments powered by Disqus

Build custom input objects 312

2.45 Build custom input objects

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Build custom input objects
ADDED: 06 JAN 2014

Building Inputs
Shiny comes equipped with a variety of useful input components, but as you build more ambitious applications, you
may find yourself needing input widgets that we don’t include. Fortunately, Shiny is designed to let you create your
own custom input components. If you can implement it using HTML, CSS, and JavaScript, you can use it as a Shiny
input! See the demo apps with custom inputs here and here.

(If you’re only familiar with R and not with HTML/CSS/JavaScript, then you will likely find it tough to create all but the
simplest custom input components on your own. However, other people can – and hopefully will – bundle up their
custom Shiny input components as R packages and make them available to the rest of the community.)

Design the Component
The first steps in creating a custom input component is no different than in any other form of web development. You
write HTML markup that lays out the component, CSS rules to style it, and use JavaScript (mostly event handlers) to
give it behavior, if necessary.

Shiny input components should try to adhere to the following principles, if possible:

Designed to be used from HTML and R: Shiny user interfaces can either be written using R code (that
generates HTML), or by writing the HTML directly. A well-designed Shiny input component will take both styles
into account: offer an R function for creating the component, but also have thoughtfully designed and
documented HTML markup.
Configurable using HTML attributes: Avoid requiring the user to make JavaScript calls to configure the
component. Instead, it’s better to use HTML attributes. In your component’s JavaScript logic, you can easily
access these values using jQuery (or simply by reading the DOM attribute directly).

When used in a Shiny application, your component’s HTML markup will be repeated once for each instance of the
component on the page, but the CSS and JavaScript will generally only need to appear once, most likely in the
<head> . For R-based interface code, you can use the functions singleton and tags$head together to ensure

these tags appear once and only once, in the head. (See the full example below.)

Write an Input Binding
Each custom input component also needs an input binding, an object you create that tells Shiny how to identify
instances of your component and how to interact with them. (Note that each instance of the input component doesn’t
need its own input binding object; rather, all instances of a particular type of input component share a single input
binding object.)

An input binding object needs to have the following methods:

find(scope)

Given an HTML document or element (scope), find any descendant elements that are an instance of your

Build custom input objects 313
component and return them as an array (or array-like object). The other input binding methods all take an el
argument; that value will always be an element that was returned from find .

A very common implementation is to use jQuery's find method to identify elements with a specific class, for
example:

exampleInputBinding.find = function(scope) {
 return $(scope).find(".exampleComponentClass");
};

getId(el)

Return the Shiny input ID for the element el , or null if the element doesn't have an ID and should therefore be
ignored. The default implementation in Shiny.InputBinding reads the data-input-id attribute and falls back to
the element's id if not present.
getValue(el)

Return the Shiny value for the element el . This can be any JSON-compatible value.
setValue(el, value)

Set the element to the specified value. (This is not currently used, but in the future we anticipate adding features that
will require the server to push input values to the client.)
subscribe(el, callback)

Subscribe to DOM events on the element el that indicate the value has changed. When the DOM events fire, call
callback (a function) which will tell Shiny to retrieve the value.

We recommend using jQuery's event namespacing feature when subscribing, as unsubscribing becomes very easy
(see unsubscribe , below). In this example, exampleComponentName is used as a namespace:

exampleInputBinding.subscribe = function(el, callback) {
 $(el).on("keyup.exampleComponentName", function(event) {
 callback(true);
 });
 $(el).on("change.exampleComponentName", function(event) {
 callback();
 });
};

Later on, we can unsubscribe ".exampleComponentName" which will remove all of our handlers without touching
anyone else's.

The callback function optionally takes an argument: a boolean value that indicates whether the component's rate
policy should apply (true means the rate policy should apply). See getRatePolicy below for more details.

unsubscribe(el)

Unsubscribe DOM event listeners that were bound in subscribe .

Example:

exampleInputBinding.unsubscribe = function(el) {

 $(el).off(".exampleComponentName");

};

getRatePolicy()

Return an object that describes the rate policy of this component (or null for default).

Rate policies are helpful for slowing down the rate at which input events get sent to the server. For example, as the
user drags a slider from value A to value B, dozens of change events may occur. It would be wasteful to send all of
those events to the server, where each event would potentially cause expensive computations to occur.

Build custom input objects 314
A rate policy slows down the rate of events using one of two algorithms (so far). Throttling means no more than
one event will be sent per X milliseconds. Debouncing means all of the events will be ignored until no events have
been received for X milliseconds, at which time the most recent event will be sent. This blog post goes into more
detail about the difference between throttle and debounce.

A rate policy object has two members:

policy - Valid values are the strings "direct" , "debounce" , and "throttle" . "direct" means that
all events are sent immediately.
delay - Number indicating the number of milliseconds that should be used when debouncing or throttling.

Has no effect if the policy is direct .

Rate policies are only applied when the callback function in subscribe is called with true as the first
parameter. It's important that input components be able to control which events are rate-limited and which are not, as
different events may have different expectations to the user. For example, for a textbox, it would make sense to rate-
limit events while the user is typing, but if the user hits Enter or focus leaves the textbox, then the input should
always be sent immediately.

Register Input Binding
Once you’ve created an input binding object, you need to tell Shiny to use it:

Shiny.inputBindings.register(exampleInputBinding, "yourname.exampleInputBinding");

The second argument is a name the user can use to change the priority of the binding. On the off chance that the
user has multiple bindings that all want to claim the same HTML element as their own, this call can be used to
control the priority of the bindings:

Shiny.inputBindings.setPriority("yourname.exampleInputBinding", 10);

Higher numbers indicate a higher priority; the default priority is 0. All of Shiny’s built-in input component bindings
default to a priority of 0.

If two bindings have the same priority value, then the more recently registered binding has the higher priority.

Example
For this example, we’ll create a button that displays a number, whose value increases by one each time the button is
clicked. Here’s what the end result will look like:

0

To start, let’s design the HTML markup for this component:

<button id="inputId" class="increment btn btn-default" type="button">0</button>

The CSS class increment is what will differentiate our buttons from any other kind of buttons. (The
btn btn-default classes are there to make the button look decent in Bootstrap.)

Now we’ll write the JavaScript that drives the button’s basic behavior:

$(document).on("click", "button.increment", function(evt) {

 // evt.target is the button that was clicked

 var el = $(evt.target);

Build custom input objects 315
 // Set the button's text to its current value plus 1

 el.text(parseInt(el.text()) + 1);

 // Raise an event to signal that the value changed

 el.trigger("change");

});

This code uses jQuery’s delegated events feature to bind all increment buttons at once.

Now we’ll create the Shiny binding object for our component, and register it:

var incrementBinding = new Shiny.InputBinding();

$.extend(incrementBinding, {

 find: function(scope) {

 return $(scope).find(".increment");

 },

 getValue: function(el) {

 return parseInt($(el).text());

 },

 setValue: function(el, value) {

 $(el).text(value);

 },

 subscribe: function(el, callback) {

 $(el).on("change.incrementBinding", function(e) {

 callback();

 });

 },

 unsubscribe: function(el) {

 $(el).off(".incrementBinding");

 }

});

Shiny.inputBindings.register(incrementBinding);

Both the behavioral JavaScript code and the Shiny binding code should generally be run when the page loads. (It’s
important that they run before Shiny initialization, which occurs after all the document ready event handlers are
executed.)

The cleanest way to do this is to put both chunks of JavaScript into a file. In this case, we’ll use the path
./www/js/increment.js , which we can then access as http://localhost:8100/js/increment.js .

If you’re using an index.html style user interface, you’ll just need to add this line to your <head> (make sure it
comes after the script tag that loads shiny.js):

<script src="js/increment.js"></script>

On the other hand, if you’re using ui.R , then you can define this function before the call to shinyUI :

incrementButton <- function(inputId, value = 0) {

 tagList(

 singleton(tags$head(tags$script(src = "js/increment.js"))),

 tags$button(id = inputId,

 class = "increment btn btn-default",

 type = "button",

 as.character(value))

)

}

Build custom input objects 316

Shiny is an RStudio project. © 2014 RStudio, Inc.

Then in your shinyUI page definition you can call incrementButton wherever you want an increment button
rendered. Notice the line that begins with singleton will ensure that the increment.js file will be included just
one time, in the <head> , no matter how many buttons you insert into the page or where you place them.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Dean Attali

For others: based on looking at the source (https://github.com/rstudio/shi... it looks
like you can also add a `initialize` method that will get called when the input is being
initialized, which can be useful if you need to perform some custom initialization. I'm
not sure if we're meant to do this or not because I didn't see it in the docs, I just
wanted to share that I saw it in source code

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Build custom output objects 317

2.46 Build custom output objects

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Build custom output objects
ADDED: 06 JAN 2014

Right out of the box, Shiny makes it easy to include plots, simple tables, and text as outputs in your application; but
we imagine that you’ll also want to display outputs that don’t fit into those categories. Perhaps you need an
interactive choropleth map or a googleVis motion chart.

Similar to custom inputs, if you have some knowledge of HTML/CSS/JavaScript you can also build reusable, custom
output components. And you can bundle up output components as R packages for other Shiny users to use.

Server-Side Output Functions
Start by deciding the kind of values your output component is going to receive from the user’s server side R code.

Whatever value the user’s R code returns is going to need to somehow be turned into a JSON-compatible value
(Shiny uses RJSONIO to do the conversion). If the user’s code is naturally going to return something RJSONIO-
compatible – like a character vector, a data frame, or even a list that contains atomic vectors – then you can just
direct the user to use a function on the server. However, if the output needs to undergo some other kind of
transformation, then you’ll need to write a wrapper function that your users will use instead (analogous to
renderPlot or renderTable).

For example, if the user wants to output time series objects then you might create a renderTimeSeries function
that knows how to translate ts objects to a simple list or data frame:

renderTimeSeries <- function(expr, env=parent.frame(), quoted=FALSE) {

 # Convert the expression + environment into a function

 func <- exprToFunction(expr, env, quoted)

 function() {

 val <- func()

 list(start = tsp(val)[1],

 end = tsp(val)[2],

 freq = tsp(val)[3],

 data = as.vector(val))

 }

}

which would then be used by the user like so:

output$timeSeries1 <- renderTimeSeries({

 ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)

})

Design Output Component Markup

Build custom output objects 318
At this point, we’re ready to design the HTML markup and write the JavaScript code for our output component.

For many components, you’ll be able to have extremely simple HTML markup, something like this:

<div id="timeSeries1" class="timeseries-output"></div>

We’ll use the timeseries-output CSS class as an indicator that the element is one that we should bind to. When
new output values for timeSeries1 come down from the server, we’ll fill up the div with our visualization using
JavaScript.

Write an Output Binding
Each custom output component needs an output binding, an object you create that tells Shiny how to identify
instances of your component and how to interact with them. (Note that each instance of the output component
doesn’t need its own output binding object; rather, all instances of a particular type of output component share a
single output binding object.)

An output binding object needs to have the following methods:

find(scope)

Given an HTML document or element (scope), find any descendant elements that are an instance of your
component and return them as an array (or array-like object). The other output binding methods all take an el
argument; that value will always be an element that was returned from find .

A very common implementation is to use jQuery's find method to identify elements with a specific class, for
example:

exampleOutputBinding.find = function(scope) {
 return $(scope).find(".exampleComponentClass");
};

getId(el)

Return the Shiny output ID for the element el , or null if the element doesn't have an ID and should therefore be
ignored. The default implementation in Shiny.OutputBinding reads the data-output-id attribute and falls back
to the element's id if not present.
renderValue(el, data)

Called when a new value that matches this element's ID is received from the server. The function should render the
data on the element. The type/shape of the `data` argument depends on the server logic that generated it; whatever
value is returned from the R code is converted to JSON using the RJSONIO package.
renderError(el, err)

Called when the server attempts to update the output value for this element, and an error occurs. The function should
render the error on the element. err is an object with a message String property.
clearError(el)

If the element el is currently displaying an error, clear it.

Register Output Binding
Once you’ve created an output binding object, you need to tell Shiny to use it:

Shiny.outputBindings.register(exampleOutputBinding, "yourname.exampleOutputBinding");

The second argument is a string that uniquely identifies your output binding. At the moment it is unused but future
features may depend on it.

Build custom output objects 319

Shiny is an RStudio project. © 2014 RStudio, Inc.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

William Buchanan

Are there any simple examples that you could show of how to bind a javascript
object to a shiny output? For example, I have a .js file to build out a choropleth
using d3.js and can integrate it and display it in a shiny app that I'm working on, but
I've not been able to figure out how to bind the map to avoid having it show up on
every single page. It'd probably help if I had some javascript experience, but if there's
anything you could suggest that would be helpful as well.

Xiushi Le

I am still a bit confused of this guide, why convert it to a function?

I tried to create a wrapper class on renderDataTable as follows:

renderPlainTable <- function(expr, ...) {

options = list(searching = FALSE,ordering = FALSE,paging = FALSE,info=FALSE)

renderDataTable(expr,options = options,...)

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Add Google Analytics to a Shiny app 320

2.47 Add Google Analytics to a Shiny app

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Add Google Analytics to a Shiny app
ADDED: 04 SEP 2014

This article will show you how to add Google Analytics code to a Shiny app. You will need to know a little about
JavaScript and jQuery to use this method (which we will not teach here).

Google Analytics is a free service offered by Google that collects information about who visits you website and what
they do while they are there. You can learn more about Google Analytics at support.google.com/analytics, which
explains how to set up and use Google Analytics with a web page.

Add analytics to an app
You can use Google Analytics with a Shiny app, since Shiny apps are a type of web page. In this article, we will add
Google Analytics to the Sunshine app, pictured below.

The Sunshine app displays the distribution of annual sunlight in the United States. The app is hosted on shinyapps.io
at garrett.shinyapps.io/sunshine. If you’d like a copy of the app, including it’s JavaScript and CSS files, you can
download them here.

You can add analytics to the app (and collect results) with the five steps below.

Step 1 - Create an account

Add Google Analytics to a Shiny app 321
To use Google Analytics, you must open a free account at www.google.com/analytics/.

Step 2 - Add a property
Next, you must register your Shiny app as a property in your Google Analytics account. You can do this on the sign
up page, or—if you already have a Google Analytics account—you can do this in the Admin tab.

You will need to provide a web address for your app to Google Analytics. Since the Sunshine app is hosted at
https://garrett.shinyapps.io/sunshine, I’ll use this address.

Add Google Analytics to a Shiny app 322

Once you have entered the necessary information, click “Get Tracking ID” at the bottom of the form. Google Analytics
will open a new window that contains a tracking ID number for your app as well as a short JavaScript script.

This script will allow Google Analytics to track traffic to and from your app. To use it, you’ll need to put the script in
the head of your app’s DOM, the subject of Step 3.

Step 3 - Embed tracking script
You should place the Google Analytics tracking script at the end of the head section of the HTML DOM that
describes your Shiny app.

This is very easy to do if you build your Shiny app around an HTML file, as described in Build your entire UI with
HTML.

Add Google Analytics to a Shiny app 323
If you built your Shiny app with a ui.R file (the traditional method), use the tags$head and includeScript
functions to include the script.

For example, Google Analytics has given us the script below to embed in the Sunshine app. (Notice that both this
code and the event trackers below use Universal Analytics, the more recent version of Google Analytics that replaces
Classic Analytics.)

<script>

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();

 a=s.createElement(o), m=s.getElementsByTagName(o)[0];

 a.async=1;

 a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-54514964-1', 'auto');

 ga('send', 'pageview');

</script>

To include the script in your app, first save it to its own file. Here I’ve saved the script as a file named google-
analytics.js, which I have placed in the working directory of the Sunshine app.

I’ve also removed the <script> and </script> tags from the code so my google-analytics.js file looks like this.
This is necessary because I will add the script to my ui.R file with includeScript , which will append its own
<script></script> tags.

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();

 a=s.createElement(o), m=s.getElementsByTagName(o)[0];

 a.async=1;

 a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

Add Google Analytics to a Shiny app 324
 ga('create', 'UA-54514964-1', 'auto');

 ga('send', 'pageview');

To embed the script in the Sunshine app, call tags$head(includeScript("google-analytics.js")) in the ui.R
file. includeScript will import the script and pass it to tags$head() , which will place the script in the head
section of your app’s DOM.

includeScript requires one argument: "google-analytics.js" , the file path from the App directory to the
google-analytics.js file.

The final ui.R file will look like this.

ui.R

library(shiny)

shinyUI(fluidPage(

 tags$head(includeScript("google-analytics.js")),

 includeCSS("cerulean.css"),

 titlePanel("Sunlight in the US"),

 sidebarPanel(

 selectInput("var", "Display",

 choices = c(

 "Percent of time sunny" = "sun_percent",

 "Annual hours of sunshine" = "total_hours",

 "Annual clear days" = "clear_days")),

 br(),

 helpText("Use this Shiny app to explore the

 distribution of sunlight in the United

 States. The map on the left can

 display three variables by state."),

 br(),

 submitButton("Plot Data")

),

 mainPanel(width = 10, plotOutput("map"))

))

Since the Sunshine app is hosted on shinyapps.io, I will need to redeploy the app to shinyapps.io for the new ui.R file
to take effect.

The Google Analytics script tracks how visitors move from one web page to the next. With it, you can learn a little
about:

who visits your app
where they come from
how long they stay on the app while they are there

You can also use Google Analytics to track how visitors use your app, but to do that you will need to set up specific
event trackers.

Step 4 - Create event trackers
An event tracker is a piece of code that notifies Google Analytics whenever a visitor interacts with a specific part of

Add Google Analytics to a Shiny app 325
your app, such as a link or a widget. You create a separate event tracker for each unique event that you want to
track.

With Google Analytics, you use the basic script to track how people move to and from your page, and you use event
trackers to track what they do while they are there. Note that you will need to embed the basic Google Analytics
tracking script into your app before you create any event trackers. Event trackers will not work without the basic
script.

To create an event tracker, you arrange to have a web element’s event handler execute a simple JavaScript
command that looks like this

ga('send', 'event', 'category', 'action', 'label', value);

When the element executes the command, ga sends an event notification to Google Analytics that let’s Google
Analytics know that an event occurred. The notification will contain the values of category , action , label and
value that you have supplied for this type of event. Later on, you will be able to see these values, as well as when

the event occurred, from your Google Analytics dashboard.

For example, you can track when users click on a specific link by having the links’ onClick attribute call ga .

<a href="http://www.example.com" onclick="ga('send', 'event', 'click', 'link', 'IKnow', 1)"

>I know when you click me;

This works for tracking events on simple web elements, but you must use a different approach to track events on
Shiny widgets.

Shiny does not let you set arbitrary attributes on widgets when you create them. To set an event tracker on a Shiny
widget, you will need to identify and modify the widget after it has been created, which you can do with a jQuery
script.

For example, the Sunshine app has two widgets, a select box and a button. I would like to track how users interact
with each of the widgets. To do this I will need to create two event trackers, one for the select box widget and one for
the button widget. I will also need to set these event trackers on the widgets with jQuery.

Add Google Analytics to a Shiny app 326
The following script attaches an event handler to the select box widget. The handler will execute for change events
that occur on the widget. In other words, the tracker will notify Google Analytics whenever a visitor changes the value
of the select box widget.

I’ve chosen to have the event report include widget for the category value and select data for the action
value. The last argument will return the value of the new selection as the label argument. This tracker will not
return a value value; value arguments are optional.

 $(document).on('change', 'select', function(e) {

 ga('send', 'event', 'widget', 'select data', $(e.currentTarget).val());

 });

I can track the app’s Plot Data button in a similar way. The script below will send an event notification whenever a
user clicks on a button class object in the DOM, e.g. the Plot Data button.

 $(document).on('click', 'button', function() {

 ga('send', 'event', 'button', 'plot data');

 });

Note: to write effective jQuery code, you will need to be able to uniquely identify the widgets that you wish to track.
This may require you to explore the document structure of the finished app, for example in your browser’s developer
tools console.

When working with Shiny apps, use jQuery code that creates delegated event handling, like the code above does.
Delegated events work more nimbly with the dynamic nature of Shiny apps than do direct events.

Now, that I’ve written the code that will allow event tracking, I need to add it to the ui.R file of the Sunshine app. The
easiest way to do this is to include the code in the google-analytics.js file that gets added to the app’s head.

My final google-analytics.js file will look like this

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();

 a=s.createElement(o), m=s.getElementsByTagName(o)[0];

 a.async=1;

 a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-54514964-1', 'auto');

 ga('send', 'pageview');

 $(document).on('change', 'select', function(e) {

 ga('send', 'event', 'widget', 'select data', $(e.currentTarget).val());

 });

 $(document).on('click', 'button', function() {

 ga('send', 'event', 'button', 'plot data');

 });

I’ll need to redeploy the app to shinyapps.io to make sure the hosted version of the app uses this code.

Step 5 - Collect reports
Once you have set up your app to use Google Analytics, you can use your account portal as a dashboard to track
traffic on your app. The Real-Time tracking features should begin almost immediately, but other tracking features
may take a couple hours to a couple days before they start reporting results.

Add Google Analytics to a Shiny app 327
You can also extract and analyze traffic data from Google Analytics data with R. Computer World magazine
documents some of the possibilites.

Add Google Analytics with Shiny Server
Alternatively, you can use Shiny Server to add Google Analytics to your apps. This will let you manage your Google
Analytics configuration at a higher level—so if you want all apps deployed on a server to share Google Analytics
code, you could put this code at the top level of your config and all your apps would automatically inherit it. To learn
more, visit the Shiny Server user guide.

Recap
To add Google Analytics to a Shiny app:

1. Set up a Google Analytics account.
2. Add the Shiny app to the account as a web property.
3. Place the Google Analytics tracking script into the head section of your app’s DOM.
4. Create event trackers to track specific events within your app. The easiest way to do this is to modify Shiny

widgets with delegated event handlers managed by jQuery.
5. Use R or your Google Analytics dashboard to explore the results.

Google Analytics isn’t the only website monitoring service, but it is the most popular. You can add similar services to
your app with the same techniques.

These techniques serve as a proof of concept that will allow you to track how visitors use your apps. We will look to
make it easier to track Shiny apps in future developement.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

ImAndy

Garrett Before delving too deeply, can you confirm that this also works with
rmarkdown shiny docs?

Orestis

if i am not wrong you load the data from sunshine.rds This application must load the
data from the google analytics account? and if yes how me can do it?

Joe

Is there a way to label the page so that Google Analytics does not just think it is the
homepage?

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Add Google Analytics to a Shiny app 328

Shiny is an RStudio project. © 2014 RStudio, Inc.

Joe

For anybody else interested, I found the answer. GA may not know how to
distinguish the page name from shinyapps.io. To give the page a name for GA, you
can use the following code as an example.comments powered by Disqus

How to create User Privileges 329

2.48 How to create User Privileges

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

How to create User Privileges
ADDED: 03 APR 2014
BY: JEFF ALLEN WITH GARRETT GROLEMUND

It is easy to create User Privileges in Shiny apps when you use Shiny Server Pro. Your app can recognize a user
based on log-in information and deliver personalized content in response. You can use this feature to control who
gets to see what content and when they see it.

Personalized Data Access
The Sales Report app demonstrates how you can use this feature to control data your app displays. You can view
this app and its code in the Shiny Gallery.

When a sales person logs into the Sales Report app, Shiny displays the data related only to that sales person.

When a manager logs into the Sales Report app, Shiny displays the data for every sales person. This information
can help the manager compare performance.

How to create User Privileges 330

The Sales Report app creates this effect by creating personal output for each log-in.

If you want to create a similar effect, begin in the server.R file. In that file, you can access your user’s log-in
information with session$user (the topic of Learn about your user with session$clientData).

First include session as the third argument of the shinyServer function. The Sales Report app does this in line
29 of its server.R server.R file. Including session will ensure that the code in shinyServer has access to the
variable at runtime.

shinyServer(function(input, output, session) {

Next access and store your user’s username with session$user . The Sales Report app does this in lines 34-36 of
its server.R script.

 user <- reactive({

 session$user

 })

After you store usernames with session$user , you can use the user information with switch , if , and other
conditional functions. These functions will build outputs tailored for the user. The Sales Report app does this by
testing whether the user’s log-in matches the names of known manager log-ins (here “manager”). The Sales Report
app includes a helper function that runs this test.

 isManager <- reactive({

 if (user() == "manager"){

 return(TRUE)

 } else{

 return(FALSE)

 }

 })

It uses the results to determine the scope of the data set to display.

How to create User Privileges 331
 # Based on the logged in user, pull out only the data this user should be able

 # to see.

 myData <- reactive({

 if (isManager()){

 # If a manager, show everything.

 return(salesData)

 } else{

 # If a regular salesperson, only show their own sales.

 return(salesData[salesData$salesperson == user(),])

 }

 })

This approach is very versatile and provides a convenient way to control who has access to which data and which
widgets in your Shiny apps.

The Airline Delays app pushes this method a step further. The Airline Delays app compares the user log-in to a table
of known users. Then it uses renderUI to create a personalized user-interface for each user. See Build a dynamic
UI that reacts to user input for more tips on rendering a custom UI with renderUI .

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Allow different libraries for different 332

2.49 Allow different libraries for different

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Allow different libraries for different
apps
ADDED: 21 JUL 2014
BY: JEFF ALLEN

This article describes two ways to configure applications to use different sets of libraries in Shiny Server.

Method 1 relies on Shiny Server’s exec_supervisor feature. It will only work with Shiny Server Pro.
Method 2 relies on Shiny Server’s run_as feature. It will work with both Shiny Server and Shiny Server Pro.

Method 1 - exec_supervisor
With Shiny Server Pro, you can run R sessions under a program supervisor that modifies the environment of the
sessions. You can use this supervisor to set the R_LIBS_USER environmental variable, which controls which libraries
a session may use.

Section 3.6 of the Shiny Server Administrator’s Guide explains how to add a program supervisor. You add an
exec_supervisor setting to your server config file to specify a supervisor (and the arguments which control it’s

behavior).

The file below uses exec_supervior to modify the default /etc/shiny-server/shiny-server.conf file that ships with
Shiny Server. exec_supervisor partitions the applications up by setting the R_LIBS_USER environment variable.

Near the bottom of the file, a /finance sub-location is defined for apps that use a specific set of libraries. Beneath
that, a specific app is given its own set of libraries.

Instruct Shiny Server to run applications as the user "shiny"

run_as shiny;

Specify the authentication method to be used.

Initially, a flat-file database stored at the path below.

auth_passwd_file /etc/shiny-server/passwd;

Define a server that listens on port 3838

server {

 listen 3838;

 # Define a location at the base URL

 location / {

 # Define a default library for applications

 exec_supervisor "R_LIBS_USER=/usr/lib/LibraryA";

 # Only up tp 20 connections per Shiny process and

 # at most 3 Shiny processes per application.

Allow different libraries for different 333
 # Proactively spawn a new process when our processes

 # reach 90% capacity.

 utilization_scheduler 20 .9 3;

 # Host the directory of Shiny apps stored in this directory

 site_dir /srv/shiny-server;

 # Log all Shiny output to files in this directory

 log_dir /var/log/shiny-server;

 # When a user visits the base URL rather than a particular application,

 # an index of the applications available in this directory will be shown.

 directory_index on;

 # Now define a sub-location at /finance

 location /finance {

 # Define a library that should be used by the finance department

 exec_supervisor "R_LIBS_USER=/usr/lib/FinanceLibrary";

 # Further, define another sub-location that happens to correspond to

 # a particular app.

 location /app1 {

 #Define a specific library to be used by this application

 exec_supervisor "R_LIBS_USER=/usr/lib/LibraryC";

 }

 }

 }

}

Provide the admin interface on port 4151

admin 4151 {

 # Restrict the admin interface to the usernames listed here. Currently

 # just one user named "admin"

 required_user admin;

}

In this case, you could set up as many different libraries as you want and specify a different library for each location,
or even each application that you want to deploy. This would give you fine-grained control over each of your
applications.

Method 2 - run_as
Shiny Server (and Shiny Server Pro) use a run_as setting to determine which user should spawn each R Shiny
processes. The user setting determines which library R will look in for packages (as well as which directories the app
will be able to read and write to).

The run_as setting can be configured globally, or for a particular server or location. As a result, you can set up
different locations for hosting apps that use different packages. Each location can be affiliated with its own user—
each of which presumably has a different set of libraries specified with a ~/.Rprofile file.

With this approach, you would probably have only a handful of users that you create that each maintain their own
separate libraries.

Section 2.3 of the Shiny Server Administrator’s Guide explains how to set a user with run_as .

Allow different libraries for different 334
The file below uses run_as to modify the default /etc/shiny-server/shiny-server.conf file that ships with Shiny
Server. run_as defines a global user, shiny , for the server. It then defines a different user for the /finance
location, shinyFinance . The finance department can deploy apps in this location. Those apps will be restricted to
the packages in the library of shinyFinance , which may be different than the packages in the library of the user
named shiny .

Specify the authentication method to be used.

Initially, a flat-file database stored at the path below.

auth_passwd_file /etc/shiny-server/passwd;

Define a server that listens on port 3838

server {

 listen 3838;

 # Define a location at the base URL

 location / {

 # Instruct Shiny Server to run applications as

 # the user "shiny" by default

 run_as shiny;

 # Only up tp 20 connections per Shiny process and

 # at most 3 Shiny processes per application.

 # Proactively spawn a new process when our processes

 # reach 90% capacity.

 utilization_scheduler 20 .9 3;

 # Host the directory of Shiny apps stored in this directory

 site_dir /srv/shiny-server;

 # Log all Shiny output to files in this directory

 log_dir /var/log/shiny-server;

 # When a user visits the base URL rather than a particular application,

 # an index of the applications available in this directory will be shown.

 directory_index on;

 location /finance {

 # Run as a different user for this location

 run_as shinyFinance;

 }

 }

}

Provide the admin interface on port 4151

admin 4151 {

 # Restrict the admin interface to the usernames listed here. Currently

 # just one user named "admin"

 required_user admin;

}

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related

Allow different libraries for different 335

Shiny is an RStudio project. © 2014 RStudio, Inc.

questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Interactive plots 336

2.50 Interactive plots

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Interactive plots
ADDED: 13 MAY 2015

As of version 0.12.0, Shiny has built-in support for interacting with static plots generated by R’s base graphics
functions, and those generated by ggplot2.

This makes it easy to add features like selecting points and regions, as well as zooming in and out of images.

Basics
To get the position of the mouse when a plot is clicked, you simply need to use the click option with the
plotOutput() . For example, this will define a new input value, input$plot_click , which contains the location of

the previous mouse click.

plotOutput("plot1", click = "plot_click")

For example, this app will print out the x and y position of the mouse cursor when a click occurs (to see it in action,
cut and paste this code into the R console):

library(shiny)

ui <- basicPage(

 plotOutput("plot1", click = "plot_click"),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 plot(mtcars$wt, mtcars$mpg)

 })

 output$info <- renderText({

 paste0("x=", input$plot_click$x, "\ny=", input$plot_click$y)

 })

}

shinyApp(ui, server)

Interactive plots 337

please wait

Notice that the x and y coordinates are scaled to the data, as opposed to simply being the pixel coordinates. This
makes it easy to use those values to select or filter data.

The other types of interactions are double-clicking, hovering, and brushing. (Brushing is clicking and dragging a
selection box.) They can be enabled with the dblclick , hover , and brush options. In the example below, all of
these are enabled, and the coordinates are displayed below

ui <- basicPage(

 plotOutput("plot1",

 click = "plot_click",

 dblclick = "plot_dblclick",

 hover = "plot_hover",

 brush = "plot_brush"

),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 plot(mtcars$wt, mtcars$mpg)

 })

 output$info <- renderText({

 xy_str <- function(e) {

 if(is.null(e)) return("NULL\n")

 paste0("x=", round(e$x, 1), " y=", round(e$y, 1), "\n")

 }

 xy_range_str <- function(e) {

 if(is.null(e)) return("NULL\n")

 paste0("xmin=", round(e$xmin, 1), " xmax=", round(e$xmax, 1),

 " ymin=", round(e$ymin, 1), " ymax=", round(e$ymax, 1))

 }

 paste0(

 "click: ", xy_str(input$plot_click),

 "dblclick: ", xy_str(input$plot_dblclick),

Interactive plots 338
 "hover: ", xy_str(input$plot_hover),

 "brush: ", xy_range_str(input$plot_brush)

)

 })

}

shinyApp(ui, server)

please wait

While click , dblclick , and hover have x and y coordinates, brush is slightly different: because it’s a box, it
has xmin , xmax , ymin , and ymax .

Next: learn about how to easily select rows of data with interactive plots.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Selecting rows of data 339

2.51 Selecting rows of data

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Selecting rows of data
ADDED: 13 MAY 2015

A common use of mouse interactions is to select rows of data from an input data frame. Although you could write
code that uses the x and y (or the corresponding min and max) values to filter rows from the data frame, there is
an easier way to do it. Shiny provides two convenience functions for selecting rows of data:

nearPoints() : Uses the x and y value from the interaction data; to be used with click , dblclick , and
hover .
brushedPoints() : Uses the xmin , xmax , ymin , and ymax values from the interaction data; to be used

with brush .

Note that these functions are only appropriate if the x and y variables are present in the data frame, without any
transformation. If, for example, you have a plot where a the x position is calculated from a column of data, then these
functions won’t work. In such a case, it may be useful to first calculate a new column and store it in the data frame.

Selection with nearPoints()
Here is a basic example of the nearPoints function. If you pass it the data frame with the plotted data, the mouse
interaction object from input , and the names of the x and y variables, it will return a data frame with just selected
rows.

ui <- basicPage(

 plotOutput("plot1", click = "plot_click"),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 plot(mtcars$wt, mtcars$mpg)

 })

 output$info <- renderPrint({

 # With base graphics, need to tell it what the x and y variables are.

 nearPoints(mtcars, input$plot_click, xvar = "wt", yvar = "mpg")

 # nearPoints() also works with hover and dblclick events

 })

}

shinyApp(ui, server)

Selecting rows of data 340

please wait

By default, nearPoints will return all rows of data that are within 5 pixels of the mouse event, and they will be
sorted by distance, with the nearest first. The radius can be customized with threshold , and the number of rows
returned can be customized with maxpoints .

If you’re using plots created by ggplot2, it’s not necessary to specify xvar and yvar , since they can be
autodetected. (Bear in mind that if the variables are calculated from the data – for example with aes(x = wt/2) –
this won’t work.)

The version below uses a plot with ggplot2, and displays the one point that is closest to the click, and within 10
pixels.

library(ggplot2)

ui <- basicPage(

 plotOutput("plot1", click = "plot_click"),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point()

 })

 output$info <- renderPrint({

 # With ggplot2, no need to tell it what the x and y variables are.

 # threshold: set max distance, in pixels

 # maxpoints: maximum number of rows to return

 # addDist: add column with distance, in pixels

 nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1,

 addDist = TRUE)

 })

}

shinyApp(ui, server)

Selecting rows of data 341

please wait

Selection with brushedPoints()
To select rows using a brush, use the brushedPoints() function. Basic usage is similar to nearPoints() : it
returns the rows of data that are under the brush.

ui <- basicPage(

 plotOutput("plot1", brush = "plot_brush"),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 plot(mtcars$wt, mtcars$mpg)

 })

 output$info <- renderPrint({

 # With base graphics, need to tell it what the x and y variables are.

 brushedPoints(mtcars, input$plot_brush, xvar = "wt", yvar = "mpg")

 })

}

shinyApp(ui, server)

Selecting rows of data 342

please wait

With ggplot2 graphics, you don’t need to supply xvar and yvar because they can be inferred automatically. Also,
brushedPoints() and nearPoints() both work with facets in ggplot2.

library(ggplot2)

ui <- basicPage(

 plotOutput("plot1", brush = "plot_brush", height = 250),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point() +

 facet_grid(. ~ cyl) +

 theme_bw()

 })

 output$info <- renderPrint({

 brushedPoints(mtcars, input$plot_brush)

 })

}

shinyApp(ui, server)

please wait

Selecting rows of data 343

Getting the position of selected rows
Instead of getting just the selected rows, it’s sometimes useful to get all the rows, but with a column indicating which
rows are selected. For both nearPoints() and brushedPoints() , you can do this with the allRows option.

library(ggplot2)

ui <- basicPage(

 plotOutput("plot1", brush = "plot_brush"),

 verbatimTextOutput("info")

)

server <- function(input, output) {

 options(width = 100) # Increase text width for printing table

 output$plot1 <- renderPlot({

 ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point()

 })

 output$info <- renderPrint({

 brushedPoints(mtcars, input$plot_brush, allRows = TRUE)

 })

}

shinyApp(ui, server)

This can be useful if you need the row position of the selected points. For example, this can be used to allow clicking
on points to exclude them from an analysis, as in this example where you can exclude points from a linear model.

please wait

Selecting rows of data 344

Options
Mouse interactions have default settings that suitable for most use cases, but the settings can be customized.

To do this, for the click , dblclick , hover , and brush options, instead of passing them a string, you would
pass them the value from clickOpts() , dblclickOpts() , hoverOpts() , or brushOpts() .

For example, by default, a brush is a light transparent blue, and it can be controlled in both the vertical and horizontal
directions. In the code below, using the brushOpts() function, we use the same input ID as before,
"plot_brush" , but now we can set the fill color to a light gray, and make the brush operate just in the horizontal

direction.

library(ggplot2)

ui <- basicPage(

 plotOutput("plot1",

 brush = brushOpts(id = "plot_brush", fill = "#ccc", direction = "x"),

 height = 250

)

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 ggplot(ChickWeight, aes(x=Time, y=weight, colour=factor(Chick))) +

 geom_line() +

 guides(colour=FALSE) +

 theme_bw()

 })

}

shinyApp(ui, server)

please wait

Selecting rows of data 345

Shiny is an RStudio project. © 2014 RStudio, Inc.

For more information about the available options, see ?clickOpts , ?dblclickOpts , ?hoverOpts , and
?brushOpts .

Next: learn about advanced plot interaction features.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Aspro

This is a really great tutorial.
Is this applicable to 3D plots also?

Emma Bassein

This is super helpful, thanks! Is there any way to be able to make multiple brush
selections at once? Like if you wanted to select two different areas of non-continuous
data.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Interactive plots - advanced 346

2.52 Interactive plots - advanced

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Interactive plots - advanced
ADDED: 25 MAY 2015

This article contains information about using Shiny’s image and plot interaction features to perform some more
advanced tasks.

To get a look at most of the features available in plot interactions, see the advanced demo app.

Interactions with bitmap images
The plot interaction article describes how to interact with plots generated by R’s base graphics and ggplot2. Shiny
also supports interactions with arbitrary bitmap (for example, PNG or JPEG) images. There is one change in the
information returned for these mouse events: instead of plot coordinates scaled to the data, they will contain pixel
coordinates. You may need to transform these coordinates to something useful for your data.

The only difference in the code is that, instead of using renderPlot() , you would use renderImage() . For an
example, see the image interaction demo app.

Mouse event data
If you’d like to see the data structures returned by mouse interactions, see the basic demo app.

Zooming
Mouse interactions can be used to implement zooming in plots. The zooming demo app shows two ways of doing
this: by zooming in a single plot, and by using one plot to control the zoom in a second plot.

Excluding points from a scatter plot
It can be useful to interactively select outliers to exclude from a prediction model. The exclude demo app shows how
to do this.

Dates and date-times
When dates and date-times are used on the x or y axis, the selected values will be returned from the browser as
numeric values. The nearPoints() and brushedPoints() functions will automatically handle the type
conversions, but if you want to do the conversions manually, you would use something like the following:

 # If the x variable is a Date

 as.Date(input$plot_click$x, origin = "1970-01-01")

 # If the y variable is POSIXct

 as.POSIXct(input$plot_click$y, origin = "1970-01-01")

Interactive plots - advanced 347
The origin is the date or time to count from, and midnight on 1970-01-01 is the usual value.

Note: for datetimes, it is generally preferable to use data of class POSIXct instead of POSIXlt , because the
storage format of POSIXlt is more difficult to work with.

Another possibility is, instead of converting the mouse coordinates to dates or times, you could convert the data
values to numbers, and then do some comparison with the input values:

 # If the x variable, in data$dates, is a Date

 # Find which rows are within 1 day of the click

 selectedRows <- abs(as.numeric(data$dates) - input$plot_click$x) < 1

Categorical axes (including bar graphs)
For plots that have axes with categorical values (factors or character vectors), the values returned from the browser
will be numeric. To compare the mouse coordinate values the data values, you will need to coerce the data to
numeric values.

For mouse click/double-click/hover events, you will typically want to round the mouse’s x or y value so that it can be
compared to the data values. The app below demonstrates how to do this:

library(ggplot2)

ui <- fluidPage(

 fluidRow(

 plotOutput("plot1", height = 300, width = 300,

 click = "plot1_click",

)

),

 verbatimTextOutput("x_value"),

 verbatimTextOutput("selected_rows")

)

server <- function(input, output) {

 output$plot1 <- renderPlot({

 plot(ToothGrowth$supp, ToothGrowth$len)

 })

 # Print the name of the x value

 output$x_value <- renderPrint({

 if (is.null(input$plot1_click$x)) return()

 lvls <- levels(ToothGrowth$supp)

 lvls[round(input$plot1_click$x)]

 })

 # Print the rows of the data frame which match the x value

 output$selected_rows <- renderPrint({

 if (is.null(input$plot1_click$x)) return()

 keeprows <- round(input$plot1_click$x) == as.numeric(ToothGrowth$supp)

 ToothGrowth[keeprows,]

 })

}

shinyApp(ui, server)

Interactive plots - advanced 348

Shiny is an RStudio project. © 2014 RStudio, Inc.

For brushing, it usually make more sense to check if a factor level’s corresponding numeric value is within the xmin
and xmax (or ymin and ymax).

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Upgrade notes for Shiny 0.11 349

2.53 Upgrade notes for Shiny 0.11

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Upgrade notes for Shiny 0.11
ADDED: 06 JAN 2015
BY: WINSTON CHANG

Shiny 0.11 switches away from the Bootstrap 2 web framework to the next version, Bootstrap 3. This is in part
because Bootstrap 2 is no longer being developed, and in part because it allows us to tap into the ecosystem of
Bootstrap 3 themes.

Known issues for migration
In Bootstrap 3, images in tags are no longer automatically scaled to the width of their container. If you
use img() in your UI code, or tags in your raw HTML source, it’s possible that they will be too large
in the new version of Shiny. To address this you can add the img-responsive class:

img(src = "picture.png", class = "img-responsive")

The R code above will generate the following HTML:

The sliders have been replaced. Previously, Shiny used the jslider library, but now it uses ion.RangeSlider.
The new sliders have an updated appearance, and they have allowed us to fix many long-standing interface
issues with the sliders.

The sliderInput() function no longer uses the format or locale options. Instead, you can use
pre , post , and sep options to control the prefix, postfix, and thousands separator.

updateSliderInput() can now control the min, max, value, and step size of a slider. Previously, only
the value could be controlled this way, and if you wanted to change other values, you needed to use
Shiny’s dynamic UI.

If in your HTML you are using custom CSS classes that are specific to Bootstrap, you may need to update
them for Bootstrap 3. See the Bootstrap migration guide.

If you encounter other migration issues, please let us know on the shiny-discuss mailing list, or on the Shiny issue
tracker.

Using shinybootstrap2
If you would like to use Shiny 0.11 with Bootstrap 2, you can use the shinybootstrap2 package. Installation and
usage instructions are on available on the project page. We recommend that you do this only as a temporary solution
because future development on Shiny will use Bootstrap 3.

Upgrade notes for Shiny 0.11 350

Installing an older version of Shiny
If you want to install a specific version of Shiny other than the latest CRAN release, you can use the
install_version() function from devtools:

Install devtools if you don't already have it:

install.package("devtools")

Install the last version of Shiny prior to 0.11

devtools::install_version("shiny", "0.10.2.2")

Themes
Along with the release of Shiny 0.11, we’ve packaged up some Bootstrap 3 themes in the shinythemes package. This
package makes it easy to use Bootstrap themes with Shiny.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Alex Lemm

For those of you who struggled with downgrading Shiny using install_version under
Windows like I did, here is an alternative which worked for me:
devtools::install_github("rstudio/shiny@v0.10.2.2")

Samer Mouksassi

Thanks indeed : devtools::install_version("shiny", "0.10.2.2") was not working on my
end !

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

comments powered by Disqus

Upgrade notes for Shiny 0.12 351

2.54 Upgrade notes for Shiny 0.12

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Upgrade notes for Shiny 0.12
ADDED: 29 MAY 2015
BY: WINSTON CHANG

In addition to the changes listed in the NEWS file for Shiny 0.12.0, there is an infrastructure change that could affect
existing Shiny apps.

JSON serialization
In Shiny 0.12.0, we’ve switched from RJSONIO to jsonlite. For the vast majority of users, this will result in no
noticeable changes; however, if you use any packages in your Shiny apps which rely on the htmlwidgets, you will also
need to update htmlwidgets to 0.4.0. Both of these packages will issue a message when loaded, if the other package
needs to be upgraded.

POSIXt objects are now serialized to JSON in UTC8601 format (like “2015-03-20T20:00:00Z”), instead of as seconds
from the epoch. If you have a Shiny app which uses sendCustomMessage() to send datetime (POSIXt) objects,
then you may need to modify your Javascript code to receive time data in this format.

A note about Data Tables
Shiny 0.12.0 deprecated Shiny’s dataTableOutput and renderDataTable functions and instructed you to migrate to
the nascent DT package instead. (We’ll talk more about DT in a future blog post.) User feedback has indicated this
transition was too sudden and abrupt, so we’ve undeprecated these functions in 0.12.1. We’ll continue to support
these functions until DT has had more time to mature.

We love it when R users help each other, but RStudio does not monitor or answer the comments in this thread. If
you'd like to get specific help, we recommend the Shiny Discussion Forum for in depth discussion of Shiny related
questions and How to get help for a list of the best ways to get help with R code.

Sorry, the browser you are using is not currently supported. Disqus actively supports the following browsers:

Firefox
Chrome
Internet Explorer 10+
Safari

Shiny Function Reference 352

3 Function Reference

3.1 Function reference version 0.12.1

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Function reference version 0.12.1

UI Layout
Functions for laying out the user interface for your application.

absolutePanel
(fixedPanel)

Panel with absolute positioning

bootstrapPage (basicPage) Create a Bootstrap page

column Create a column within a UI definition

conditionalPanel Conditional Panel

fixedPage (fixedRow) Create a page with a fixed layout

fluidPage (fluidRow) Create a page with fluid layout

headerPanel Create a header panel

helpText Create a help text element

icon Create an icon

mainPanel Create a main panel

navbarPage (navbarMenu) Create a page with a top level navigation bar

navlistPanel Create a navigation list panel

pageWithSidebar Create a page with a sidebar

sidebarLayout Layout a sidebar and main area

sidebarPanel Create a sidebar panel

tabPanel Create a tab panel

tabsetPanel Create a tabset panel

titlePanel Create a panel containing an application title.

inputPanel Input panel

flowLayout Flow layout

splitLayout Split layout

verticalLayout Lay out UI elements vertically

wellPanel Create a well panel

withMathJax Load the MathJax library and typeset math expressions

Function reference version 0.12.1 353

UI Inputs
Functions for creating user interface elements that prompt the user for input values or
interaction.

actionButton (actionLink) Action button/link

checkboxGroupInput Checkbox Group Input Control

checkboxInput Checkbox Input Control

dateInput Create date input

dateRangeInput Create date range input

fileInput File Upload Control

numericInput Create a numeric input control

radioButtons Create radio buttons

selectInput
(selectizeInput)

Create a select list input control

sliderInput
(animationOptions)

Slider Input Widget

submitButton Create a submit button

textInput Create a text input control

passwordInput Create a password input control

updateCheckboxGroupInput Change the value of a checkbox group input on the client

updateCheckboxInput Change the value of a checkbox input on the client

updateDateInput Change the value of a date input on the client

updateDateRangeInput Change the start and end values of a date range input on the client

updateNumericInput Change the value of a number input on the client

updateRadioButtons Change the value of a radio input on the client

updateSelectInput
(updateSelectizeInput)

Change the value of a select input on the client

updateSliderInput Change the value of a slider input on the client

updateTabsetPanel Change the selected tab on the client

updateTextInput Change the value of a text input on the client

UI Outputs
Functions for creating user interface elements that, in conjunction with rendering functions,
display different kinds of output from your application.

htmlOutput (uiOutput) Create an HTML output element

imageOutput (plotOutput) Create an plot or image output element

outputOptions Set options for an output object.

tableOutput Create a table output element

Function reference version 0.12.1 354
(dataTableOutput)

textOutput Create a text output element

verbatimTextOutput Create a verbatim text output element

downloadButton
(downloadLink)

Create a download button or link

Progress Reporting progress (object-oriented API)

withProgress
(incProgress,
setProgress)

Reporting progress (functional API)

Interface builder functions
A sub-library for writing HTML using R functions. These functions form the foundation on
which the higher level user interface functions are built, and can also be used in your Shiny
UI to provide custom HTML, CSS, and JavaScript.

builder (a, br, code,
div, em, h1, h2, h3, h4,
h5, h6, hr, img, p, pre,
span, strong, tags)

HTML Builder Functions

HTML Mark Characters as HTML

include (includeCSS,
includeHTML,
includeMarkdown,
includeScript,
includeText)

Include Content From a File

singleton (is.singleton) Include content only once

tag (tagAppendAttributes,
tagAppendChild,
tagAppendChildren,
tagList, tagSetChildren)

HTML Tag Object

validateCssUnit Validate proper CSS formatting of a unit

withTags Evaluate an expression using

Rendering functions
Functions that you use in your application's server side code, assigning them to outputs that
appear in your user interface.

renderPlot Plot Output

renderText Text Output

renderPrint Printable Output

renderDataTable Table output with the JavaScript library DataTables

renderImage Image file output

renderTable Table Output

Function reference version 0.12.1 355
renderUI UI Output

downloadHandler File Downloads

reactivePlot Plot output (deprecated)

reactivePrint Print output (deprecated)

reactiveTable Table output (deprecated)

reactiveText Text output (deprecated)

reactiveUI UI output (deprecated)

Reactive constructs
A sub-library that provides reactive programming facilities for R.

invalidateLater Scheduled Invalidation

is.reactivevalues Checks whether an object is a reactivevalues object

isolate Create a non-reactive scope for an expression

makeReactiveBinding Make a reactive variable

observe Create a reactive observer

observeEvent
(eventReactive)

Event handler

reactive (is.reactive) Create a reactive expression

reactiveFileReader Reactive file reader

reactivePoll Reactive polling

reactiveTimer Timer

reactiveValues Create an object for storing reactive values

reactiveValuesToList Convert a reactivevalues object to a list

domains
(getDefaultReactiveDomain,
onReactiveDomainEnded,
withReactiveDomain)

Reactive domains

showReactLog Reactive Log Visualizer

Boilerplate
Functions that are required boilerplate in ui.R and server.R.

shinyUI Create a Shiny UI handler

shinyServer Define Server Functionality

Running
Functions that are used to run or stop Shiny applications.

Function reference version 0.12.1 356
runApp Run Shiny Application

runExample Run Shiny Example Applications

runUrl (runGist,
runGitHub)

Run a Shiny application from a URL

stopApp Stop the currently running Shiny app

Extending Shiny
Functions that are intended to be called by third-party packages that extend Shiny.

createWebDependency Create a web dependency

addResourcePath Resource Publishing

registerInputHandler Register an Input Handler

removeInputHandler Deregister an Input Handler

markRenderFunction Mark a function as a render function

Utility functions
Miscellaneous utilities that may be useful to advanced users or when extending Shiny.

validate (need) Validate input values and other conditions

session Session object

exprToFunction Convert an expression to a function

installExprFunction Install an expression as a function

parseQueryString Parse a GET query string from a URL

plotPNG Run a plotting function and save the output as a PNG

repeatable Make a random number generator repeatable

shinyDeprecated Print message for deprecated functions in Shiny

serverInfo Collect information about the Shiny Server environment

shiny-options Global options for Shiny

Plot interaction
Functions related to interactive plots

brushedPoints Find rows of data that are selected by a brush

brushOpts Create an object representing brushing options

clickOpts Create an object representing click options

dblclickOpts Create an object representing double-click options

hoverOpts Create an object representing hover options

nearPoints Find rows of data that are near a click/hover/double-click

Function reference version 0.12.1 357

Shiny is an RStudio project. © 2014 RStudio, Inc.

Embedding
Functions that are intended for third-party packages that embed Shiny applications.

shinyApp
(as.shiny.appobj,
as.shiny.appobj.character,
as.shiny.appobj.list,
as.shiny.appobj.shiny.appobj,
as.tags.shiny.appobj,
is.shiny.appobj,
print.shiny.appobj,
shinyAppDir)

Create a Shiny app object

maskReactiveContext Evaluate an expression without a reactive context

Panel with absolute positioning 358

3.2 Panel with absolute positioning

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Panel with absolute positioning
absolutePanel(..., top = NULL, left = NULL, right = NULL, bottom = NULL, width = NULL, height = NULL,

draggable = FALSE, fixed = FALSE, cursor = c("auto", "move", "default", "inherit"))

fixedPanel(..., top = NULL, left = NULL, right = NULL, bottom = NULL, width = NULL, height = NULL, draggable = FALSE,

cursor = c("auto", "move", "default", "inherit"))

Arguments
... Attributes (named arguments) or children (unnamed arguments) that should be included in the panel.

top Distance between the top of the panel, and the top of the page or parent container.

left Distance between the left side of the panel, and the left of the page or parent container.

right Distance between the right side of the panel, and the right of the page or parent container.

bottom Distance between the bottom of the panel, and the bottom of the page or parent container.

width Width of the panel.

height Height of the panel.

draggable If TRUE , allows the user to move the panel by clicking and dragging.

fixed Positions the panel relative to the browser window and prevents it from being scrolled with the rest of the page.

cursor The type of cursor that should appear when the user mouses over the panel. Use "move" for a north-east-south-west icon, "default"
for the usual cursor arrow, or "inherit" for the usual cursor behavior (including changing to an I-beam when the cursor is over text). The
default is "auto" , which is equivalent to ifelse(draggable, "move", "inherit") .

Value
An HTML element or list of elements.

Description
Creates a panel whose contents are absolutely positioned.

Details
The absolutePanel function creates a
tag whose CSS position is set to absolute (or fixed if fixed = TRUE). The way absolute positioning works in HTML is that absolute coordinates are specified relative to its nearest parent element whose position is not set to static (which is the default), and if no such parent is found, then relative to the page borders. If you're not sure what that means, just keep in mind that you may get strange results if you use absolutePanel from inside of certain types of panels.

The fixedPanel function is the same as absolutePanel with fixed = TRUE .

The position (top , left , right , bottom) and size (width , height) parameters are all optional, but you should specify exactly two of top , bottom , and height and exactly two of left , right , and width for predictable results.

Like most other distance parameters in Shiny, the position and size parameters take a number (interpreted as pixels) or a valid CSS size string, such as "100px" (100 pixels) or "25%" .

For arcane HTML reasons, to have the panel fill the page or parent you should specify 0 for top , left , right , and bottom rather than the more obvious width = "100%" and height = "100%" .

Create a Bootstrap page 359

3.3 Create a Bootstrap page

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a Bootstrap page
bootstrapPage(..., title = NULL, responsive = NULL, theme = NULL)

basicPage(...)

Arguments
... The contents of the document body.

title The browser window title (defaults to the host URL of the page)

responsive This option is deprecated; it is no longer optional with Bootstrap 3.

theme Alternative Bootstrap stylesheet (normally a css file within the www directory, e.g.
www/bootstrap.css)

Value
A UI defintion that can be passed to the shinyUI function.

Description
Create a Shiny UI page that loads the CSS and JavaScript for Bootstrap, and has no content in the page body (other
than what you provide).

Details
This function is primarily intended for users who are proficient in HTML/CSS, and know how to lay out pages in
Bootstrap. Most applications should use fluidPage along with layout functions like fluidRow and
sidebarLayout .

Note
The basicPage function is deprecated, you should use the fluidPage function instead.

See also
fluidPage , fixedPage

Create a column within a UI definition 360

3.4 Create a column within a UI definition

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a column within a UI definition
column(width, ..., offset = 0)

Arguments
width The grid width of the column (must be between 1 and 12)

... Elements to include within the column

offset The number of columns to offset this column from the end of the previous column.

Value
A column that can be included within a fluidRow or fixedRow .

Description
Create a column for use within a fluidRow or fixedRow

Examples
fluidRow(
 column(4,
 sliderInput("obs", "Number of observations:",
 min = 1, max = 1000, value = 500)
),
 column(8,
 plotOutput("distPlot")
)
)

<div class="row">
 <div class="col-sm-4">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="obs">Number of observations:</label>
 <input class="js-range-slider" id="obs" data-min="1" data-max="1000" data-from="500" data-ste
p="1" data-grid="true" data-grid-num="9.99" data-grid-snap="false" data-prettify-separator="," data
-keyboard="true" data-keyboard-step="0.1001001001001"/>
 </div>
 </div>
 <div class="col-sm-8">
 <div id="distPlot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
</div>

Create a column within a UI definition 361

Shiny is an RStudio project. © 2014 RStudio, Inc.

fluidRow(
 column(width = 4,
 "4"
),
 column(width = 3, offset = 2,
 "3 offset 2"
)
)

<div class="row">
 <div class="col-sm-4">4</div>
 <div class="col-sm-3 col-sm-offset-2">3 offset 2</div>
</div>

See also
fluidRow , fixedRow .

Conditional Panel 362

3.5 Conditional Panel

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Conditional Panel
conditionalPanel(condition, ...)

Arguments
condition A JavaScript expression that will be evaluated repeatedly to determine whether the panel should be

displayed.

... Elements to include in the panel.

Description
Creates a panel that is visible or not, depending on the value of a JavaScript expression. The JS expression is
evaluated once at startup and whenever Shiny detects a relevant change in input/output.

Details
In the JS expression, you can refer to input and output JavaScript objects that contain the current values of
input and output. For example, if you have an input with an id of foo , then you can use input.foo to read its
value. (Be sure not to modify the input/output objects, as this may cause unpredictable behavior.)

Note
You are not recommended to use special JavaScript characters such as a period . in the input id's, but if you do
use them anyway, for example, inputId = "foo.bar" , you will have to use input["foo.bar"] instead of
input.foo.bar to read the input value.

Examples
sidebarPanel(
 selectInput(
 "plotType", "Plot Type",
 c(Scatter = "scatter",
 Histogram = "hist")),

 # Only show this panel if the plot type is a histogram
 conditionalPanel(
 condition = "input.plotType == 'hist'",
 selectInput(
 "breaks", "Breaks",
 c("Sturges",
 "Scott",
 "Freedman-Diaconis",

Conditional Panel 363

Shiny is an RStudio project. © 2014 RStudio, Inc.

 "[Custom]" = "custom")),

 # Only show this panel if Custom is selected
 conditionalPanel(
 condition = "input.breaks == 'custom'",
 sliderInput("breakCount", "Break Count", min=1, max=1000, value=10)
)
)
)

<div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="plotType">Plot Type</label>
 <div>
 <select id="plotType"><option value="scatter" selected>Scatter</option>
<option value="hist">Histogram</option></select>
 <script type="application/json" data-for="plotType" data-nonempty="">{}</script>
 </div>
 </div>
 <div data-display-if="input.plotType == 'hist'">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="breaks">Breaks</label>
 <div>
 <select id="breaks"><option value="Sturges" selected>Sturges</option>
<option value="Scott">Scott</option>
<option value="Freedman-Diaconis">Freedman-Diaconis</option>
<option value="custom">[Custom]</option></select>
 <script type="application/json" data-for="breaks" data-nonempty="">{}</script>
 </div>
 </div>
 <div data-display-if="input.breaks == 'custom'">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="breakCount">Break Count</label>
 <input class="js-range-slider" id="breakCount" data-min="1" data-max="1000" data-from="10
" data-step="1" data-grid="true" data-grid-num="9.99" data-grid-snap="false" data-prettify-separat
or="," data-keyboard="true" data-keyboard-step="0.1001001001001"/>
 </div>
 </div>
 </div>
 </form>
</div>

Create a page with a fixed layout 364

3.6 Create a page with a fixed layout

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a page with a fixed layout
fixedPage(..., title = NULL, responsive = NULL, theme = NULL)

fixedRow(...)

Arguments
... Elements to include within the container

title The browser window title (defaults to the host URL of the page)

responsive This option is deprecated; it is no longer optional with Bootstrap 3.

theme Alternative Bootstrap stylesheet (normally a css file within the www directory). For example, to use
the theme located at www/bootstrap.css you would use theme = "bootstrap.css" .

Value
A UI defintion that can be passed to the shinyUI function.

Description
Functions for creating fixed page layouts. A fixed page layout consists of rows which in turn include columns. Rows
exist for the purpose of making sure their elements appear on the same line (if the browser has adequate width).
Columns exist for the purpose of defining how much horizontal space within a 12-unit wide grid it's elements should
occupy. Fixed pages limit their width to 940 pixels on a typical display, and 724px or 1170px on smaller and larger
displays respectively.

Details
To create a fixed page use the fixedPage function and include instances of fixedRow and column within it. Note
that unlike fluidPage , fixed pages cannot make use of higher-level layout functions like sidebarLayout , rather,
all layout must be done with fixedRow and column .

Note
See the Shiny Application Layout Guide for additional details on laying out fixed pages.

Examples
shinyUI(fixedPage(
 title = "Hello, Shiny!",
 fixedRow(
 column(width = 4,

Create a page with a fixed layout 365

Shiny is an RStudio project. © 2014 RStudio, Inc.

 "4"
),
 column(width = 3, offset = 2,
 "3 offset 2"
)
)
))

<div class="container">
 <div class="row">
 <div class="col-sm-4">4</div>
 <div class="col-sm-3 col-sm-offset-2">3 offset 2</div>
 </div>
</div>

See also
column

Create a page with fluid layout 366

3.7 Create a page with fluid layout

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a page with fluid layout
fluidPage(..., title = NULL, responsive = NULL, theme = NULL)

fluidRow(...)

Arguments
... Elements to include within the page

title The browser window title (defaults to the host URL of the page). Can also be set as a side effect of
the titlePanel function.

responsive This option is deprecated; it is no longer optional with Bootstrap 3.

theme Alternative Bootstrap stylesheet (normally a css file within the www directory). For example, to use
the theme located at www/bootstrap.css you would use theme = "bootstrap.css" .

Value
A UI defintion that can be passed to the shinyUI function.

Description
Functions for creating fluid page layouts. A fluid page layout consists of rows which in turn include columns. Rows
exist for the purpose of making sure their elements appear on the same line (if the browser has adequate width).
Columns exist for the purpose of defining how much horizontal space within a 12-unit wide grid it's elements should
occupy. Fluid pages scale their components in realtime to fill all available browser width.

Details
To create a fluid page use the fluidPage function and include instances of fluidRow and column within it. As
an alternative to low-level row and column functions you can also use higher-level layout functions like
sidebarLayout .

Note
See the Shiny-Application-Layout-Guide for additional details on laying out fluid pages.

Examples
shinyUI(fluidPage(

 # Application title
 titlePanel("Hello Shiny!"),

Create a page with fluid layout 367
 sidebarLayout(

 # Sidebar with a slider input
 sidebarPanel(
 sliderInput("obs",
 "Number of observations:",
 min = 0,
 max = 1000,
 value = 500)
),

 # Show a plot of the generated distribution
 mainPanel(
 plotOutput("distPlot")
)
)
))

<div class="container-fluid">
 <h2>Hello Shiny!</h2>
 <div class="row">
 <div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="obs">Number of observations:</label>
 <input class="js-range-slider" id="obs" data-min="0" data-max="1000" data-from="500" data
-step="1" data-grid="true" data-grid-num="10" data-grid-snap="false" data-prettify-separator="," d
ata-keyboard="true" data-keyboard-step="0.1"/>
 </div>
 </form>
 </div>
 <div class="col-sm-8">
 <div id="distPlot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 </div>
</div>

shinyUI(fluidPage(
 title = "Hello Shiny!",
 fluidRow(
 column(width = 4,
 "4"
),
 column(width = 3, offset = 2,
 "3 offset 2"
)
)
))

<div class="container-fluid">
 <div class="row">
 <div class="col-sm-4">4</div>
 <div class="col-sm-3 col-sm-offset-2">3 offset 2</div>
 </div>
</div>

Create a page with fluid layout 368

Shiny is an RStudio project. © 2014 RStudio, Inc.

See also
column , sidebarLayout

Create a header panel 369

3.8 Create a header panel

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a header panel
headerPanel(title, windowTitle = title)

Arguments
title An application title to display

windowTitle The title that should be displayed by the browser window. Useful if title is not a string.

Value
A headerPanel that can be passed to pageWithSidebar

Description
Create a header panel containing an application title.

Examples
headerPanel("Hello Shiny!")

<div class="col-sm-12">
 <h1>Hello Shiny!</h1>
</div>

Create a help text element 370

3.9 Create a help text element

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a help text element
helpText(...)

Arguments
... One or more help text strings (or other inline HTML elements)

Value
A help text element that can be added to a UI definition.

Description
Create help text which can be added to an input form to provide additional explanation or context.

Examples
helpText("Note: while the data view will show only",
 "the specified number of observations, the",
 "summary will be based on the full dataset.")

 Note: while the data view will show only
 the specified number of observations, the
 summary will be based on the full dataset.

Create an icon 371

3.10 Create an icon

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an icon
icon(name, class = NULL, lib = "font-awesome")

Arguments
name Name of icon. Icons are drawn from the Font Awesome and Glyphicons" libraries. Note that the "fa-" and

"glyphicon-" prefixes should not be used in icon names (i.e. the "fa-calendar" icon should be referred to as
"calendar")

class Additional classes to customize the style of the icon (see the usage examples for details on supported
styles).

lib Icon library to use ("font-awesome" or "glyphicon")

Value
An icon element

Description
Create an icon for use within a page. Icons can appear on their own, inside of a button, or as an icon for a
tabPanel within a navbarPage .

Examples
icon("calendar") # standard icon

<i class="fa fa-calendar"></i>

icon("calendar", "fa-3x") # 3x normal size

<i class="fa fa-calendar fa-3x"></i>

icon("cog", lib = "glyphicon") # From glyphicon library

<i class="glyphicon glyphicon-cog"></i>

add an icon to a submit button
submitButton("Update View", icon = icon("refresh"))

<div>
 <button type="submit" class="btn btn-primary">
 <i class="fa fa-refresh"></i>

Create an icon 372
 Update View
 </button>
</div>

shinyUI(navbarPage("App Title",
 tabPanel("Plot", icon = icon("bar-chart-o")),
 tabPanel("Summary", icon = icon("list-alt")),
 tabPanel("Table", icon = icon("table"))
))

<nav class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 App Title
 </div>
 <ul class="nav navbar-nav">
 <li class="active">

 <i class=" fa fa-bar-chart-o fa-fw"></i>
 Plot

 <i class=" fa fa-list-alt fa-fw"></i>
 Summary

 <i class=" fa fa-table fa-fw"></i>
 Table

 </div>
</nav>
<div class="container-fluid">
 <div class="tab-content">
 <div class="tab-pane active" data-value="Plot" data-icon-class="fa fa-bar-chart-o" id="tab-106
5-1"></div>
 <div class="tab-pane" data-value="Summary" data-icon-class="fa fa-list-alt" id="tab-1065-2"></
div>
 <div class="tab-pane" data-value="Table" data-icon-class="fa fa-table" id="tab-1065-3"></div>
 </div>
</div>

See also
For lists of available icons, see http://fontawesome.io/icons/ and http://getbootstrap.com/components/#glyphicons.

Create a main panel 373

3.11 Create a main panel

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a main panel
mainPanel(..., width = 8)

Arguments
... Output elements to include in the main panel

width The width of the main panel. For fluid layouts this is out of 12 total units; for fixed layouts it is out of
whatever the width of the main panel's parent column is.

Value
A main panel that can be passed to sidebarLayout .

Description
Create a main panel containing output elements that can in turn be passed to sidebarLayout .

Examples
Show the caption and plot of the requested variable against mpg
mainPanel(
 h3(textOutput("caption")),
 plotOutput("mpgPlot")
)

<div class="col-sm-8">
 <h3>
 <div id="caption" class="shiny-text-output"></div>
 </h3>
 <div id="mpgPlot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
</div>

Create a page with a top level 374

3.12 Create a page with a top level

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a page with a top level
navigation bar
navbarPage(title, ..., id = NULL, position = c("static-top", "fixed-top", "fixed-bottom"),

header = NULL, footer = NULL, inverse = FALSE, collapsible = FALSE, collapsable,

fluid = TRUE, responsive = NULL, theme = NULL, windowTitle = title)

navbarMenu(title, ..., icon = NULL)

Arguments
title The title to display in the navbar

... tabPanel elements to include in the page

id If provided, you can use input$ id in your server logic to determine which of the current tabs is
active. The value will correspond to the value argument that is passed to tabPanel .

position Determines whether the navbar should be displayed at the top of the page with normal scrolling
behavior ("static-top"), pinned at the top ("fixed-top"), or pinned at the bottom
("fixed-bottom"). Note that using "fixed-top" or "fixed-bottom" will cause the navbar to
overlay your body content, unless you add padding, e.g.:
tags$style(type="text/css", "body {padding-top: 70px;}")

header Tag or list of tags to display as a common header above all tabPanels.

footer Tag or list of tags to display as a common footer below all tabPanels

inverse TRUE to use a dark background and light text for the navigation bar

collapsible TRUE to automatically collapse the navigation elements into a menu when the width of the browser
is less than 940 pixels (useful for viewing on smaller touchscreen device)

collapsable Deprecated; use collapsible instead.

fluid TRUE to use a fluid layout. FALSE to use a fixed layout.

responsive This option is deprecated; it is no longer optional with Bootstrap 3.

theme Alternative Bootstrap stylesheet (normally a css file within the www directory). For example, to use
the theme located at www/bootstrap.css you would use theme = "bootstrap.css" .

windowTitle The title that should be displayed by the browser window. Useful if title is not a string.

icon Optional icon to appear on a navbarMenu tab.

Value
A UI defintion that can be passed to the shinyUI function.

Create a page with a top level 375

Description
Create a page that contains a top level navigation bar that can be used to toggle a set of tabPanel elements.

Details
The navbarMenu function can be used to create an embedded menu within the navbar that in turns includes
additional tabPanels (see example below).

Examples
shinyUI(navbarPage("App Title",
 tabPanel("Plot"),
 tabPanel("Summary"),
 tabPanel("Table")
))

<nav class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 App Title
 </div>
 <ul class="nav navbar-nav">
 <li class="active">
 Plot

 Summary

 Table

 </div>
</nav>
<div class="container-fluid">
 <div class="tab-content">
 <div class="tab-pane active" data-value="Plot" id="tab-3367-1"></div>
 <div class="tab-pane" data-value="Summary" id="tab-3367-2"></div>
 <div class="tab-pane" data-value="Table" id="tab-3367-3"></div>
 </div>
</div>

shinyUI(navbarPage("App Title",
 tabPanel("Plot"),
 navbarMenu("More",
 tabPanel("Summary"),
 tabPanel("Table")
)
))

<nav class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 App Title

Create a page with a top level 376

Shiny is an RStudio project. © 2014 RStudio, Inc.

 </div>
 <ul class="nav navbar-nav">
 <li class="active">
 Plot

 <li class="dropdown">

 More
 <b class="caret">

 <ul class="dropdown-menu">

 Summary

 Table

 </div>
</nav>
<div class="container-fluid">
 <div class="tab-content">
 <div class="tab-pane active" data-value="Plot" id="tab-1130-1"></div>
 <div class="tab-pane" data-value="Summary" id="tab-2344-1"></div>
 <div class="tab-pane" data-value="Table" id="tab-2344-2"></div>
 </div>
</div>

See also
tabPanel , tabsetPanel

Create a navigation list panel 377

3.13 Create a navigation list panel

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a navigation list panel
navlistPanel(..., id = NULL, selected = NULL, well = TRUE, fluid = TRUE, widths = c(4, 8))

Arguments
... tabPanel elements to include in the navlist

id If provided, you can use input$ id in your server logic to determine which of the current navlist items
is active. The value will correspond to the value argument that is passed to tabPanel .

selected The value (or, if none was supplied, the title) of the navigation item that should be selected by
default. If NULL , the first navigation will be selected.

well TRUE to place a well (gray rounded rectangle) around the navigation list.

fluid TRUE to use fluid layout; FALSE to use fixed layout.

widths Column withs of the navigation list and tabset content areas respectively.

Description
Create a navigation list panel that provides a list of links on the left which navigate to a set of tabPanels displayed to
the right.

Details
You can include headers within the navlistPanel by including plain text elements in the list. Versions of Shiny
before 0.11 supported separators with "------", but as of 0.11, separators were no longer supported. This is because
version 0.11 switched to Bootstrap 3, which doesn't support separators.

Examples
shinyUI(fluidPage(

 titlePanel("Application Title"),

 navlistPanel(
 "Header",
 tabPanel("First"),
 tabPanel("Second"),
 tabPanel("Third")
)
))

<div class="container-fluid">

Create a navigation list panel 378

Shiny is an RStudio project. © 2014 RStudio, Inc.

 <h2>Application Title</h2>
 <div class="row">
 <div class="col-sm-4 well">
 <ul class="nav nav-pills nav-stacked">
 <li class="navbar-brand">Header
 <li class="active">
 First

 Second

 Third

 </div>
 <div class="col-sm-8">
 <div class="tab-content">
 <div class="tab-pane active" data-value="First" id="tab-3608-1"></div>
 <div class="tab-pane" data-value="Second" id="tab-3608-2"></div>
 <div class="tab-pane" data-value="Third" id="tab-3608-3"></div>
 </div>
 </div>
 </div>
</div>

Create a page with a sidebar 379

3.14 Create a page with a sidebar

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a page with a sidebar
pageWithSidebar(headerPanel, sidebarPanel, mainPanel)

Arguments
headerPanel The headerPanel with the application title

sidebarPanel The sidebarPanel containing input controls

mainPanel The mainPanel containing outputs

Value
A UI defintion that can be passed to the shinyUI function

Description
Create a Shiny UI that contains a header with the application title, a sidebar for input controls, and a main area for
output.

Note
This function is deprecated. You should use fluidPage along with sidebarLayout to implement a page with a
sidebar.

Examples
Define UI
shinyUI(pageWithSidebar(

 # Application title
 headerPanel("Hello Shiny!"),

 # Sidebar with a slider input
 sidebarPanel(
 sliderInput("obs",
 "Number of observations:",
 min = 0,
 max = 1000,
 value = 500)
),

 # Show a plot of the generated distribution
 mainPanel(

Create a page with a sidebar 380

Shiny is an RStudio project. © 2014 RStudio, Inc.

 plotOutput("distPlot")
)
))

<div class="container-fluid">
 <div class="row">
 <div class="col-sm-12">
 <h1>Hello Shiny!</h1>
 </div>
 </div>
 <div class="row">
 <div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="obs">Number of observations:</label>
 <input class="js-range-slider" id="obs" data-min="0" data-max="1000" data-from="500" data
-step="1" data-grid="true" data-grid-num="10" data-grid-snap="false" data-prettify-separator="," d
ata-keyboard="true" data-keyboard-step="0.1"/>
 </div>
 </form>
 </div>
 <div class="col-sm-8">
 <div id="distPlot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 </div>
</div>

Layout a sidebar and main area 381

3.15 Layout a sidebar and main area

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Layout a sidebar and main area
sidebarLayout(sidebarPanel, mainPanel, position = c("left", "right"), fluid = TRUE)

Arguments
sidebarPanel The sidebarPanel containing input controls

mainPanel The mainPanel containing outputs

position The position of the sidebar relative to the main area ("left" or "right")

fluid TRUE to use fluid layout; FALSE to use fixed layout.

Description
Create a layout with a sidebar and main area. The sidebar is displayed with a distinct background color and typically
contains input controls. The main area occupies 2/3 of the horizontal width and typically contains outputs.

Examples
Define UI
shinyUI(fluidPage(

 # Application title
 titlePanel("Hello Shiny!"),

 sidebarLayout(

 # Sidebar with a slider input
 sidebarPanel(
 sliderInput("obs",
 "Number of observations:",
 min = 0,
 max = 1000,
 value = 500)
),

 # Show a plot of the generated distribution
 mainPanel(
 plotOutput("distPlot")
)
)
))

<div class="container-fluid">

Layout a sidebar and main area 382

Shiny is an RStudio project. © 2014 RStudio, Inc.

 <h2>Hello Shiny!</h2>
 <div class="row">
 <div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="obs">Number of observations:</label>
 <input class="js-range-slider" id="obs" data-min="0" data-max="1000" data-from="500" data
-step="1" data-grid="true" data-grid-num="10" data-grid-snap="false" data-prettify-separator="," d
ata-keyboard="true" data-keyboard-step="0.1"/>
 </div>
 </form>
 </div>
 <div class="col-sm-8">
 <div id="distPlot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 </div>
</div>

Create a sidebar panel 383

3.16 Create a sidebar panel

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a sidebar panel
sidebarPanel(..., width = 4)

Arguments
... UI elements to include on the sidebar

width The width of the sidebar. For fluid layouts this is out of 12 total units; for fixed layouts it is out of whatever
the width of the sidebar's parent column is.

Value
A sidebar that can be passed to sidebarLayout

Description
Create a sidebar panel containing input controls that can in turn be passed to sidebarLayout .

Examples
Sidebar with controls to select a dataset and specify
the number of observations to view
sidebarPanel(
 selectInput("dataset", "Choose a dataset:",
 choices = c("rock", "pressure", "cars")),

 numericInput("obs", "Observations:", 10)
)

<div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label class="control-label" for="dataset">Choose a dataset:</label>
 <div>
 <select id="dataset"><option value="rock" selected>rock</option>
<option value="pressure">pressure</option>
<option value="cars">cars</option></select>
 <script type="application/json" data-for="dataset" data-nonempty="">{}</script>
 </div>
 </div>
 <div class="form-group shiny-input-container">
 <label for="obs">Observations:</label>
 <input id="obs" type="number" class="form-control" value="10"/>
 </div>

Create a sidebar panel 384

Shiny is an RStudio project. © 2014 RStudio, Inc.

 </form>
</div>

Create a tab panel 385

3.17 Create a tab panel

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a tab panel
tabPanel(title, ..., value = title, icon = NULL)

Arguments
title Display title for tab

... UI elements to include within the tab

value The value that should be sent when tabsetPanel reports that this tab is selected. If omitted and
tabsetPanel has an id , then the title will be used..

icon Optional icon to appear on the tab. This attribute is only valid when using a tabPanel within a
navbarPage .

Value
A tab that can be passed to tabsetPanel

Description
Create a tab panel that can be included within a tabsetPanel .

Examples
Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(
 tabsetPanel(
 tabPanel("Plot", plotOutput("plot")),
 tabPanel("Summary", verbatimTextOutput("summary")),
 tabPanel("Table", tableOutput("table"))
)
)

<div class="col-sm-8">
 <div class="tabbable tabs-above">
 <ul class="nav nav-tabs">
 <li class="active">
 Plot

 Summary

Create a tab panel 386

Shiny is an RStudio project. © 2014 RStudio, Inc.

 Table

 <div class="tab-content">
 <div class="tab-pane active" data-value="Plot" id="tab-5787-1">
 <div id="plot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div class="tab-pane" data-value="Summary" id="tab-5787-2">
 <pre id="summary" class="shiny-text-output"></pre>
 </div>
 <div class="tab-pane" data-value="Table" id="tab-5787-3">
 <div id="table" class="shiny-html-output"></div>
 </div>
 </div>
 </div>
</div>

See also
tabsetPanel

Create a tabset panel 387

3.18 Create a tabset panel

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a tabset panel
tabsetPanel(..., id = NULL, selected = NULL, type = c("tabs", "pills"),

position = c("above", "below", "left", "right"))

Arguments
... tabPanel elements to include in the tabset

id If provided, you can use input$ id in your server logic to determine which of the current tabs is
active. The value will correspond to the value argument that is passed to tabPanel .

selected The value (or, if none was supplied, the title) of the tab that should be selected by default. If
NULL , the first tab will be selected.

type Use "tabs" for the standard look; Use "pills" for a more plain look where tabs are selected using a
background fill color.

position The position of the tabs relative to the content. Valid values are "above", "below", "left", and "right"
(defaults to "above"). Note that the position argument is not valid when type is "pill".

Value
A tabset that can be passed to mainPanel

Description
Create a tabset that contains tabPanel elements. Tabsets are useful for dividing output into multiple independently
viewable sections.

Examples
Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(
 tabsetPanel(
 tabPanel("Plot", plotOutput("plot")),
 tabPanel("Summary", verbatimTextOutput("summary")),
 tabPanel("Table", tableOutput("table"))
)
)

<div class="col-sm-8">
 <div class="tabbable tabs-above">
 <ul class="nav nav-tabs">
 <li class="active">

Create a tabset panel 388

Shiny is an RStudio project. © 2014 RStudio, Inc.

 Plot

 Summary

 Table

 <div class="tab-content">
 <div class="tab-pane active" data-value="Plot" id="tab-3579-1">
 <div id="plot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div class="tab-pane" data-value="Summary" id="tab-3579-2">
 <pre id="summary" class="shiny-text-output"></pre>
 </div>
 <div class="tab-pane" data-value="Table" id="tab-3579-3">
 <div id="table" class="shiny-html-output"></div>
 </div>
 </div>
 </div>
</div>

See also
tabPanel , updateTabsetPanel

Create a panel containing an 389

3.19 Create a panel containing an

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a panel containing an
application title.
titlePanel(title, windowTitle = title)

Arguments
title An application title to display

windowTitle The title that should be displayed by the browser window.

Description
Create a panel containing an application title.

Details
Calling this function has the side effect of including a title tag within the head. You can also specify a page title
explicitly using the `title` parameter of the top-level page function.

Examples
titlePanel("Hello Shiny!")

<h2>Hello Shiny!</h2>

Input panel 390

3.20 Input panel

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Input panel
inputPanel(...)

Arguments
... Input controls or other HTML elements.

Description
A flowLayout with a grey border and light grey background, suitable for wrapping inputs.

Flow layout 391

3.21 Flow layout

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Flow layout
flowLayout(..., cellArgs = list())

Arguments
... Unnamed arguments will become child elements of the layout. Named arguments will become HTML

attributes on the outermost tag.

cellArgs Any additional attributes that should be used for each cell of the layout.

Description
Lays out elements in a left-to-right, top-to-bottom arrangement. The elements on a given row will be top-aligned with
each other. This layout will not work well with elements that have a percentage-based width (e.g. plotOutput at its
default setting of width = "100%").

Examples
flowLayout(
 numericInput("rows", "How many rows?", 5),
 selectInput("letter", "Which letter?", LETTERS),
 sliderInput("value", "What value?", 0, 100, 50)
)

<div class="shiny-flow-layout">
 <div>
 <div class="form-group shiny-input-container">
 <label for="rows">How many rows?</label>
 <input id="rows" type="number" class="form-control" value="5"/>
 </div>
 </div>
 <div>
 <div class="form-group shiny-input-container">
 <label class="control-label" for="letter">Which letter?</label>
 <div>
 <select id="letter"><option value="A" selected>A</option>
<option value="B">B</option>
<option value="C">C</option>
<option value="D">D</option>
<option value="E">E</option>
<option value="F">F</option>
<option value="G">G</option>
<option value="H">H</option>
<option value="I">I</option>

Flow layout 392

Shiny is an RStudio project. © 2014 RStudio, Inc.

<option value="J">J</option>
<option value="K">K</option>
<option value="L">L</option>
<option value="M">M</option>
<option value="N">N</option>
<option value="O">O</option>
<option value="P">P</option>
<option value="Q">Q</option>
<option value="R">R</option>
<option value="S">S</option>
<option value="T">T</option>
<option value="U">U</option>
<option value="V">V</option>
<option value="W">W</option>
<option value="X">X</option>
<option value="Y">Y</option>
<option value="Z">Z</option></select>
 <script type="application/json" data-for="letter" data-nonempty="">{}</script>
 </div>
 </div>
 </div>
 <div>
 <div class="form-group shiny-input-container">
 <label class="control-label" for="value">What value?</label>
 <input class="js-range-slider" id="value" data-min="0" data-max="100" data-from="50" data-ste
p="1" data-grid="true" data-grid-num="10" data-grid-snap="false" data-prettify-separator="," data-
keyboard="true" data-keyboard-step="1"/>
 </div>
 </div>
</div>

See also
verticalLayout

Split layout 393

3.22 Split layout

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Split layout
splitLayout(..., cellWidths = NULL, cellArgs = list())

Arguments
... Unnamed arguments will become child elements of the layout. Named arguments will become HTML

attributes on the outermost tag.

cellWidths Character or numeric vector indicating the widths of the individual cells. Recycling will be used if
needed. Character values will be interpreted as CSS lengths (see validateCssUnit), numeric
values as pixels.

cellArgs Any additional attributes that should be used for each cell of the layout.

Description
Lays out elements horizontally, dividing the available horizontal space into equal parts (by default).

Examples
Equal sizing
splitLayout(
 plotOutput("plot1"),
 plotOutput("plot2")
)

<div class="shiny-split-layout">
 <div style="width: 50.000%;">
 <div id="plot1" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div style="width: 50.000%;">
 <div id="plot2" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
</div>

Custom widths
splitLayout(cellWidths = c("25%", "75%"),
 plotOutput("plot1"),
 plotOutput("plot2")
)

<div class="shiny-split-layout">
 <div style="width: 25%;">

Split layout 394

Shiny is an RStudio project. © 2014 RStudio, Inc.

 <div id="plot1" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div style="width: 75%;">
 <div id="plot2" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
</div>

All cells at 300 pixels wide, with cell padding
and a border around everything
splitLayout(
 style = "border: 1px solid silver;",
 cellWidths = 300,
 cellArgs = list(style = "padding: 6px"),
 plotOutput("plot1"),
 plotOutput("plot2"),
 plotOutput("plot3")
)

<div class="shiny-split-layout" style="border: 1px solid silver;">
 <div style="width: 300px; padding: 6px">
 <div id="plot1" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div style="width: 300px; padding: 6px">
 <div id="plot2" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
 <div style="width: 300px; padding: 6px">
 <div id="plot3" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
 </div>
</div>

Lay out UI elements vertically 395

3.23 Lay out UI elements vertically

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Lay out UI elements vertically
verticalLayout(..., fluid = TRUE)

Arguments
... Elements to include within the container

fluid TRUE to use fluid layout; FALSE to use fixed layout.

Description
Create a container that includes one or more rows of content (each element passed to the container will appear on
it's own line in the UI)

Examples
shinyUI(fluidPage(
 verticalLayout(
 a(href="http://example.com/link1", "Link One"),
 a(href="http://example.com/link2", "Link Two"),
 a(href="http://example.com/link3", "Link Three")
)
))

<div class="container-fluid">
 <div class="row">
 <div class="col-sm-12">
 Link One
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12">
 Link Two
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12">
 Link Three
 </div>
 </div>
</div>

See also

Create a well panel 396

3.24 Create a well panel

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a well panel
wellPanel(...)

Arguments
... UI elements to include inside the panel.

Value
The newly created panel.

Description
Creates a panel with a slightly inset border and grey background. Equivalent to Bootstrap's well CSS class.

Load the MathJax library and typeset 397

3.25 Load the MathJax library and typeset

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Load the MathJax library and typeset
math expressions
withMathJax(...)

Arguments
... any HTML elements to apply MathJax to

Description
This function adds MathJax to the page and typeset the math expressions (if found) in the content It only
needs to be called once in an app unless the content is rendered after the page is loaded, e.g. via renderUI , in
which case we have to call it explicitly every time we write math expressions to the output.

Examples
withMathJax(helpText("Some math here $$\\alpha+\\beta$$"))

Some math here $$\alpha+\beta$$
<script>MathJax.Hub.Queue(["Typeset", MathJax.Hub]);</script>

now we can just write "static" content without withMathJax()
div("more math here $$\\sqrt{2}$$")

<div>more math here $$\sqrt{2}$$</div>

Action button/link 398

3.26 Action button/link

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Action button/link
actionButton(inputId, label, icon = NULL, ...)

actionLink(inputId, label, icon = NULL, ...)

Arguments
inputId Specifies the input slot that will be used to access the value.

label The contents of the button or link--usually a text label, but you could also use any other HTML, like an
image.

icon An optional icon to appear on the button.

... Named attributes to be applied to the button or link.

Description
Creates an action button or link whose value is initially zero, and increments by one each time it is pressed.

Examples
Not run:
In server.R
output$distPlot <- renderPlot({
Take a dependency on input$goButton
input$goButton

Use isolate() to avoid dependency on input$obs
dist <- isolate(rnorm(input$obs))
hist(dist)
})

In ui.R
actionButton("goButton", "Go!")
End(Not run)

See also
observeEvent and eventReactive Other input.elements: animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Checkbox Group Input Control 399

3.27 Checkbox Group Input Control

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Checkbox Group Input Control
checkboxGroupInput(inputId, label, choices, selected = NULL, inline = FALSE)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to show checkboxes for. If elements of the list are named then that name rather than the
value is displayed to the user.

selected The values that should be initially selected, if any.

inline If TRUE , render the choices inline (i.e. horizontally)

Value
A list of HTML elements that can be added to a UI definition.

Description
Create a group of checkboxes that can be used to toggle multiple choices independently. The server will receive the
input as a character vector of the selected values.

Examples
checkboxGroupInput("variable", "Variable:",
 c("Cylinders" = "cyl",
 "Transmission" = "am",
 "Gears" = "gear"))

<div id="variable" class="form-group shiny-input-checkboxgroup shiny-input-container">
 <label class="control-label" for="variable">Variable:</label>
 <div class="shiny-options-group">
 <div class="checkbox">
 <label>
 <input type="checkbox" name="variable" value="cyl"/>
 Cylinders
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="variable" value="am"/>
 Transmission

Checkbox Group Input Control 400

Shiny is an RStudio project. © 2014 RStudio, Inc.

 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="variable" value="gear"/>
 Gears
 </label>
 </div>
 </div>
</div>

See also
checkboxInput , updateCheckboxGroupInput Other input.elements: actionButton , actionLink ;
animationOptions , sliderInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ;
numericInput ; passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton ;
textInput

Checkbox Input Control 401

3.28 Checkbox Input Control

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Checkbox Input Control
checkboxInput(inputId, label, value = FALSE)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value (TRUE or FALSE).

Value
A checkbox control that can be added to a UI definition.

Description
Create a checkbox that can be used to specify logical values.

Examples
checkboxInput("outliers", "Show outliers", FALSE)

<div class="form-group shiny-input-container">
 <div class="checkbox">
 <label>
 <input id="outliers" type="checkbox"/>
 Show outliers
 </label>
 </div>
</div>

See also
checkboxGroupInput , updateCheckboxInput Other input.elements: actionButton , actionLink ;
animationOptions , sliderInput ; checkboxGroupInput ; dateInput ; dateRangeInput ; fileInput ;
numericInput ; passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton ;
textInput

Create date input 402

3.29 Create date input

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create date input
dateInput(inputId, label, value = NULL, min = NULL, max = NULL, format = "yyyy-mm-dd",

startview = "month", weekstart = 0, language = "en")

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value The starting date. Either a Date object, or a string in yyyy-mm-dd format. If NULL (the default), will
use the current date in the client's time zone.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

format The format of the date to display in the browser. Defaults to "yyyy-mm-dd" .

startview The date range shown when the input object is first clicked. Can be "month" (the default), "year", or
"decade".

weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6 (Saturday).

language The language used for month and day names. Default is "en". Other valid values include "bg", "ca",
"cs", "da", "de", "el", "es", "fi", "fr", "he", "hr", "hu", "id", "is", "it", "ja", "kr", "lt", "lv", "ms", "nb", "nl", "pl",
"pt", "pt-BR", "ro", "rs", "rs-latin", "ru", "sk", "sl", "sv", "sw", "th", "tr", "uk", "zh-CN", and "zh-TW".

Description
Creates a text input which, when clicked on, brings up a calendar that the user can click on to select dates.

Details
The date format string specifies how the date will be displayed in the browser. It allows the following values:

yy Year without century (12)
yyyy Year with century (2012)
mm Month number, with leading zero (01-12)
m Month number, without leading zero (01-12)
M Abbreviated month name
MM Full month name
dd Day of month with leading zero
d Day of month without leading zero
D Abbreviated weekday name
DD Full weekday name

Create date input 403

Examples
dateInput("date", "Date:", value = "2012-02-29")

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2012-02-29"/>
</div>

Default value is the date in client's time zone
dateInput("date", "Date:")

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
</div>

value is always yyyy-mm-dd, even if the display format is different
dateInput("date", "Date:", value = "2012-02-29", format = "mm/dd/yy")

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="en" data-date-weekstart="0
" data-date-format="mm/dd/yy" data-date-start-view="month" data-initial-date="2012-02-29"/>
</div>

Pass in a Date object
dateInput("date", "Date:", value = Sys.Date()-10)

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2015-06-02"/>
</div>

Use different language and different first day of week
dateInput("date", "Date:",
 language = "de",
 weekstart = 1)

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="de" data-date-weekstart="1
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
</div>

Start with decade view instead of default month view
dateInput("date", "Date:",
 startview = "decade")

Create date input 404

Shiny is an RStudio project. © 2014 RStudio, Inc.

<div id="date" class="shiny-date-input form-group shiny-input-container">
 <label class="control-label" for="date">Date:</label>
 <input type="text" class="form-control datepicker" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="decade"/>
</div>

See also
dateRangeInput , updateDateInput Other input.elements: actionButton , actionLink ; animationOptions ,
sliderInput ; checkboxGroupInput ; checkboxInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Create date range input 405

3.30 Create date range input

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create date range input
dateRangeInput(inputId, label, start = NULL, end = NULL, min = NULL, max = NULL,

format = "yyyy-mm-dd", startview = "month", weekstart = 0, language = "en",

separator = " to ")

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

start The initial start date. Either a Date object, or a string in yyyy-mm-dd format. If NULL (the default),
will use the current date in the client's time zone.

end The initial end date. Either a Date object, or a string in yyyy-mm-dd format. If NULL (the default), will
use the current date in the client's time zone.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

format The format of the date to display in the browser. Defaults to "yyyy-mm-dd" .

startview The date range shown when the input object is first clicked. Can be "month" (the default), "year", or
"decade".

weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6 (Saturday).

language The language used for month and day names. Default is "en". Other valid values include "bg", "ca",
"cs", "da", "de", "el", "es", "fi", "fr", "he", "hr", "hu", "id", "is", "it", "ja", "kr", "lt", "lv", "ms", "nb", "nl", "pl",
"pt", "pt-BR", "ro", "rs", "rs-latin", "ru", "sk", "sl", "sv", "sw", "th", "tr", "uk", "zh-CN", and "zh-TW".

separator String to display between the start and end input boxes.

Description
Creates a pair of text inputs which, when clicked on, bring up calendars that the user can click on to select dates.

Details
The date format string specifies how the date will be displayed in the browser. It allows the following values:

yy Year without century (12)
yyyy Year with century (2012)
mm Month number, with leading zero (01-12)
m Month number, without leading zero (01-12)
M Abbreviated month name
MM Full month name
dd Day of month with leading zero

Create date range input 406
d Day of month without leading zero
D Abbreviated weekday name
DD Full weekday name

Examples
dateRangeInput("daterange", "Date range:",
 start = "2001-01-01",
 end = "2010-12-31")

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2001-01-01"/>
 to
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2010-12-31"/>
 </div>
</div>

Default start and end is the current date in the client's time zone
dateRangeInput("daterange", "Date range:")

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
 to
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
 </div>
</div>

start and end are always specified in yyyy-mm-dd, even if the display
format is different
dateRangeInput("daterange", "Date range:",
 start = "2001-01-01",
 end = "2010-12-31",
 min = "2001-01-01",
 max = "2012-12-21",
 format = "mm/dd/yy",
 separator = " - ")

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="mm/dd/yy" data-date-start-view="month" data-min-date="2001-01-01" data-max-dat
e="2012-12-21" data-initial-date="2001-01-01"/>
 -
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="mm/dd/yy" data-date-start-view="month" data-min-date="2001-01-01" data-max-dat

Create date range input 407
e="2012-12-21" data-initial-date="2010-12-31"/>
 </div>
</div>

Pass in Date objects
dateRangeInput("daterange", "Date range:",
 start = Sys.Date()-10,
 end = Sys.Date()+10)

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2015-06-02"/>
 to
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="month" data-initial-date="2015-06-22"/>
 </div>
</div>

Use different language and different first day of week
dateRangeInput("daterange", "Date range:",
 language = "de",
 weekstart = 1)

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="de" data-date-weekstart="1
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
 to
 <input class="input-sm form-control" type="text" data-date-language="de" data-date-weekstart="1
" data-date-format="yyyy-mm-dd" data-date-start-view="month"/>
 </div>
</div>

Start with decade view instead of default month view
dateRangeInput("daterange", "Date range:",
 startview = "decade")

<div id="daterange" class="shiny-date-range-input form-group shiny-input-container">
 <label class="control-label" for="daterange">Date range:</label>
 <div class="input-daterange input-group">
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="decade"/>
 to
 <input class="input-sm form-control" type="text" data-date-language="en" data-date-weekstart="0
" data-date-format="yyyy-mm-dd" data-date-start-view="decade"/>
 </div>
</div>

See also
dateInput , updateDateRangeInput Other input.elements: actionButton , actionLink ; animationOptions ,

Create date range input 408

Shiny is an RStudio project. © 2014 RStudio, Inc.

sliderInput ; checkboxGroupInput ; checkboxInput ; dateInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

File Upload Control 409

3.31 File Upload Control

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

File Upload Control
fileInput(inputId, label, multiple = FALSE, accept = NULL)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

multiple Whether the user should be allowed to select and upload multiple files at once. Does not work on
older browsers, including Internet Explorer 9 and earlier.

accept A character vector of MIME types; gives the browser a hint of what kind of files the server is expecting.

Description
Create a file upload control that can be used to upload one or more files.

Details
Whenever a file upload completes, the corresponding input variable is set to a dataframe. This dataframe contains
one row for each selected file, and the following columns:

name

The filename provided by the web browser. This is not the path to read to get at the actual data that was uploaded
(see datapath column).

size

The size of the uploaded data, in bytes.

type

The MIME type reported by the browser (for example, text/plain), or empty string if the browser didn't know.

datapath

The path to a temp file that contains the data that was uploaded. This file may be deleted if the user performs
another upload operation.

See also
Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; numericInput ; passwordInput ;
radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Create a numeric input control 410

3.32 Create a numeric input control

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a numeric input control
numericInput(inputId, label, value, min = NA, max = NA, step = NA)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

min Minimum allowed value

max Maximum allowed value

step Interval to use when stepping between min and max

Value
A numeric input control that can be added to a UI definition.

Description
Create an input control for entry of numeric values

Examples
numericInput("obs", "Observations:", 10,
 min = 1, max = 100)

<div class="form-group shiny-input-container">
 <label for="obs">Observations:</label>
 <input id="obs" type="number" class="form-control" value="10" min="1" max="100"/>
</div>

See also
updateNumericInput Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; passwordInput ;
radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Create radio buttons 411

3.33 Create radio buttons

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create radio buttons
radioButtons(inputId, label, choices, selected = NULL, inline = FALSE)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to select from (if elements of the list are named then that name rather than the value is
displayed to the user)

selected The initially selected value (if not specified then defaults to the first value)

inline If TRUE , render the choices inline (i.e. horizontally)

Value
A set of radio buttons that can be added to a UI definition.

Description
Create a set of radio buttons used to select an item from a list.

Examples
radioButtons("dist", "Distribution type:",
 c("Normal" = "norm",
 "Uniform" = "unif",
 "Log-normal" = "lnorm",
 "Exponential" = "exp"))

<div id="dist" class="form-group shiny-input-radiogroup shiny-input-container">
 <label class="control-label" for="dist">Distribution type:</label>
 <div class="shiny-options-group">
 <div class="radio">
 <label>
 <input type="radio" name="dist" value="norm" checked="checked"/>
 Normal
 </label>
 </div>
 <div class="radio">
 <label>
 <input type="radio" name="dist" value="unif"/>
 Uniform

Create radio buttons 412

Shiny is an RStudio project. © 2014 RStudio, Inc.

 </label>
 </div>
 <div class="radio">
 <label>
 <input type="radio" name="dist" value="lnorm"/>
 Log-normal
 </label>
 </div>
 <div class="radio">
 <label>
 <input type="radio" name="dist" value="exp"/>
 Exponential
 </label>
 </div>
 </div>
</div>

See also
updateRadioButtons Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; selectInput , selectizeInput ; submitButton ; textInput

Create a select list input control 413

3.34 Create a select list input control

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a select list input control
selectInput(inputId, label, choices, selected = NULL, multiple = FALSE, selectize = TRUE,

width = NULL, size = NULL)

selectizeInput(inputId, ..., options = NULL, width = NULL)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to select from. If elements of the list are named then that name rather than the value is
displayed to the user.

selected The initially selected value (or multiple values if multiple = TRUE). If not specified then defaults to
the first value for single-select lists and no values for multiple select lists.

multiple Is selection of multiple items allowed?

selectize Whether to use selectize.js or not.

width The width of the input, e.g. '400px' , or '100%' ; see validateCssUnit .

size Number of items to show in the selection box; a larger number will result in a taller box. Not compatible
with selectize=TRUE . Normally, when multiple=FALSE , a select input will be a drop-down list, but
when size is set, it will be a box instead.

... Arguments passed to selectInput() .

options A list of options. See the documentation of selectize.js for possible options (character option values
inside I() will be treated as literal JavaScript code; see renderDataTable() for details).

Value
A select list control that can be added to a UI definition.

Description
Create a select list that can be used to choose a single or multiple items from a list of values.

Details
By default, selectInput() and selectizeInput() use the JavaScript library selectize.js
(https://github.com/brianreavis/selectize.js) to instead of the basic select input element. To use the standard HTML
select input element, use selectInput() with selectize=FALSE .

Create a select list input control 414

Shiny is an RStudio project. © 2014 RStudio, Inc.

Note
The selectize input created from selectizeInput() allows deletion of the selected option even in a single select
input, which will return an empty string as its value. This is the default behavior of selectize.js. However, the selectize
input created from selectInput(..., selectize = TRUE) will ignore the empty string value when it is a single
choice input and the empty string is not in the choices argument. This is to keep compatibility with
selectInput(..., selectize = FALSE) .

Examples
selectInput("variable", "Variable:",
 c("Cylinders" = "cyl",
 "Transmission" = "am",
 "Gears" = "gear"))

<div class="form-group shiny-input-container">
 <label class="control-label" for="variable">Variable:</label>
 <div>
 <select id="variable"><option value="cyl" selected>Cylinders</option>
<option value="am">Transmission</option>
<option value="gear">Gears</option></select>
 <script type="application/json" data-for="variable" data-nonempty="">{}</script>
 </div>
</div>

See also
updateSelectInput Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; submitButton ; textInput

Slider Input Widget 415

3.35 Slider Input Widget

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Slider Input Widget
sliderInput(inputId, label, min, max, value, step = NULL, round = FALSE, format = NULL,

locale = NULL, ticks = TRUE, animate = FALSE, width = NULL, sep = ",", pre = NULL,

post = NULL)

animationOptions(interval = 1000, loop = FALSE, playButton = NULL, pauseButton = NULL)

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

min The minimum value (inclusive) that can be selected.

max The maximum value (inclusive) that can be selected.

value The initial value of the slider. A numeric vector of length one will create a regular slider; a numeric
vector of length two will create a double-ended range slider. A warning will be issued if the value
doesn't fit between min and max .

step Specifies the interval between each selectable value on the slider (if NULL , a heuristic is used to
determine the step size).

round TRUE to round all values to the nearest integer; FALSE if no rounding is desired; or an integer to
round to that number of digits (for example, 1 will round to the nearest 10, and -2 will round to the
nearest .01). Any rounding will be applied after snapping to the nearest step.

format Deprecated.

locale Deprecated.

ticks FALSE to hide tick marks, TRUE to show them according to some simple heuristics.

animate TRUE to show simple animation controls with default settings; FALSE not to; or a custom settings
list, such as those created using animationOptions .

width The width of the input, e.g. '400px' , or '100%' ; see validateCssUnit .

sep Separator between thousands places in numbers.

pre A prefix string to put in front of the value.

post A suffix string to put after the value.

interval The interval, in milliseconds, between each animation step.

loop TRUE to automatically restart the animation when it reaches the end.

playButton Specifies the appearance of the play button. Valid values are a one-element character vector (for a
simple text label), an HTML tag or list of tags (using tag and friends), or raw HTML (using
HTML).

Slider Input Widget 416

Shiny is an RStudio project. © 2014 RStudio, Inc.

pauseButton Similar to playButton , but for the pause button.

Description
Constructs a slider widget to select a numeric value from a range.

See also
updateSliderInput Other input.elements: actionButton , actionLink ; checkboxGroupInput ;
checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ; passwordInput ;
radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Create a submit button 417

3.36 Create a submit button

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a submit button
submitButton(text = "Apply Changes", icon = NULL)

Arguments
text Button caption

icon Optional icon to appear on the button

Value
A submit button that can be added to a UI definition.

Description
Create a submit button for an input form. Forms that include a submit button do not automatically update their outputs
when inputs change, rather they wait until the user explicitly clicks the submit button.

Examples
submitButton("Update View")

<div>
 <button type="submit" class="btn btn-primary">Update View</button>
</div>

submitButton("Update View", icon("refresh"))

<div>
 <button type="submit" class="btn btn-primary">
 <i class="fa fa-refresh"></i>
 Update View
 </button>
</div>

See also
Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; selectInput , selectizeInput ; textInput

Create a text input control 418

3.37 Create a text input control

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a text input control
textInput(inputId, label, value = "")

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

Value
A text input control that can be added to a UI definition.

Description
Create an input control for entry of unstructured text values

Examples
textInput("caption", "Caption:", "Data Summary")

<div class="form-group shiny-input-container">
 <label for="caption">Caption:</label>
 <input id="caption" type="text" class="form-control" value="Data Summary"/>
</div>

See also
updateTextInput Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
passwordInput ; radioButtons ; selectInput , selectizeInput ; submitButton

Create a password input control 419

3.38 Create a password input control

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a password input control
passwordInput(inputId, label, value = "")

Arguments
inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

Value
A text input control that can be added to a UI definition.

Description
Create an password control for entry of passwords.

Examples
passwordInput("password", "Password:")

<div class="form-group shiny-input-container">
 <label for="password">Password:</label>
 <input id="password" type="password" class="form-control" value=""/>
</div>

See also
updateTextInput Other input.elements: actionButton , actionLink ; animationOptions , sliderInput ;
checkboxGroupInput ; checkboxInput ; dateInput ; dateRangeInput ; fileInput ; numericInput ;
radioButtons ; selectInput , selectizeInput ; submitButton ; textInput

Change the value of a checkbox 420

3.39 Change the value of a checkbox

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a checkbox
group input on the client
updateCheckboxGroupInput(session, inputId, label = NULL, choices = NULL, selected = NULL,

inline = FALSE)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

choices List of values to show checkboxes for. If elements of the list are named then that name rather than the
value is displayed to the user.

selected The values that should be initially selected, if any.

inline If TRUE , render the choices inline (i.e. horizontally)

Description
Change the value of a checkbox group input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

Create a list of new options, where the name of the items is something

Change the value of a checkbox 421

Shiny is an RStudio project. © 2014 RStudio, Inc.

like 'option label x 1', and the values are 'option-x-1'.
cb_options <- list()
cb_options[[sprintf("option label %d 1", x)]] <- sprintf("option-%d-1", x)
cb_options[[sprintf("option label %d 2", x)]] <- sprintf("option-%d-2", x)

Change values for input$inCheckboxGroup
updateCheckboxGroupInput(session, "inCheckboxGroup", choices = cb_options)

Can also set the label and select items
updateCheckboxGroupInput(session, "inCheckboxGroup2",
label = paste("checkboxgroup label", x),
choices = cb_options,
selected = sprintf("option-%d-2", x)
)
})
})
End(Not run)

See also
checkboxGroupInput

Change the value of a checkbox 422

3.40 Change the value of a checkbox

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a checkbox
input on the client
updateCheckboxInput(session, inputId, label = NULL, value = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

value The value to set for the input object.

Description
Change the value of a checkbox input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
TRUE if input$controller is even, FALSE otherwise.
x_even <- input$controller %% 2 == 0

updateCheckboxInput(session, "inCheckbox", value = x_even)
})
})
End(Not run)

Change the value of a checkbox 423

Shiny is an RStudio project. © 2014 RStudio, Inc.

See also
checkboxInput

Change the value of a date input on 424

3.41 Change the value of a date input on

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a date input on
the client
updateDateInput(session, inputId, label = NULL, value = NULL, min = NULL, max = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

value The desired date value. Either a Date object, or a string in yyyy-mm-dd format.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

Description
Change the value of a date input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

updateDateInput(session, "inDate",
label = paste("Date label", x),
value = paste("2013-04-", x, sep=""),

Change the value of a date input on 425

Shiny is an RStudio project. © 2014 RStudio, Inc.

min = paste("2013-04-", x-1, sep=""),
max = paste("2013-04-", x+1, sep="")
)
})
})
End(Not run)

See also
dateInput

Change the start and end values of a 426

3.42 Change the start and end values of a

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the start and end values of a
date range input on the client
updateDateRangeInput(session, inputId, label = NULL, start = NULL, end = NULL, min = NULL,

max = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

start The start date. Either a Date object, or a string in yyyy-mm-dd format.

end The end date. Either a Date object, or a string in yyyy-mm-dd format.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd format.

Description
Change the start and end values of a date range input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

Change the start and end values of a 427

Shiny is an RStudio project. © 2014 RStudio, Inc.

updateDateRangeInput(session, "inDateRange",
label = paste("Date range label", x),
start = paste("2013-01-", x, sep=""))
end = paste("2013-12-", x, sep=""))
})
})
End(Not run)

See also
dateRangeInput

Change the value of a number input 428

3.43 Change the value of a number input

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a number input
on the client
updateNumericInput(session, inputId, label = NULL, value = NULL, min = NULL, max = NULL,

step = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

value The value to set for the input object.

min Minimum value.

max Maximum value.

step Step size.

Description
Change the value of a number input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

Change the value of a number input 429

Shiny is an RStudio project. © 2014 RStudio, Inc.

updateNumericInput(session, "inNumber", value = x)

updateNumericInput(session, "inNumber2",
label = paste("Number label ", x),
value = x, min = x-10, max = x+10, step = 5)
})
})
End(Not run)

See also
numericInput

Change the value of a radio input on 430

3.44 Change the value of a radio input on

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a radio input on
the client
updateRadioButtons(session, inputId, label = NULL, choices = NULL, selected = NULL,

inline = FALSE)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

choices List of values to select from (if elements of the list are named then that name rather than the value is
displayed to the user)

selected The initially selected value (if not specified then defaults to the first value)

inline If TRUE , render the choices inline (i.e. horizontally)

Description
Change the value of a radio input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

r_options <- list()

Change the value of a radio input on 431

Shiny is an RStudio project. © 2014 RStudio, Inc.

r_options[[sprintf("option label %d 1", x)]] <- sprintf("option-%d-1", x)
r_options[[sprintf("option label %d 2", x)]] <- sprintf("option-%d-2", x)

Change values for input$inRadio
updateRadioButtons(session, "inRadio", choices = r_options)

Can also set the label and select an item
updateRadioButtons(session, "inRadio2",
label = paste("Radio label", x),
choices = r_options,
selected = sprintf("option-%d-2", x)
)
})
})
End(Not run)

See also
radioButtons

Change the value of a select input on 432

3.45 Change the value of a select input on

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a select input on
the client
updateSelectInput(session, inputId, label = NULL, choices = NULL, selected = NULL)

updateSelectizeInput(session, inputId, label = NULL, choices = NULL, selected = NULL,

options = list(), server = FALSE)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

choices List of values to select from. If elements of the list are named then that name rather than the value is
displayed to the user.

selected The initially selected value (or multiple values if multiple = TRUE). If not specified then defaults to
the first value for single-select lists and no values for multiple select lists.

options A list of options. See the documentation of selectize.js for possible options (character option values
inside I() will be treated as literal JavaScript code; see renderDataTable() for details).

server whether to store choices on the server side, and load the select options dynamically on searching,
instead of writing all choices into the page at once (i.e., only use the client-side version of
selectize.js)

Description
Change the value of a select input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:

Change the value of a select input on 433

Shiny is an RStudio project. © 2014 RStudio, Inc.

shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

Create a list of new options, where the name of the items is something
like 'option label x 1', and the values are 'option-x-1'.
s_options <- list()
s_options[[sprintf("option label %d 1", x)]] <- sprintf("option-%d-1", x)
s_options[[sprintf("option label %d 2", x)]] <- sprintf("option-%d-2", x)

Change values for input$inSelect
updateSelectInput(session, "inSelect", choices = s_options)

Can also set the label and select an item (or more than one if it's a
multi-select)
updateSelectInput(session, "inSelect2",
label = paste("Select label", x),
choices = s_options,
selected = sprintf("option-%d-2", x)
)
})
})
End(Not run)

See also
selectInput

Change the value of a slider input on 434

3.46 Change the value of a slider input on

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a slider input on
the client
updateSliderInput(session, inputId, label = NULL, value = NULL, min = NULL, max = NULL,

step = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

value The value to set for the input object.

min Minimum value.

max Maximum value.

step Step size.

Description
Change the value of a slider input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Only run this example in interactive R sessions
if (interactive()) {
 shinyApp(
 ui = fluidPage(
 sidebarLayout(
 sidebarPanel(
 p("The first slider controls the second"),
 slider2Input("control", "Controller:", min=0, max=20, value=10,

Change the value of a slider input on 435

Shiny is an RStudio project. © 2014 RStudio, Inc.

 step=1),
 slider2Input("receive", "Receiver:", min=0, max=20, value=10,
 step=1)
),
 mainPanel()
)
),
 server = function(input, output, session) {
 observe({
 val <- input$control
 # Control the value, min, max, and step.
 # Step size is 2 when input value is even; 1 when value is odd.
 updateSliderInput(session, "receive", value = val,
 min = floor(val/2), max = val+4, step = (val+1)%%2 + 1)
 })
 }
)
}

See also
sliderInput

Change the selected tab on the client 436

3.47 Change the selected tab on the client

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the selected tab on the client
updateTabsetPanel(session, inputId, selected = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the tabsetPanel , navlistPanel , or navbarPage object.

selected The name of the tab to make active.

Description
Change the selected tab on the client

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
TRUE if input$controller is even, FALSE otherwise.
x_even <- input$controller %% 2 == 0

Change the selected tab.
Note that the tabset container must have been created with an 'id' argument
if (x_even) {
updateTabsetPanel(session, "inTabset", selected = "panel2")
} else {
updateTabsetPanel(session, "inTabset", selected = "panel1")
}
})
})
End(Not run)

See also
tabsetPanel , navlistPanel , navbarPage

Change the value of a text input on 437

3.48 Change the value of a text input on

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Change the value of a text input on
the client
updateTextInput(session, inputId, label = NULL, value = NULL)

Arguments
session The session object passed to function given to shinyServer .

inputId The id of the input object.

label The label to set for the input object.

value The value to set for the input object.

Description
Change the value of a text input on the client

Details
The input updater functions send a message to the client, telling it to change the settings of an input object. The
messages are collected and sent after all the observers (including outputs) have finished running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For example,
numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input object on the client.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

This will change the value of input$inText, based on x
updateTextInput(session, "inText", value = paste("New text", x))

Can also set the label, this time for input$inText2
updateTextInput(session, "inText2",
label = paste("New label", x),

Change the value of a text input on 438

Shiny is an RStudio project. © 2014 RStudio, Inc.

value = paste("New text", x))
})
})
End(Not run)

See also
textInput

Create an HTML output element 439

3.49 Create an HTML output element

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an HTML output element
htmlOutput(outputId, inline = FALSE, container = if (inline) span else div, ...)

uiOutput(outputId, inline = FALSE, container = if (inline) span else div, ...)

Arguments
outputId output variable to read the value from

inline use an inline (span()) or block container (div()) for the output

container a function to generate an HTML element to contain the text

... Other arguments to pass to the container tag function. This is useful for providing additional classes for
the tag.

Value
An HTML output element that can be included in a panel

Description
Render a reactive output variable as HTML within an application page. The text will be included within an HTML div
tag, and is presumed to contain HTML content which should not be escaped.

Details
uiOutput is intended to be used with renderUI on the server side. It is currently just an alias for htmlOutput .

Examples
htmlOutput("summary")

<div id="summary" class="shiny-html-output"></div>

Using a custom container and class
tags$ul(
 htmlOutput("summary", container = tags$li, class = "custom-li-output")
)

 <li class="shiny-html-output custom-li-output" id="summary">

Create an plot or image output 440

3.50 Create an plot or image output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an plot or image output
element
imageOutput(outputId, width = "100%", height = "400px", click = NULL, dblclick = NULL,

hover = NULL, hoverDelay = NULL, hoverDelayType = NULL, brush = NULL, clickId = NULL,

hoverId = NULL, inline = FALSE)

plotOutput(outputId, width = "100%", height = "400px", click = NULL, dblclick = NULL,

hover = NULL, hoverDelay = NULL, hoverDelayType = NULL, brush = NULL, clickId = NULL,

hoverId = NULL, inline = FALSE)

Arguments
outputId output variable to read the plot/image from.

width,height Image width/height. Must be a valid CSS unit (like "100%" , "400px" , "auto") or a number,
which will be coerced to a string and have "px" appended. These two arguments are ignored
when inline = TRUE , in which case the width/height of a plot must be specified in
renderPlot() . Note that, for height, using "auto" or "100%" generally will not work as

expected, because of how height is computed with HTML/CSS.

click This can be NULL (the default), a string, or an object created by the clickOpts function. If
you use a value like "plot_click" (or equivalently, clickOpts(id="plot_click")), the
plot will send coordinates to the server whenever it is clicked, and the value will be accessible
via input$plot_click . The value will be a named list with x and y elements indicating the
mouse position.

dblclick This is just like the click argument, but for double-click events.

hover Similar to the click argument, this can be NULL (the default), a string, or an object created
by the hoverOpts function. If you use a value like "plot_hover" (or equivalently,
hoverOpts(id="plot_hover")), the plot will send coordinates to the server pauses on the

plot, and the value will be accessible via input$plot_hover . The value will be a named list
with x and y elements indicating the mouse position. To control the hover time or hover
delay type, you must use hoverOpts .

hoverDelay Deprecated; use hover instead. Also see the hoverOpts function.

hoverDelayType Deprecated; use hover instead. Also see the hoverOpts function.

brush Similar to the click argument, this can be NULL (the default), a string, or an object created
by the brushOpts function. If you use a value like "plot_brush" (or equivalently,
brushOpts(id="plot_brush")), the plot will allow the user to "brush" in the plotting area,

and will send information about the brushed area to the server, and the value will be
accessible via input$plot_brush . Brushing means that the user will be able to draw a
rectangle in the plotting area and drag it around. The value will be a named list with xmin ,

Create an plot or image output 441
xmax , ymin , and ymax elements indicating the brush area. To control the brush behavior,

use brushOpts .

clickId Deprecated; use click instead. Also see the clickOpts function.

hoverId Deprecated; use hover instead. Also see the hoverOpts function.

inline use an inline (span()) or block container (div()) for the output

Value
A plot or image output element that can be included in a panel.

Description
Render a renderPlot or renderImage within an application page.

Note
The arguments clickId and hoverId only work for R base graphics (see the graphics package). They do not
work for grid-based graphics, such as ggplot2, lattice, and so on.

Interactive plots
Plots and images in Shiny support mouse-based interaction, via clicking, double-clicking, hovering, and brushing.
When these interaction events occur, the mouse coordinates will be sent to the server as input$ variables, as
specified by click , dblclick , hover , or brush .

For plotOutput , the coordinates will be sent scaled to the data space, if possible. (At the moment, plots generated
by base graphics support this scaling, although plots generated by grid or ggplot2 do not.) If scaling is not possible,
the raw pixel coordinates will be sent. For imageOutput , the coordinates will be sent in raw pixel coordinates.

Examples
Only run these examples in interactive R sessions
if (interactive()) {

A basic shiny app with a plotOutput
shinyApp(
 ui = fluidPage(
 sidebarLayout(
 sidebarPanel(
 actionButton("newplot", "New plot")
),
 mainPanel(
 plotOutput("plot")
)
)
),
 server = function(input, output) {
 output$plot <- renderPlot({
 input$newplot
 # Add a little noise to the cars data
 cars2 <- cars + rnorm(nrow(cars))
 plot(cars2)
 })
 }

Create an plot or image output 442
)

A demonstration of clicking, hovering, and brushing
shinyApp(
 ui = basicPage(
 fluidRow(
 column(width = 4,
 plotOutput("plot", height=300,
 click = "plot_click", # Equiv, to click=clickOpts(id="plot_click")
 hover = hoverOpts(id = "plot_hover", delayType = "throttle"),
 brush = brushOpts(id = "plot_brush")
),
 h4("Clicked points"),
 tableOutput("plot_clickedpoints"),
 h4("Brushed points"),
 tableOutput("plot_brushedpoints")
),
 column(width = 4,
 verbatimTextOutput("plot_clickinfo"),
 verbatimTextOutput("plot_hoverinfo")
),
 column(width = 4,
 wellPanel(actionButton("newplot", "New plot")),
 verbatimTextOutput("plot_brushinfo")
)
)
),
 server = function(input, output, session) {
 data <- reactive({
 input$newplot
 # Add a little noise to the cars data so the points move
 cars + rnorm(nrow(cars))
 })
 output$plot <- renderPlot({
 d <- data()
 plot(d$speed, d$dist)
 })
 output$plot_clickinfo <- renderPrint({
 cat("Click:\n")
 str(input$plot_click)
 })
 output$plot_hoverinfo <- renderPrint({
 cat("Hover (throttled):\n")
 str(input$plot_hover)
 })
 output$plot_brushinfo <- renderPrint({
 cat("Brush (debounced):\n")
 str(input$plot_brush)
 })
 output$plot_clickedpoints <- renderTable({
 # For base graphics, we need to specify columns, though for ggplot2,
 # it's usually not necessary.
 res <- nearPoints(data(), input$plot_click, "speed", "dist")
 if (nrow(res) == 0)
 return()
 res

Create an plot or image output 443
 })
 output$plot_brushedpoints <- renderTable({
 res <- brushedPoints(data(), input$plot_brush, "speed", "dist")
 if (nrow(res) == 0)
 return()
 res
 })
 }
)

Demo of clicking, hovering, brushing with imageOutput
Note that coordinates are in pixels
shinyApp(
 ui = basicPage(
 fluidRow(
 column(width = 4,
 imageOutput("image", height=300,
 click = "image_click",
 hover = hoverOpts(
 id = "image_hover",
 delay = 500,
 delayType = "throttle"
),
 brush = brushOpts(id = "image_brush")
)
),
 column(width = 4,
 verbatimTextOutput("image_clickinfo"),
 verbatimTextOutput("image_hoverinfo")
),
 column(width = 4,
 wellPanel(actionButton("newimage", "New image")),
 verbatimTextOutput("image_brushinfo")
)
)
),
 server = function(input, output, session) {
 output$image <- renderImage({
 input$newimage

 # Get width and height of image output
 width <- session$clientData$output_image_width
 height <- session$clientData$output_image_height

 # Write to a temporary PNG file
 outfile <- tempfile(fileext = ".png")

 png(outfile, width=width, height=height)
 plot(rnorm(200), rnorm(200))
 dev.off()

 # Return a list containing information about the image
 list(
 src = outfile,
 contentType = "image/png",
 width = width,

Create an plot or image output 444

Shiny is an RStudio project. © 2014 RStudio, Inc.

 height = height,
 alt = "This is alternate text"
)
 })
 output$image_clickinfo <- renderPrint({
 cat("Click:\n")
 str(input$image_click)
 })
 output$image_hoverinfo <- renderPrint({
 cat("Hover (throttled):\n")
 str(input$image_hover)
 })
 output$image_brushinfo <- renderPrint({
 cat("Brush (debounced):\n")
 str(input$image_brush)
 })
 }
)

}

See also
For the corresponding server-side functions, see renderPlot and renderImage .

Set options for an output object. 445

3.51 Set options for an output object.

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Set options for an output object.
outputOptions(x, name, ...)

Arguments
x A shinyoutput object (typically output).

name The name of an output observer in the shinyoutput object.

... Options to set for the output observer.

Description
These are the available options for an output object:

suspendWhenHidden. When TRUE (the default), the output object will be suspended (not execute) when it is
hidden on the web page. When FALSE , the output object will not suspend when hidden, and if it was already
hidden and suspended, then it will resume immediately.
priority. The priority level of the output object. Queued outputs with higher priority values will execute before
those with lower values.

Examples
Not run:
Get the list of options for all observers within output
outputOptions(output)

Disable suspend for output$myplot
outputOptions(output, "myplot", suspendWhenHidden = FALSE)

Change priority for output$myplot
outputOptions(output, "myplot", priority = 10)

Get the list of options for output$myplot
outputOptions(output, "myplot")
End(Not run)

Create a table output element 446

3.52 Create a table output element

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a table output element
tableOutput(outputId)

dataTableOutput(outputId)

Arguments
outputId output variable to read the table from

Value
A table output element that can be included in a panel

Description
Render a renderTable or renderDataTable within an application page. renderTable uses a standard HTML
table, while renderDataTable uses the DataTables Javascript library to create an interactive table with more
features.

Examples
Only run this example in interactive R sessions
if (interactive()) {
 # table example
 shinyApp(
 ui = fluidPage(
 fluidRow(
 column(12,
 tableOutput('table')
)
)
),
 server = function(input, output) {
 output$table <- renderTable(iris)
 }
)

 # DataTables example
 shinyApp(
 ui = fluidPage(
 fluidRow(
 column(12,

Create a table output element 447

Shiny is an RStudio project. © 2014 RStudio, Inc.

 dataTableOutput('table')
)
)
),
 server = function(input, output) {
 output$table <- renderDataTable(iris)
 }
)
}

See also
renderTable , renderDataTable .

Create a text output element 448

3.53 Create a text output element

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a text output element
textOutput(outputId, container = if (inline) span else div, inline = FALSE)

Arguments
outputId output variable to read the value from

container a function to generate an HTML element to contain the text

inline use an inline (span()) or block container (div()) for the output

Value
A text output element that can be included in a panel

Description
Render a reactive output variable as text within an application page. The text will be included within an HTML div
tag by default.

Details
Text is HTML-escaped prior to rendering. This element is often used to display renderText output variables.

Examples
h3(textOutput("caption"))

<h3>
 <div id="caption" class="shiny-text-output"></div>
</h3>

Create a verbatim text output element 449

3.54 Create a verbatim text output element

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a verbatim text output element
verbatimTextOutput(outputId)

Arguments
outputId output variable to read the value from

Value
A verbatim text output element that can be included in a panel

Description
Render a reactive output variable as verbatim text within an application page. The text will be included within an
HTML pre tag.

Details
Text is HTML-escaped prior to rendering. This element is often used with the renderPrint function to preserve fixed-
width formatting of printed objects.

Examples
mainPanel(
 h4("Summary"),
 verbatimTextOutput("summary"),

 h4("Observations"),
 tableOutput("view")
)

<div class="col-sm-8">
 <h4>Summary</h4>
 <pre id="summary" class="shiny-text-output"></pre>
 <h4>Observations</h4>
 <div id="view" class="shiny-html-output"></div>
</div>

Create a download button or link 450

3.55 Create a download button or link

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a download button or link
downloadButton(outputId, label = "Download", class = NULL)

downloadLink(outputId, label = "Download", class = NULL)

Arguments
outputId The name of the output slot that the downloadHandler is assigned to.

label The label that should appear on the button.

class Additional CSS classes to apply to the tag, if any.

Description
Use these functions to create a download button or link; when clicked, it will initiate a browser download. The filename
and contents are specified by the corresponding downloadHandler defined in the server function.

Examples
Not run:
In server.R:
output$downloadData <- downloadHandler(
filename = function() {
paste('data-', Sys.Date(), '.csv', sep='')
},
content = function(con) {
write.csv(data, con)
}
)

In ui.R:
downloadLink('downloadData', 'Download')
End(Not run)

See also
downloadHandler

Reporting progress (object-oriented 451

3.56 Reporting progress (object-oriented

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reporting progress (object-oriented
API)
Arguments
session The Shiny session object, as provided by shinyServer to the server function.

min The value that represents the starting point of the progress bar. Must be less tham max .

max The value that represents the end of the progress bar. Must be greater than min .

message A single-element character vector; the message to be displayed to the user, or NULL to hide the
current message (if any).

detail A single-element character vector; the detail message to be displayed to the user, or NULL to hide the
current detail message (if any). The detail message will be shown with a de-emphasized appearance
relative to message .

value A numeric value at which to set the progress bar, relative to min and max . NULL hides the progress
bar, if it is currently visible.

amount Single-element numeric vector; the value at which to set the progress bar, relative to min and max .
NULL hides the progress bar, if it is currently visible.

amount For the inc() method, a numeric value to increment the progress bar.

Description
Reports progress to the user during long-running operations.

Details
This package exposes two distinct programming APIs for working with progress. withProgress and setProgress
together provide a simple function-based interface, while the Progress reference class provides an object-oriented
API.

Instantiating a Progress object causes a progress panel to be created, and it will be displayed the first time the
set method is called. Calling close will cause the progress panel to be removed.

Methods

initialize(session, min = 0, max = 1)

Creates a new progress panel (but does not display it).

set(value = NULL, message = NULL, detail = NULL)

Updates the progress panel. When called the first time, the progress panel is displayed.

inc(amount = 0.1, message = NULL, detail = NULL)

Like set , this updates the progress panel. The difference is that inc increases the progress bar by amount ,

Reporting progress (object-oriented 452

Shiny is an RStudio project. © 2014 RStudio, Inc.

instead of setting it to a specific value.

close()

Removes the progress panel. Future calls to set and close will be ignored.

Examples
Not run:
server.R
shinyServer(function(input, output, session) {
output$plot <- renderPlot({
progress <- shiny::Progress$new(session, min=1, max=15)
on.exit(progress$close())

progress$set(message = 'Calculation in progress',
detail = 'This may take a while...')

for (i in 1:15) {
progress$set(value = i)
Sys.sleep(0.5)
}
plot(cars)
})
})
End(Not run)

See also
withProgress

Reporting progress (functional API) 453

3.57 Reporting progress (functional API)

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reporting progress (functional API)
withProgress(expr, min = 0, max = 1, value = min + (max - min) * 0.1, message = NULL,

detail = NULL, session = getDefaultReactiveDomain(), env = parent.frame(),

quoted = FALSE)

setProgress(value = NULL, message = NULL, detail = NULL,

session = getDefaultReactiveDomain())

incProgress(amount = 0.1, message = NULL, detail = NULL,

session = getDefaultReactiveDomain())

Arguments
expr The work to be done. This expression should contain calls to setProgress .

min The value that represents the starting point of the progress bar. Must be less tham max . Default is 0.

max The value that represents the end of the progress bar. Must be greater than min . Default is 1.

value Single-element numeric vector; the value at which to set the progress bar, relative to min and max .
NULL hides the progress bar, if it is currently visible.

message A single-element character vector; the message to be displayed to the user, or NULL to hide the
current message (if any).

detail A single-element character vector; the detail message to be displayed to the user, or NULL to hide the
current detail message (if any). The detail message will be shown with a de-emphasized appearance
relative to message .

session The Shiny session object, as provided by shinyServer to the server function. The default is to
automatically find the session by using the current reactive domain.

env The environment in which expr should be evaluated.

quoted Whether expr is a quoted expression (this is not common).

amount For incProgress , the amount to increment the status bar. Default is 0.1.

Description
Reports progress to the user during long-running operations.

Details
This package exposes two distinct programming APIs for working with progress. Using withProgress with
incProgress or setProgress provide a simple function-based interface, while the Progress reference class

provides an object-oriented API.

Reporting progress (functional API) 454

Shiny is an RStudio project. © 2014 RStudio, Inc.

Use withProgress to wrap the scope of your work; doing so will cause a new progress panel to be created, and it
will be displayed the first time incProgress or setProgress are called. When withProgress exits, the
corresponding progress panel will be removed.

The incProgress function increments the status bar by a specified amount, whereas the setProgress function
sets it to a specific value, and can also set the text displayed.

Generally, withProgress / incProgress / setProgress should be sufficient; the exception is if the work to be
done is asynchronous (this is not common) or otherwise cannot be encapsulated by a single scope. In that case, you
can use the Progress reference class.

Examples
Not run:
server.R
shinyServer(function(input, output) {
output$plot <- renderPlot({
withProgress(message = 'Calculation in progress',
detail = 'This may take a while...', value = 0, {
for (i in 1:15) {
incProgress(1/15)
Sys.sleep(0.25)
}
})
plot(cars)
})
})
End(Not run)

See also
Progress

HTML Builder Functions 455

3.58 HTML Builder Functions

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

HTML Builder Functions
tags

p(...)

h1(...)

h2(...)

h3(...)

h4(...)

h5(...)

h6(...)

a(...)

br(...)

div(...)

span(...)

pre(...)

code(...)

img(...)

strong(...)

em(...)

hr(...)

Arguments
... Attributes and children of the element. Named arguments become attributes, and positional arguments become

children. Valid children are tags, single-character character vectors (which become text nodes), and raw HTML
(see HTML). You can also pass lists that contain tags, text nodes, and HTML.

HTML Builder Functions 456

Shiny is an RStudio project. © 2014 RStudio, Inc.

Description
Simple functions for constructing HTML documents.

Details
The tags environment contains convenience functions for all valid HTML5 tags. To generate tags that are not part
of the HTML5 specification, you can use the tag() function.

Dedicated functions are available for the most common HTML tags that do not conflict with common R functions.

The result from these functions is a tag object, which can be converted using as.character() .

Examples
doc <- tags$html(
 tags$head(
 tags$title('My first page')
),
 tags$body(
 h1('My first heading'),
 p('My first paragraph, with some ',
 strong('bold'),
 ' text.'),
 div(id='myDiv', class='simpleDiv',
 'Here is a div with some attributes.')
)
)
cat(as.character(doc))

<html>
 <body>
 <h1>My first heading</h1>
 <p>
 My first paragraph, with some
 bold
 text.
 </p>
 <div id="myDiv" class="simpleDiv">Here is a div with some attributes.</div>
 </body>
</html>

Mark Characters as HTML 457

3.59 Mark Characters as HTML

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Mark Characters as HTML
HTML(text, ...)

Arguments
text The text value to mark with HTML

... Any additional values to be converted to character and concatenated together

Value
The same value, but marked as HTML.

Description
Marks the given text as HTML, which means the tag functions will know not to perform HTML escaping on it.

Examples
el <- div(HTML("I like <u>turtles</u>"))
cat(as.character(el))

<div>I like <u>turtles</u></div>

Include Content From a File 458

3.60 Include Content From a File

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Include Content From a File
includeHTML(path)

includeText(path)

includeMarkdown(path)

includeCSS(path, ...)

includeScript(path, ...)

Arguments
path The path of the file to be included. It is highly recommended to use a relative path (the base path being the

Shiny application directory), not an absolute path.

... Any additional attributes to be applied to the generated tag.

Description
Load HTML, text, or rendered Markdown from a file and turn into HTML.

Details
These functions provide a convenient way to include an extensive amount of HTML, textual, Markdown, CSS, or
JavaScript content, rather than using a large literal R string.

Note
includeText escapes its contents, but does no other processing. This means that hard breaks and multiple spaces

will be rendered as they usually are in HTML: as a single space character. If you are looking for preformatted text,
wrap the call with pre , or consider using includeMarkdown instead.

The includeMarkdown function requires the markdown package.

Include content only once 459

3.61 Include content only once

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Include content only once
singleton(x, value = TRUE)

is.singleton(x)

Arguments
x A tag , text, HTML , or list.

value Whether the object should be a singleton.

Description
Use singleton to wrap contents (tag, text, HTML, or lists) that should be included in the generated document only
once, yet may appear in the document-generating code more than once. Only the first appearance of the content (in
document order) will be used.

HTML Tag Object 460

3.62 HTML Tag Object

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

HTML Tag Object
tagList(...)

tagAppendAttributes(tag, ...)

tagAppendChild(tag, child)

tagAppendChildren(tag, ..., list = NULL)

tagSetChildren(tag, ..., list = NULL)

tag(`_tag_name`, varArgs)

Arguments
_tag_name HTML tag name

varArgs List of attributes and children of the element. Named list items become attributes, and unnamed list
items become children. Valid children are tags, single-character character vectors (which become text
nodes), and raw HTML (see HTML). You can also pass lists that contain tags, text nodes, and HTML.

tag A tag to append child elements to.

child A child element to append to a parent tag.

... Unnamed items that comprise this list of tags.

list An optional list of elements. Can be used with or instead of the ... items.

Value
An HTML tag object that can be rendered as HTML using as.character() .

Description
tag() creates an HTML tag definition. Note that all of the valid HTML5 tags are already defined in the tags

environment so these functions should only be used to generate additional tags. tagAppendChild() and
tagList() are for supporting package authors who wish to create their own sets of tags; see the contents of

bootstrap.R for examples.

Examples
tagList(tags$h1("Title"),
 tags$h2("Header text"),
 tags$p("Text here"))

HTML Tag Object 461

Shiny is an RStudio project. © 2014 RStudio, Inc.

<h1>Title</h1>
<h2>Header text</h2>
<p>Text here</p>

Can also convert a regular list to a tagList (internal data structure isn't
exactly the same, but when rendered to HTML, the output is the same).
x <- list(tags$h1("Title"),
 tags$h2("Header text"),
 tags$p("Text here"))
tagList(x)

<h1>Title</h1>
<h2>Header text</h2>
<p>Text here</p>

Validate proper CSS formatting of a 462

3.63 Validate proper CSS formatting of a

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Validate proper CSS formatting of a
unit
validateCssUnit(x)

Arguments
x The unit to validate. Will be treated as a number of pixels if a unit is not specified.

Value
A properly formatted CSS unit of length, if possible. Otherwise, will throw an error.

Description
Checks that the argument is valid for use as a CSS unit of length.

Details
NULL and NA are returned unchanged.

Single element numeric vectors are returned as a character vector with the number plus a suffix of "px" .

Single element character vectors must be "auto" or "inherit" , or a number. If the number has a suffix, it must
be valid: px , % , em , pt , in , cm , mm , ex , or pc . If the number has no suffix, the suffix "px" is appended.

Any other value will cause an error to be thrown.

Examples
validateCssUnit("10%")

[1] "10%"

validateCssUnit(400) #treated as '400px'

[1] "400px"

Evaluate an expression using tags 463

3.64 Evaluate an expression using tags

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Evaluate an expression using tags
withTags(code)

Arguments
code A set of tags.

Description
This function makes it simpler to write HTML-generating code. Instead of needing to specify tags each time a tag
function is used, as in tags$div() and tags$p() , code inside withTags is evaluated with tags searched first,
so you can simply use div() and p() .

Details
If your code uses an object which happens to have the same name as an HTML tag function, such as source() or
summary() , it will call the tag function. To call the intended (non-tags function), specify the namespace, as in
base::source() or base::summary() .

Examples
Using tags$ each time
tags$div(class = "myclass",
 tags$h3("header"),
 tags$p("text")
)

<div class="myclass">
 <h3>header</h3>
 <p>text</p>
</div>

Equivalent to above, but using withTags
withTags(
 div(class = "myclass",
 h3("header"),
 p("text")
)
)

<div class="myclass">
 <h3>header</h3>

Evaluate an expression using tags 464

Shiny is an RStudio project. © 2014 RStudio, Inc.

 <p>text</p>
</div>

Plot Output 465

3.65 Plot Output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Plot Output
renderPlot(expr, width = "auto", height = "auto", res = 72, ..., env = parent.frame(),

quoted = FALSE, func = NULL)

Arguments
expr An expression that generates a plot.

width,height The width/height of the rendered plot, in pixels; or 'auto' to use the
offsetWidth / offsetHeight of the HTML element that is bound to this plot. You can also pass

in a function that returns the width/height in pixels or 'auto' ; in the body of the function you may
reference reactive values and functions. When rendering an inline plot, you must provide numeric
values (in pixels) to both width and height .

res Resolution of resulting plot, in pixels per inch. This value is passed to png . Note that this affects
the resolution of PNG rendering in R; it won't change the actual ppi of the browser.

... Arguments to be passed through to png . These can be used to set the width, height, background
color, etc.

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in
a variable.

func A function that generates a plot (deprecated; use expr instead).

Description
Renders a reactive plot that is suitable for assigning to an output slot.

Details
The corresponding HTML output tag should be div or img and have the CSS class name shiny-plot-output .

See also
For the corresponding client-side output function, and example usage, see plotOutput . For more details on how
the plots are generated, and how to control the output, see plotPNG .

Text Output 466

3.66 Text Output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Text Output
renderText(expr, env = parent.frame(), quoted = FALSE, func = NULL)

Arguments
expr An expression that returns an R object that can be used as an argument to cat .

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a
variable.

func A function that returns an R object that can be used as an argument to cat .(deprecated; use expr
instead).

Description
Makes a reactive version of the given function that also uses cat to turn its result into a single-element character
vector.

Details
The corresponding HTML output tag can be anything (though pre is recommended if you need a monospace font
and whitespace preserved) and should have the CSS class name shiny-text-output .

The result of executing func will passed to cat , inside a capture.output call.

Examples
isolate({

renderPrint captures any print output, converts it to a string, and
returns it
visFun <- renderPrint({ "foo" })
visFun()
'[1] "foo"'

invisFun <- renderPrint({ invisible("foo") })
invisFun()
''

multiprintFun <- renderPrint({
 print("foo");
 "bar"
})

Text Output 467
multiprintFun()
'[1] "foo"\n[1] "bar"'

nullFun <- renderPrint({ NULL })
nullFun()
'NULL'

invisNullFun <- renderPrint({ invisible(NULL) })
invisNullFun()
''

vecFun <- renderPrint({ 1:5 })
vecFun()
'[1] 1 2 3 4 5'

Contrast with renderText, which takes the value returned from the function
and uses cat() to convert it to a string
visFun <- renderText({ "foo" })
visFun()
'foo'

invisFun <- renderText({ invisible("foo") })
invisFun()
'foo'

multiprintFun <- renderText({
 print("foo");
 "bar"
})
multiprintFun()
'bar'

nullFun <- renderText({ NULL })
nullFun()
''

invisNullFun <- renderText({ invisible(NULL) })
invisNullFun()
''

vecFun <- renderText({ 1:5 })
vecFun()
'1 2 3 4 5'

})

[1] "foo"

[1] "1 2 3 4 5"

See also
renderPrint for capturing the print output of a function, rather than the returned text value.

Printable Output 468

3.67 Printable Output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Printable Output
renderPrint(expr, env = parent.frame(), quoted = FALSE, func = NULL,

width = getOption("width"))

Arguments
expr An expression that may print output and/or return a printable R object.

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This

func A function that may print output and/or return a printable R object (deprecated; use expr instead).

width The value for options('width') .

Description
Makes a reactive version of the given function that captures any printed output, and also captures its printable result
(unless invisible), into a string. The resulting function is suitable for assigning to an output slot.

Details
The corresponding HTML output tag can be anything (though pre is recommended if you need a monospace font
and whitespace preserved) and should have the CSS class name shiny-text-output .

The result of executing func will be printed inside a capture.output call.

Note that unlike most other Shiny output functions, if the given function returns NULL then NULL will actually be
visible in the output. To display nothing, make your function return invisible() .

Examples
isolate({

renderPrint captures any print output, converts it to a string, and
returns it
visFun <- renderPrint({ "foo" })
visFun()
'[1] "foo"'

invisFun <- renderPrint({ invisible("foo") })
invisFun()
''

multiprintFun <- renderPrint({

Printable Output 469
 print("foo");
 "bar"
})
multiprintFun()
'[1] "foo"\n[1] "bar"'

nullFun <- renderPrint({ NULL })
nullFun()
'NULL'

invisNullFun <- renderPrint({ invisible(NULL) })
invisNullFun()
''

vecFun <- renderPrint({ 1:5 })
vecFun()
'[1] 1 2 3 4 5'

Contrast with renderText, which takes the value returned from the function
and uses cat() to convert it to a string
visFun <- renderText({ "foo" })
visFun()
'foo'

invisFun <- renderText({ invisible("foo") })
invisFun()
'foo'

multiprintFun <- renderText({
 print("foo");
 "bar"
})
multiprintFun()
'bar'

nullFun <- renderText({ NULL })
nullFun()
''

invisNullFun <- renderText({ invisible(NULL) })
invisNullFun()
''

vecFun <- renderText({ 1:5 })
vecFun()
'1 2 3 4 5'

})

[1] "foo"

[1] "1 2 3 4 5"

See also
renderText for displaying the value returned from a function, instead of the printed output.

Table output with the JavaScript 470

3.68 Table output with the JavaScript

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Table output with the JavaScript
library DataTables
renderDataTable(expr, options = NULL, searchDelay = 500, callback = "function(oTable) {}",

escape = TRUE, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that returns a data frame or a matrix.

options A list of initialization options to be passed to DataTables, or a function to return such a list.

searchDelay The delay for searching, in milliseconds (to avoid too frequent search requests).

callback A JavaScript function to be applied to the DataTable object. This is useful for DataTables plug-ins,
which often require the DataTable instance to be available (http://datatables.net/extensions/).

escape Whether to escape HTML entities in the table: TRUE means to escape the whole table, and
FALSE means not to escape it. Alternatively, you can specify numeric column indices or column

names to indicate which columns to escape, e.g. 1:5 (the first 5 columns), c(1, 3, 4) , or
c(-1, -3) (all columns except the first and third), or c('Species', 'Sepal.Length') .

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in
a variable.

Description
Makes a reactive version of the given function that returns a data frame (or matrix), which will be rendered with the
DataTables library. Paging, searching, filtering, and sorting can be done on the R side using Shiny as the server
infrastructure.

Details
For the options argument, the character elements that have the class "AsIs" (usually returned from I()) will be
evaluated in JavaScript. This is useful when the type of the option value is not supported in JSON, e.g., a JavaScript
function, which can be obtained by evaluating a character string. Note this only applies to the root-level elements of
the options list, and the I() notation does not work for lower-level elements in the list.

Note
This function only provides the server-side version of DataTables (using R to process the data object on the server
side). There is a separate package DT (https://github.com/rstudio/DT) that allows you to create both server-side and
client-side DataTables, and supports additional DataTables features. Consider using DT::renderDataTable() and

Table output with the JavaScript 471

Shiny is an RStudio project. © 2014 RStudio, Inc.

DT::dataTableOutput() (see http://rstudio.github.io/DT/shiny.html for more information).

References
http://datatables.net

Examples
Only run this example in interactive R sessions
if (interactive()) {
 # pass a callback function to DataTables using I()
 shinyApp(
 ui = fluidPage(
 fluidRow(
 column(12,
 dataTableOutput('table')
)
)
),
 server = function(input, output) {
 output$table <- renderDataTable(iris,
 options = list(
 pageLength = 5,
 initComplete = I("function(settings, json) {alert('Done.');}")
)
)
 }
)
}

Image file output 472

3.69 Image file output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Image file output
renderImage(expr, env = parent.frame(), quoted = FALSE, deleteFile = TRUE)

Arguments
expr An expression that returns a list.

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a
variable.

deleteFile Should the file in func()$src be deleted after it is sent to the client browser? Generally speaking, if
the image is a temp file generated within func , then this should be TRUE ; if the image is not a temp
file, this should be FALSE .

Description
Renders a reactive image that is suitable for assigning to an output slot.

Details
The expression expr must return a list containing the attributes for the img object on the client web page. For the
image to display, properly, the list must have at least one entry, src , which is the path to the image file. It may also
useful to have a contentType entry specifying the MIME type of the image. If one is not provided, renderImage
will try to autodetect the type, based on the file extension.

Other elements such as width , height , class , and alt , can also be added to the list, and they will be used as
attributes in the img object.

The corresponding HTML output tag should be div or img and have the CSS class name shiny-image-output .

Examples
Not run:

shinyServer(function(input, output, clientData) {

A plot of fixed size
output$plot1 <- renderImage({
A temp file to save the output. It will be deleted after renderImage
sends it, because deleteFile=TRUE.
outfile <- tempfile(fileext='.png')

Generate a png

Image file output 473

Shiny is an RStudio project. © 2014 RStudio, Inc.

png(outfile, width=400, height=400)
hist(rnorm(input$n))
dev.off()

Return a list
list(src = outfile,
alt = "This is alternate text")
}, deleteFile = TRUE)

A dynamically-sized plot
output$plot2 <- renderImage({
Read plot2's width and height. These are reactive values, so this
expression will re-run whenever these values change.
width <- clientData$output_plot2_width
height <- clientData$output_plot2_height

A temp file to save the output.
outfile <- tempfile(fileext='.png')

png(outfile, width=width, height=height)
hist(rnorm(input$obs))
dev.off()

Return a list containing the filename
list(src = outfile,
width = width,
height = height,
alt = "This is alternate text")
}, deleteFile = TRUE)

Send a pre-rendered image, and don't delete the image after sending it
output$plot3 <- renderImage({
When input$n is 1, filename is ./images/image1.jpeg
filename <- normalizePath(file.path('./images',
paste('image', input$n, '.jpeg', sep='')))

Return a list containing the filename
list(src = filename)
}, deleteFile = FALSE)
})

End(Not run)

See also
For more details on how the images are generated, and how to control the output, see plotPNG .

Table Output 474

3.70 Table Output

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Table Output
renderTable(expr, ..., env = parent.frame(), quoted = FALSE, func = NULL)

Arguments
expr An expression that returns an R object that can be used with xtable .

... Arguments to be passed through to xtable and print.xtable .

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a
variable.

func A function that returns an R object that can be used with xtable (deprecated; use expr instead).

Description
Creates a reactive table that is suitable for assigning to an output slot.

Details
The corresponding HTML output tag should be div and have the CSS class name shiny-html-output .

UI Output 475

3.71 UI Output

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

UI Output
renderUI(expr, env = parent.frame(), quoted = FALSE, func = NULL)

Arguments
expr An expression that returns a Shiny tag object, HTML , or a list of such objects.

env The environment in which to evaluate expr .

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a
variable.

func A function that returns a Shiny tag object, HTML , or a list of such objects (deprecated; use expr
instead).

Description
Experimental feature. Makes a reactive version of a function that generates HTML using the Shiny UI library.

Details
The corresponding HTML output tag should be div and have the CSS class name shiny-html-output (or use
uiOutput).

Examples
Not run:
output$moreControls <- renderUI({
list(

)
})
End(Not run)

See also
conditionalPanel

File Downloads 476

3.72 File Downloads

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

File Downloads
downloadHandler(filename, content, contentType = NA)

Arguments
filename A string of the filename, including extension, that the user's web browser should default to when

downloading the file; or a function that returns such a string. (Reactive values and functions may
be used from this function.)

content A function that takes a single argument file that is a file path (string) of a nonexistent temp file,
and writes the content to that file path. (Reactive values and functions may be used from this
function.)

contentType A string of the download's content type, for example "text/csv" or "image/png" . If NULL or
NA , the content type will be guessed based on the filename extension, or
application/octet-stream if the extension is unknown.

Description
Allows content from the Shiny application to be made available to the user as file downloads (for example,
downloading the currently visible data as a CSV file). Both filename and contents can be calculated dynamically at
the time the user initiates the download. Assign the return value to a slot on output in your server function, and in
the UI use downloadButton or downloadLink to make the download available.

Examples
Not run:
In server.R:
output$downloadData <- downloadHandler(
filename = function() {
paste('data-', Sys.Date(), '.csv', sep='')
},
content = function(file) {
write.csv(data, file)
}
)

In ui.R:
downloadLink('downloadData', 'Download')
End(Not run)

Plot output (deprecated) 477

3.73 Plot output (deprecated)

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Plot output (deprecated)
reactivePlot(func, width = "auto", height = "auto", ...)

Arguments
func A function.

width Width.

height Height.

... Other arguments to pass on.

Description
See renderPlot .

Print output (deprecated) 478

3.74 Print output (deprecated)

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Print output (deprecated)
reactivePrint(func)

Arguments
func A function.

Description
See renderPrint .

Table output (deprecated) 479

3.75 Table output (deprecated)

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Table output (deprecated)
reactiveTable(func, ...)

Arguments
func A function.

... Other arguments to pass on.

Description
See renderTable .

Text output (deprecated) 480

3.76 Text output (deprecated)

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Text output (deprecated)
reactiveText(func)

Arguments
func A function.

Description
See renderText .

UI output (deprecated) 481

3.77 UI output (deprecated)

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

UI output (deprecated)
reactiveUI(func)

Arguments
func A function.

Description
See renderUI .

Scheduled Invalidation 482

3.78 Scheduled Invalidation

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Scheduled Invalidation
invalidateLater(millis, session)

Arguments
millis Approximate milliseconds to wait before invalidating the current reactive context.

session A session object. This is needed to cancel any scheduled invalidations after a user has ended the
session. If NULL , then this invalidation will not be tied to any session, and so it will still occur.

Description
Schedules the current reactive context to be invalidated in the given number of milliseconds.

Details
If this is placed within an observer or reactive expression, that object will be invalidated (and re-execute) after the
interval has passed. The re-execution will reset the invalidation flag, so in a typical use case, the object will keep re-
executing and waiting for the specified interval. It's possible to stop this cycle by adding conditional logic that prevents
the invalidateLater from being run.

Examples
Not run:
shinyServer(function(input, output, session) {

observe({
Re-execute this reactive expression after 1000 milliseconds
invalidateLater(1000, session)

Do something each time this is invalidated.
The isolate() makes this observer _not_ get invalidated and re-executed
when input$n changes.
print(paste("The value of input$n is", isolate(input$n)))
})

Generate a new histogram at timed intervals, but not when
input$n changes.
output$plot <- renderPlot({
Re-execute this reactive expression after 2000 milliseconds
invalidateLater(2000, session)
hist(isolate(input$n))
})

Scheduled Invalidation 483

Shiny is an RStudio project. © 2014 RStudio, Inc.

})
End(Not run)

See also
reactiveTimer is a slightly less safe alternative.

Checks whether an object is a 484

3.79 Checks whether an object is a

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Checks whether an object is a
reactivevalues object
is.reactivevalues(x)

Arguments
x The object to test.

Description
Checks whether its argument is a reactivevalues object.

See also
reactiveValues .

Create a non-reactive scope for an 485

3.80 Create a non-reactive scope for an

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a non-reactive scope for an
expression
isolate(expr)

Arguments
expr An expression that can access reactive values or expressions.

Description
Executes the given expression in a scope where reactive values or expression can be read, but they cannot cause
the reactive scope of the caller to be re-evaluated when they change.

Details
Ordinarily, the simple act of reading a reactive value causes a relationship to be established between the caller and
the reactive value, where a change to the reactive value will cause the caller to re-execute. (The same applies for the
act of getting a reactive expression's value.) The isolate function lets you read a reactive value or expression
without establishing this relationship.

The expression given to isolate() is evaluated in the calling environment. This means that if you assign a variable
inside the isolate() , its value will be visible outside of the isolate() . If you want to avoid this, you can use
local() inside the isolate() .

This function can also be useful for calling reactive expression at the console, which can be useful for debugging. To
do so, simply wrap the calls to the reactive expression with isolate() .

Examples
Not run:
observe({
input$saveButton # Do take a dependency on input$saveButton

isolate a simple expression
data <- get(isolate(input$dataset)) # No dependency on input$dataset
writeToDatabase(data)
})

observe({
input$saveButton # Do take a dependency on input$saveButton

isolate a whole block

Create a non-reactive scope for an 486

Shiny is an RStudio project. © 2014 RStudio, Inc.

data <- isolate({
a <- input$valueA # No dependency on input$valueA or input$valueB
b <- input$valueB
c(a=a, b=b)
})
writeToDatabase(data)
})

observe({
x <- 1
x outside of isolate() is affected
isolate(x <- 2)
print(x) # 2

y <- 1
Use local() to avoid affecting calling environment
isolate(local(y <- 2))
print(y) # 1
})

End(Not run)

Can also use isolate to call reactive expressions from the R console
values <- reactiveValues(A=1)
fun <- reactive({ as.character(values$A) })
isolate(fun())

[1] "1"

"1"

isolate also works if the reactive expression accesses values from the
input object, like input$x

Make a reactive variable 487

3.81 Make a reactive variable

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Make a reactive variable
makeReactiveBinding(symbol, env = parent.frame())

Arguments
symbol A character string indicating the name of the variable that should be made reactive

env The environment that will contain the reactive variable

Value
None.

Description
Turns a normal variable into a reactive variable, that is, one that has reactive semantics when assigned or read in the
usual ways. The variable may already exist; if so, its value will be used as the initial value of the reactive variable (or
NULL if the variable did not exist).

Examples
Not run:
a <- 10
makeReactiveBinding("a")
b <- reactive(a * -1)
observe(print(b()))
a <- 20
End(Not run)

Create a reactive observer 488

3.82 Create a reactive observer

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a reactive observer
observe(x, env = parent.frame(), quoted = FALSE, label = NULL, suspended = FALSE,

priority = 0, domain = getDefaultReactiveDomain(), autoDestroy = TRUE)

Arguments
x An expression (quoted or unquoted). Any return value will be ignored.

env The parent environment for the reactive expression. By default, this is the calling environment, the
same as when defining an ordinary non-reactive expression.

quoted Is the expression quoted? By default, this is FALSE . This is useful when you want to use an
expression that is stored in a variable; to do so, it must be quoted with quote() .

label A label for the observer, useful for debugging.

suspended If TRUE , start the observer in a suspended state. If FALSE (the default), start in a non-suspended
state.

priority An integer or numeric that controls the priority with which this observer should be executed. An
observer with a given priority level will always execute sooner than all observers with a lower
priority level. Positive, negative, and zero values are allowed.

domain See domains.

autoDestroy If TRUE (the default), the observer will be automatically destroyed when its domain (if any) ends.

Value
An observer reference class object. This object has the following methods:
suspend()

Causes this observer to stop scheduling flushes (re-executions) in response to invalidations. If the observer was
invalidated prior to this call but it has not re-executed yet then that re-execution will still occur, because the flush is
already scheduled.

resume()

Causes this observer to start re-executing in response to invalidations. If the observer was invalidated while
suspended, then it will schedule itself for re-execution.

destroy()

Stops the observer from executing ever again, even if it is currently scheduled for re-execution.

setPriority(priority = 0)

Change this observer's priority. Note that if the observer is currently invalidated, then the change in priority will not
take effect until the next invalidation--unless the observer is also currently suspended, in which case the priority
change will be effective upon resume.

setAutoDestroy(autoDestroy)

Create a reactive observer 489
Sets whether this observer should be automatically destroyed when its domain (if any) ends. If autoDestroy is TRUE
and the domain already ended, then destroy() is called immediately."

onInvalidate(callback)

Register a callback function to run when this observer is invalidated. No arguments will be provided to the callback
function when it is invoked.

Description
Creates an observer from the given expression.

Details
An observer is like a reactive expression in that it can read reactive values and call reactive expressions, and will
automatically re-execute when those dependencies change. But unlike reactive expressions, it doesn't yield a result
and can't be used as an input to other reactive expressions. Thus, observers are only useful for their side effects (for
example, performing I/O).

Another contrast between reactive expressions and observers is their execution strategy. Reactive expressions use
lazy evaluation; that is, when their dependencies change, they don't re-execute right away but rather wait until they
are called by someone else. Indeed, if they are not called then they will never re-execute. In contrast, observers use
eager evaluation; as soon as their dependencies change, they schedule themselves to re-execute.

Starting with Shiny 0.10.0, observers are automatically destroyed by default when the domain that owns them ends
(e.g. when a Shiny session ends).

Examples
values <- reactiveValues(A=1)

obsB <- observe({
 print(values$A + 1)
})

Can use quoted expressions
obsC <- observe(quote({ print(values$A + 2) }), quoted = TRUE)

To store expressions for later conversion to observe, use quote()
expr_q <- quote({ print(values$A + 3) })
obsD <- observe(expr_q, quoted = TRUE)

In a normal Shiny app, the web client will trigger flush events. If you
are at the console, you can force a flush with flushReact()
shiny:::flushReact()

[1] 2
[1] 3
[1] 4

Event handler 490

3.83 Event handler

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Event handler
observeEvent(eventExpr, handlerExpr, event.env = parent.frame(), event.quoted = FALSE,

handler.env = parent.frame(), handler.quoted = FALSE, label = NULL, suspended = FALSE,

priority = 0, domain = getDefaultReactiveDomain(), autoDestroy = TRUE,

ignoreNULL = TRUE)

eventReactive(eventExpr, valueExpr, event.env = parent.frame(), event.quoted = FALSE,

value.env = parent.frame(), value.quoted = FALSE, label = NULL,

domain = getDefaultReactiveDomain(), ignoreNULL = TRUE)

Arguments
eventExpr A (quoted or unquoted) expression that represents the event; this can be a simple reactive

value like input$click , a call to a reactive expression like dataset() , or even a complex
expression inside curly braces

handlerExpr The expression to call whenever eventExpr is invalidated. This should be a side-effect-
producing action (the return value will be ignored). It will be executed within an isolate
scope.

event.env The parent environment for eventExpr . By default, this is the calling environment.

event.quoted Is the eventExpr expression quoted? By default, this is FALSE . This is useful when you want
to use an expression that is stored in a variable; to do so, it must be quoted with quote() .

handler.env The parent environment for handlerExpr . By default, this is the calling environment.

handler.quoted Is the handlerExpr expression quoted? By default, this is FALSE . This is useful when you
want to use an expression that is stored in a variable; to do so, it must be quoted with
quote() .

label A label for the observer or reactive, useful for debugging.

suspended If TRUE , start the observer in a suspended state. If FALSE (the default), start in a non-
suspended state.

priority An integer or numeric that controls the priority with which this observer should be executed. An
observer with a given priority level will always execute sooner than all observers with a lower
priority level. Positive, negative, and zero values are allowed.

domain See domains.

autoDestroy If TRUE (the default), the observer will be automatically destroyed when its domain (if any)
ends.

ignoreNULL Whether the action should be triggered (or value calculated, in the case of eventReactive)
when the input is NULL . See Details.

valueExpr The expression that produces the return value of the eventReactive . It will be executed within
an isolate scope.

Event handler 491
value.env The parent environment for valueExpr . By default, this is the calling environment.

value.quoted Is the valueExpr expression quoted? By default, this is FALSE . This is useful when you want
to use an expression that is stored in a variable; to do so, it must be quoted with quote() .

Value
observeEvent returns an observer reference class object (see observe). eventReactive returns a reactive

expression object (see reactive).

Description
Respond to "event-like" reactive inputs, values, and expressions.

Details
Shiny's reactive programming framework is primarily designed for calculated values (reactive expressions) and side-
effect-causing actions (observers) that respond to any of their inputs changing. That's often what is desired in Shiny
apps, but not always: sometimes you want to wait for a specific action to be taken from the user, like clicking an
actionButton , before calculating an expression or taking an action. A reactive value or expression that is used to

trigger other calculations in this way is called an event.

These situations demand a more imperative, "event handling" style of programming that is possible--but not
particularly intuitive--using the reactive programming primitives observe and isolate . observeEvent and
eventReactive provide straightforward APIs for event handling that wrap observe and isolate .

Use observeEvent whenever you want to perform an action in response to an event. (Note that "recalculate a
value" does not generally count as performing an action--see eventReactive for that.) The first argument is the
event you want to respond to, and the second argument is a function that should be called whenever the event
occurs.

Use eventReactive to create a calculated value that only updates in response to an event. This is just like a
normal reactive expression except it ignores all the usual invalidations that come from its reactive dependencies; it
only invalidates in response to the given event.

Both observeEvent and eventReactive take an ignoreNULL parameter that affects behavior when the
eventExpr evaluates to NULL (or in the special case of an actionButton , 0). In these cases, if ignoreNULL is
TRUE , then an observeEvent will not execute and an eventReactive will raise a silent validation error. This is

useful behavior if you don't want to do the action or calculation when your app first starts, but wait for the user to
initiate the action first (like a "Submit" button); whereas ignoreNULL=FALSE is desirable if you want to initially
perform the action/calculation and just let the user re-initiate it (like a "Recalculate" button).

Examples
Only run this example in interactive R sessions
if (interactive()) {
 ui <- fluidPage(
 column(4,
 numericInput("x", "Value", 5),
 br(),
 actionButton("button", "Show")
),
 column(8, tableOutput("table"))
)
 server <- function(input, output) {
 # Take an action every time button is pressed;

Event handler 492

Shiny is an RStudio project. © 2014 RStudio, Inc.

 # here, we just print a message to the console
 observeEvent(input$button, {
 cat("Showing", input$x, "rows\n")
 })
 # Take a reactive dependency on input$button, but
 # not on any of the stuff inside the function
 df <- eventReactive(input$button, {
 head(cars, input$x)
 })
 output$table <- renderTable({
 df()
 })
 }
 shinyApp(ui=ui, server=server)
}

See also
actionButton

Create a reactive expression 493

3.84 Create a reactive expression

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a reactive expression
reactive(x, env = parent.frame(), quoted = FALSE, label = NULL,

domain = getDefaultReactiveDomain())

is.reactive(x)

Arguments
x For reactive , an expression (quoted or unquoted). For is.reactive , an object to test.

env The parent environment for the reactive expression. By default, this is the calling environment, the same
as when defining an ordinary non-reactive expression.

quoted Is the expression quoted? By default, this is FALSE . This is useful when you want to use an expression
that is stored in a variable; to do so, it must be quoted with quote() .

label A label for the reactive expression, useful for debugging.

domain See domains.

Value
a function, wrapped in a S3 class "reactive"

Description
Wraps a normal expression to create a reactive expression. Conceptually, a reactive expression is a expression
whose result will change over time.

Details
Reactive expressions are expressions that can read reactive values and call other reactive expressions. Whenever a
reactive value changes, any reactive expressions that depended on it are marked as "invalidated" and will
automatically re-execute if necessary. If a reactive expression is marked as invalidated, any other reactive
expressions that recently called it are also marked as invalidated. In this way, invalidations ripple through the
expressions that depend on each other.

See the Shiny tutorial for more information about reactive expressions.

Examples
values <- reactiveValues(A=1)

reactiveB <- reactive({
 values$A + 1

Create a reactive expression 494

Shiny is an RStudio project. © 2014 RStudio, Inc.

})

Can use quoted expressions
reactiveC <- reactive(quote({ values$A + 2 }), quoted = TRUE)

To store expressions for later conversion to reactive, use quote()
expr_q <- quote({ values$A + 3 })
reactiveD <- reactive(expr_q, quoted = TRUE)

View the values from the R console with isolate()
isolate(reactiveB())

[1] 2

isolate(reactiveC())

[1] 3

isolate(reactiveD())

[1] 4

Reactive file reader 495

3.85 Reactive file reader

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reactive file reader
reactiveFileReader(intervalMillis, session, filePath, readFunc, ...)

Arguments
intervalMillis Approximate number of milliseconds to wait between checks of the file's last modified time. This

can be a numeric value, or a function that returns a numeric value.

session The user session to associate this file reader with, or NULL if none. If non-null, the reader will
automatically stop when the session ends.

filePath The file path to poll against and to pass to readFunc . This can either be a single-element
character vector, or a function that returns one.

readFunc The function to use to read the file; must expect the first argument to be the file path to read. The
return value of this function is used as the value of the reactive file reader.

... Any additional arguments to pass to readFunc whenever it is invoked.

Value
A reactive expression that returns the contents of the file, and automatically invalidates when the file changes on disk
(as determined by last modified time).

Description
Given a file path and read function, returns a reactive data source for the contents of the file.

Details
reactiveFileReader works by periodically checking the file's last modified time; if it has changed, then the file is

re-read and any reactive dependents are invalidated.

The intervalMillis , filePath , and readFunc functions will each be executed in a reactive context; therefore,
they may read reactive values and reactive expressions.

Examples
Not run:
Per-session reactive file reader
shinyServer(function(input, output, session)) {
fileData <- reactiveFileReader(1000, session, 'data.csv', read.csv)

output$data <- renderTable({
fileData()

Reactive file reader 496

Shiny is an RStudio project. © 2014 RStudio, Inc.

})
}

Cross-session reactive file reader. In this example, all sessions share
the same reader, so read.csv only gets executed once no matter how many
user sessions are connected.
fileData <- reactiveFileReader(1000, session, 'data.csv', read.csv)
shinyServer(function(input, output, session)) {
output$data <- renderTable({
fileData()
})
}
End(Not run)

See also
reactivePoll

Reactive polling 497

3.86 Reactive polling

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reactive polling
reactivePoll(intervalMillis, session, checkFunc, valueFunc)

Arguments
intervalMillis Approximate number of milliseconds to wait between calls to checkFunc . This can be either a

numeric value, or a function that returns a numeric value.

session The user session to associate this file reader with, or NULL if none. If non-null, the reader will
automatically stop when the session ends.

checkFunc A relatively cheap function whose values over time will be tested for equality; inequality indicates
that the underlying value has changed and needs to be invalidated and re-read using valueFunc .
See Details.

valueFunc A function that calculates the underlying value. See Details.

Value
A reactive expression that returns the result of valueFunc , and invalidates when checkFunc changes.

Description
Used to create a reactive data source, which works by periodically polling a non-reactive data source.

Details
reactivePoll works by pairing a relatively cheap "check" function with a more expensive value retrieval function.

The check function will be executed periodically and should always return a consistent value until the data changes.
When the check function returns a different value, then the value retrieval function will be used to re-populate the
data.

Note that the check function doesn't return TRUE or FALSE to indicate whether the underlying data has changed.
Rather, the check function indicates change by returning a different value from the previous time it was called.

For example, reactivePoll is used to implement reactiveFileReader by pairing a check function that simply
returns the last modified timestamp of a file, and a value retrieval function that actually reads the contents of the file.

As another example, one might read a relational database table reactively by using a check function that does
SELECT MAX(timestamp) FROM table and a value retrieval function that does SELECT * FROM table .

The intervalMillis , checkFunc , and valueFunc functions will be executed in a reactive context; therefore,
they may read reactive values and reactive expressions.

Examples

Reactive polling 498

Shiny is an RStudio project. © 2014 RStudio, Inc.

Not run:
Assume the existence of readTimestamp and readValue functions
shinyServer(function(input, output, session) {
data <- reactivePoll(1000, session, readTimestamp, readValue)
output$dataTable <- renderTable({
data()
})
})
End(Not run)

See also
reactiveFileReader

Timer 499

3.87 Timer

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Timer
reactiveTimer(intervalMs = 1000, session)

Arguments
intervalMs How often to fire, in milliseconds

session A session object. This is needed to cancel any scheduled invalidations after a user has ended the
session. If NULL , then this invalidation will not be tied to any session, and so it will still occur.

Value
A no-parameter function that can be called from a reactive context, in order to cause that context to be invalidated
the next time the timer interval elapses. Calling the returned function also happens to yield the current time (as in
Sys.time).

Description
Creates a reactive timer with the given interval. A reactive timer is like a reactive value, except reactive values are
triggered when they are set, while reactive timers are triggered simply by the passage of time.

Details
Reactive expressions and observers that want to be invalidated by the timer need to call the timer function that
reactiveTimer returns, even if the current time value is not actually needed.

See invalidateLater as a safer and simpler alternative.

Examples
Not run:
shinyServer(function(input, output, session) {

Anything that calls autoInvalidate will automatically invalidate
every 2 seconds.
autoInvalidate <- reactiveTimer(2000, session)

observe({
Invalidate and re-execute this reactive expression every time the
timer fires.
autoInvalidate()

Do something each time this is invalidated.
The isolate() makes this observer _not_ get invalidated and re-executed

Timer 500

Shiny is an RStudio project. © 2014 RStudio, Inc.

when input$n changes.
print(paste("The value of input$n is", isolate(input$n)))
})

Generate a new histogram each time the timer fires, but not when
input$n changes.
output$plot <- renderPlot({
autoInvalidate()
hist(isolate(input$n))
})
})
End(Not run)

See also
invalidateLater

Create an object for storing reactive 501

3.88 Create an object for storing reactive

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an object for storing reactive
values
reactiveValues(...)

Arguments
... Objects that will be added to the reactivevalues object. All of these objects must be named.

Description
This function returns an object for storing reactive values. It is similar to a list, but with special capabilities for reactive
programming. When you read a value from it, the calling reactive expression takes a reactive dependency on that
value, and when you write to it, it notifies any reactive functions that depend on that value. Note that values taken
from the reactiveValues object are reactive, but the reactiveValues object itself is not.

Examples
Create the object with no values
values <- reactiveValues()

Assign values to 'a' and 'b'
values$a <- 3
values[['b']] <- 4

Not run:
From within a reactive context, you can access values with:
values$a
values[['a']]
End(Not run)

If not in a reactive context (e.g., at the console), you can use isolate()
to retrieve the value:
isolate(values$a)

[1] 3

isolate(values[['a']])

[1] 3

Create an object for storing reactive 502

Shiny is an RStudio project. © 2014 RStudio, Inc.

Set values upon creation
values <- reactiveValues(a = 1, b = 2)
isolate(values$a)

[1] 1

See also
isolate and is.reactivevalues .

Convert a reactivevalues object to a 503

3.89 Convert a reactivevalues object to a

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Convert a reactivevalues object to a
list
reactiveValuesToList(x, all.names = FALSE)

Arguments
x A reactivevalues object.

all.names If TRUE , include objects with a leading dot. If FALSE (the default) don't include those objects.

Description
This function does something similar to what you might as.list to do. The difference is that the calling context will
take dependencies on every object in the reactivevalues object. To avoid taking dependencies on all the objects, you
can wrap the call with isolate() .

Examples
values <- reactiveValues(a = 1)
Not run:
reactiveValuesToList(values)
End(Not run)

To get the objects without taking dependencies on them, use isolate().
isolate() can also be used when calling from outside a reactive context (e.g.
at the console)
isolate(reactiveValuesToList(values))

$a
[1] 1

Reactive domains 504

3.90 Reactive domains

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reactive domains
getDefaultReactiveDomain()

withReactiveDomain(domain, expr)

onReactiveDomainEnded(domain, callback, failIfNull = FALSE)

Arguments
domain A valid domain object (for example, a Shiny session), or NULL

expr An expression to evaluate under domain

callback A callback function to be invoked

failIfNull If TRUE then an error is given if the domain is NULL

Description
Reactive domains are a mechanism for establishing ownership over reactive primitives (like reactive expressions and
observers), even if the set of reactive primitives is dynamically created. This is useful for lifetime management (i.e.
destroying observers when the Shiny session that created them ends) and error handling.

Details
At any given time, there can be either a single "default" reactive domain object, or none (i.e. the reactive domain
object is NULL). You can access the current default reactive domain by calling getDefaultReactiveDomain .

Unless you specify otherwise, newly created observers and reactive expressions will be assigned to the current
default domain (if any). You can override this assignment by providing an explicit domain argument to reactive or
observe .

For advanced usage, it's possible to override the default domain using withReactiveDomain . The domain
argument will be made the default domain while expr is evaluated.

Implementers of new reactive primitives can use onReactiveDomainEnded as a convenience function for
registering callbacks. If the reactive domain is NULL and failIfNull is FALSE , then the callback will never be
invoked.

Reactive Log Visualizer 505

3.91 Reactive Log Visualizer

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Reactive Log Visualizer
showReactLog()

Description
Provides an interactive browser-based tool for visualizing reactive dependencies and execution in your application.

Details
To use the reactive log visualizer, start with a fresh R session and run the command
options(shiny.reactlog=TRUE) ; then launch your application in the usual way (e.g. using runApp). At any time

you can hit Ctrl+F3 (or for Mac users, Command+F3) in your web browser to launch the reactive log visualization.

The reactive log visualization only includes reactive activity up until the time the report was loaded. If you want to see
more recent activity, refresh the browser.

Note that Shiny does not distinguish between reactive dependencies that "belong" to one Shiny user session versus
another, so the visualization will include all reactive activity that has taken place in the process, not just for a
particular application or session.

As an alternative to pressing Ctrl/Command+F3--for example, if you are using reactives outside of the context of a
Shiny application--you can run the showReactLog function, which will generate the reactive log visualization as a
static HTML file and launch it in your default browser. In this case, refreshing your browser will not load new activity
into the report; you will need to call showReactLog() explicitly.

For security and performance reasons, do not enable shiny.reactlog in production environments. When the
option is enabled, it's possible for any user of your app to see at least some of the source code of your reactive
expressions and observers.

Create a Shiny UI handler 506

3.92 Create a Shiny UI handler

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a Shiny UI handler
shinyUI(ui)

Arguments
ui A user interace definition

Value
The user interface definition, without modifications or side effects.

Description
Historically this function was used in ui.R files to register a user interface with Shiny. It is no longer required as of
Shiny 0.10; simply ensure that the last expression to be returned from ui.R is a user interface. This function is kept
for backwards compatibility with older applications. It returns the value that is passed to it.

Define Server Functionality 507

3.93 Define Server Functionality

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Define Server Functionality
shinyServer(func)

Arguments
func The server function for this application. See the details section for more information.

Description
Defines the server-side logic of the Shiny application. This generally involves creating functions that map user inputs
to various kinds of output. In older versions of Shiny, it was necessary to call shinyServer() in the server.R file,
but this is no longer required as of Shiny 0.10. Now the server.R file may simply return the appropriate server
function (as the last expression in the code), without calling shinyServer() .

Details
Call shinyServer from your application's server.R file, passing in a "server function" that provides the server-
side logic of your application.

The server function will be called when each client (web browser) first loads the Shiny application's page. It must
take an input and an output parameter. Any return value will be ignored. It also takes an optional session
parameter, which is used when greater control is needed.

See the tutorial for more on how to write a server function.

Examples
Not run:
A very simple Shiny app that takes a message from the user
and outputs an uppercase version of it.
shinyServer(function(input, output, session) {
output$uppercase <- renderText({
toupper(input$message)
})
})

It is also possible for a server.R file to simply return the function,
without calling shinyServer().
For example, the server.R file could contain just the following:
function(input, output, session) {
output$uppercase <- renderText({
toupper(input$message)
})

Define Server Functionality 508

Shiny is an RStudio project. © 2014 RStudio, Inc.

}
End(Not run)

Run Shiny Application 509

3.94 Run Shiny Application

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Run Shiny Application
runApp(appDir = getwd(), port = getOption("shiny.port"),

launch.browser = getOption("shiny.launch.browser", interactive()),

host = getOption("shiny.host", "127.0.0.1"), workerId = "", quiet = FALSE,

display.mode = c("auto", "normal", "showcase"))

Arguments
appDir The directory of the application. Should contain server.R , plus, either ui.R or a www

directory that contains the file index.html . Alternately, instead of server.R and ui.R , the
directory may contain just app.R . Defaults to the working directory. Instead of a directory, this
could be a list with ui and server components, or a Shiny app object created by
shinyApp .

port The TCP port that the application should listen on. If the port is not specified, and the
shiny.port option is set (with options(shiny.port = XX)), then that port will be used.

Otherwise, use a random port.

launch.browser If true, the system's default web browser will be launched automatically after the app is started.
Defaults to true in interactive sessions only. This value of this parameter can also be a function
to call with the application's URL.

host The IPv4 address that the application should listen on. Defaults to the shiny.host option, if
set, or "127.0.0.1" if not. See Details.

workerId Can generally be ignored. Exists to help some editions of Shiny Server Pro route requests to
the correct process.

quiet Should Shiny status messages be shown? Defaults to FALSE.

display.mode The mode in which to display the application. If set to the value "showcase" , shows
application code and metadata from a DESCRIPTION file in the application directory alongside
the application. If set to "normal" , displays the application normally. Defaults to "auto" ,
which displays the application in the mode given in its DESCRIPTION file, if any.

Description
Runs a Shiny application. This function normally does not return; interrupt R to stop the application (usually by
pressing Ctrl+C or Esc).

Details
The host parameter was introduced in Shiny 0.9.0. Its default value of "127.0.0.1" means that, contrary to
previous versions of Shiny, only the current machine can access locally hosted Shiny apps. To allow other clients to
connect, use the value "0.0.0.0" instead (which was the value that was hard-coded into Shiny in 0.8.0 and
earlier).

Run Shiny Application 510

Shiny is an RStudio project. © 2014 RStudio, Inc.

Examples
Not run:
Start app in the current working directory
runApp()

Start app in a subdirectory called myapp
runApp("myapp")
End(Not run)

Only run this example in interactive R sessions
if (interactive()) {
 # Apps can be run without a server.r and ui.r file
 runApp(list(
 ui = bootstrapPage(
 numericInput('n', 'Number of obs', 100),
 plotOutput('plot')
),
 server = function(input, output) {
 output$plot <- renderPlot({ hist(runif(input$n)) })
 }
))

 # Running a Shiny app object
 app <- shinyApp(
 ui = bootstrapPage(
 numericInput('n', 'Number of obs', 100),
 plotOutput('plot')
),
 server = function(input, output) {
 output$plot <- renderPlot({ hist(runif(input$n)) })
 }
)
 runApp(app)
}

Run Shiny Example Applications 511

3.95 Run Shiny Example Applications

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Run Shiny Example Applications
runExample(example = NA, port = NULL, launch.browser = getOption("shiny.launch.browser",

interactive()), host = getOption("shiny.host", "127.0.0.1"), display.mode = c("auto",

"normal", "showcase"))

Arguments
example The name of the example to run, or NA (the default) to list the available examples.

port The TCP port that the application should listen on. Defaults to choosing a random port.

launch.browser If true, the system's default web browser will be launched automatically after the app is started.
Defaults to true in interactive sessions only.

host The IPv4 address that the application should listen on. Defaults to the shiny.host option, if
set, or "127.0.0.1" if not.

display.mode The mode in which to display the example. Defaults to showcase , but may be set to normal
to see the example without code or commentary.

Description
Launch Shiny example applications, and optionally, your system's web browser.

Examples
Only run this example in interactive R sessions
if (interactive()) {
 # List all available examples
 runExample()

 # Run one of the examples
 runExample("01_hello")

 # Print the directory containing the code for all examples
 system.file("examples", package="shiny")
}

Run a Shiny application from a URL 512

3.96 Run a Shiny application from a URL

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Run a Shiny application from a URL
runUrl(url, filetype = NULL, subdir = NULL, destdir = NULL, ...)

runGist(gist, destdir = NULL, ...)

runGitHub(repo, username = getOption("github.user"), ref = "master", subdir = NULL,

destdir = NULL, ...)

Arguments
url URL of the application.

filetype The file type (".zip" , ".tar" , or ".tar.gz" . Defaults to the file extension taken from the url.

subdir A subdirectory in the repository that contains the app. By default, this function will run an app from the
top level of the repo, but you can use a path such as ` "inst/shinyapp" .

destdir Directory to store the downloaded application files. If NULL (the default), the application files will be
stored in a temporary directory and removed when the app exits

... Other arguments to be passed to runApp() , such as port and launch.browser .

gist The identifier of the gist. For example, if the gist is https://gist.github.com/jcheng5/3239667, then
3239667 , '3239667' , and 'https://gist.github.com/jcheng5/3239667' are all valid values.

repo Name of the repository.

username GitHub username. If repo is of the form "username/repo" , username will be taken from repo .

ref Desired git reference. Could be a commit, tag, or branch name. Defaults to "master" .

Description
runUrl() downloads and launches a Shiny application that is hosted at a downloadable URL. The Shiny

application must be saved in a .zip, .tar, or .tar.gz file. The Shiny application files must be contained in the root
directory or a subdirectory in the archive. For example, the files might be myapp/server.r and myapp/ui.r . The
functions runGitHub() and runGist() are based on runUrl() , using URL's from GitHub (https://github.com)
and GitHub gists (https://gist.github.com), respectively.

Examples
Only run this example in interactive R sessions
 if (interactive()) {
 runUrl('https://github.com/rstudio/shiny_example/archive/master.tar.gz')

 # Can run an app from a subdirectory in the archive
 runUrl("https://github.com/rstudio/shiny_example/archive/master.zip",

Run a Shiny application from a URL 513

Shiny is an RStudio project. © 2014 RStudio, Inc.

 subdir = "inst/shinyapp/")
}
Only run this example in interactive R sessions
if (interactive()) {
 runGist(3239667)
 runGist("https://gist.github.com/jcheng5/3239667")

 # Old URL format without username
 runGist("https://gist.github.com/3239667")
}
Only run this example in interactive R sessions
if (interactive()) {
 runGitHub("shiny_example", "rstudio")
 # or runGitHub("rstudio/shiny_example")

 # Can run an app from a subdirectory in the repo
 runGitHub("shiny_example", "rstudio", subdir = "inst/shinyapp/")
}

Stop the currently running Shiny app 514

3.97 Stop the currently running Shiny app

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Stop the currently running Shiny app
stopApp(returnValue = NULL)

Arguments
returnValue The value that should be returned from runApp .

Description
Stops the currently running Shiny app, returning control to the caller of runApp .

Create a web dependency 515

3.98 Create a web dependency

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a web dependency
createWebDependency(dependency)

Arguments
dependency A single HTML dependency object, created using htmlDependency . If the src value is named,

then href and/or file names must be present.

Value
A single HTML dependency object that has an href -named element in its src .

Description
Ensure that a file-based HTML dependency (from the htmltools package) can be served over Shiny's HTTP server.
This function works by using addResourcePath to map the HTML dependency's directory to a URL.

Resource Publishing 516

3.99 Resource Publishing

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Resource Publishing
addResourcePath(prefix, directoryPath)

Arguments
prefix The URL prefix (without slashes). Valid characters are a-z, A-Z, 0-9, hyphen, period, and

underscore; and must begin with a-z or A-Z. For example, a value of 'foo' means that any request
paths that begin with '/foo' will be mapped to the given directory.

directoryPath The directory that contains the static resources to be served.

Description
Adds a directory of static resources to Shiny's web server, with the given path prefix. Primarily intended for package
authors to make supporting JavaScript/CSS files available to their components.

Details
You can call addResourcePath multiple times for a given prefix ; only the most recent value will be retained. If
the normalized directoryPath is different than the directory that's currently mapped to the prefix , a warning will
be issued.

Examples
addResourcePath('datasets', system.file('data', package='datasets'))

See also
singleton

Register an Input Handler 517

3.100 Register an Input Handler

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Register an Input Handler
registerInputHandler(type, fun, force = FALSE)

Arguments
type The type for which the handler should be added -- should be a single-element character vector.

fun The handler function. This is the function that will be used to parse the data delivered from the client before
it is available in the input variable. The function will be called with the following three parameters:

1. The value of this input as provided by the client, deserialized using jsonlite.
2. The shinysession in which the input exists.
3. The name of the input.

force If TRUE , will overwrite any existing handler without warning. If FALSE , will throw an error if this class
already has a handler defined.

Description
Adds an input handler for data of this type. When called, Shiny will use the function provided to refine the data
passed back from the client (after being deserialized by jsonlite) before making it available in the input variable of
the server.R file.

Details
This function will register the handler for the duration of the R process (unless Shiny is explicitly reloaded). For that
reason, the type used should be very specific to this package to minimize the risk of colliding with another Shiny
package which might use this data type name. We recommend the format of "packageName.widgetName".

Currently Shiny registers the following handlers: shiny.matrix , shiny.number , and shiny.date .

The type of a custom Shiny Input widget will be deduced using the getType() JavaScript function on the
registered Shiny inputBinding.

Examples
Not run:
Register an input handler which rounds a input number to the nearest integer
registerInputHandler("mypackage.validint", function(x, shinysession, name) {
if (is.null(x)) return(NA)
round(x)
})

On the Javascript side, the associated input binding must have a corresponding getType method:
getType: function(el) {

Register an Input Handler 518

Shiny is an RStudio project. © 2014 RStudio, Inc.

return "mypackage.validint";
}

End(Not run)

See also
removeInputHandler

Deregister an Input Handler 519

3.101 Deregister an Input Handler

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Deregister an Input Handler
removeInputHandler(type)

Arguments
type The type for which handlers should be removed.

Value
The handler previously associated with this type , if one existed. Otherwise, NULL .

Description
Removes an Input Handler. Rather than using the previously specified handler for data of this type, the default
jsonlite serialization will be used.

See also
registerInputHandler

Mark a function as a render function 520

3.102 Mark a function as a render function

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Mark a function as a render function
markRenderFunction(uiFunc, renderFunc)

Arguments
uiFunc A function that renders Shiny UI. Must take a single argument: an output ID.

renderFunc A function that is suitable for assigning to a Shiny output slot.

Value
The renderFunc function, with annotations.

Description
Should be called by implementers of renderXXX functions in order to mark their return values as Shiny render
functions, and to provide a hint to Shiny regarding what UI function is most commonly used with this type of render
function. This can be used in R Markdown documents to create complete output widgets out of just the render
function.

Validate input values and other 521

3.103 Validate input values and other

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Validate input values and other
conditions
validate(..., errorClass = character(0))

need(expr, message = paste(label, "must be provided"), label)

Arguments
... A list of tests. Each test should equal NULL for success, FALSE for silent failure, or a string for

failure with an error message.

errorClass A CSS class to apply. The actual CSS string will have shiny-output-error- prepended to this
value.

expr An expression to test. The condition will pass if the expression meets the conditions spelled out in
Details.

message A message to convey to the user if the validation condition is not met. If no message is provided, one
will be created using label . To fail with no message, use FALSE for the message.

label A human-readable name for the field that may be missing. This parameter is not needed if message
is provided, but must be provided otherwise.

Description
For an output rendering function (e.g. renderPlot()), you may need to check that certain input values are
available and valid before you can render the output. validate gives you a convenient mechanism for doing so.

Details
The validate function takes any number of (unnamed) arguments, each of which represents a condition to test. If
any of the conditions represent failure, then a special type of error is signaled which stops execution. If this error is
not handled by application-specific code, it is displayed to the user by Shiny.

An easy way to provide arguments to validate is to use the need function, which takes an expression and a
string; if the expression is considered a failure, then the string will be used as the error message. The need function
considers its expression to be a failure if it is any of the following:

FALSE

NULL

""

An empty atomic vector
An atomic vector that contains only missing values
A logical vector that contains all FALSE or missing values

Validate input values and other 522
An object of class "try-error"
A value that represents an unclicked actionButton

If any of these values happen to be valid, you can explicitly turn them to logical values. For example, if you allow NA
but not NULL , you can use the condition !is.null(input$foo) , because !is.null(NA) == TRUE .

If you need validation logic that differs significantly from need , you can create other validation test functions. A
passing test should return NULL . A failing test should return an error message as a single-element character vector,
or if the failure should happen silently, FALSE .

Because validation failure is signaled as an error, you can use validate in reactive expressions, and validation
failures will automatically propagate to outputs that use the reactive expression. In other words, if reactive expression
a needs input$x , and two outputs use a (and thus depend indirectly on input$x), it's not necessary for the

outputs to validate input$x explicitly, as long as a does validate it.

Examples
in ui.R
fluidPage(
 checkboxGroupInput('in1', 'Check some letters', choices = head(LETTERS)),
 selectizeInput('in2', 'Select a state', choices = state.name),
 plotOutput('plot')
)

<div class="container-fluid">
 <div id="in1" class="form-group shiny-input-checkboxgroup shiny-input-container">
 <label class="control-label" for="in1">Check some letters</label>
 <div class="shiny-options-group">
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="A"/>
 A
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="B"/>
 B
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="C"/>
 C
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="D"/>
 D
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="E"/>
 E
 </label>

Validate input values and other 523
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" value="F"/>
 F
 </label>
 </div>
 </div>
 </div>
 <div class="form-group shiny-input-container">
 <label class="control-label" for="in2">Select a state</label>
 <div>
 <select id="in2" class="form-control"><option value="Alabama" selected>Alabama</option>
<option value="Alaska">Alaska</option>
<option value="Arizona">Arizona</option>
<option value="Arkansas">Arkansas</option>
<option value="California">California</option>
<option value="Colorado">Colorado</option>
<option value="Connecticut">Connecticut</option>
<option value="Delaware">Delaware</option>
<option value="Florida">Florida</option>
<option value="Georgia">Georgia</option>
<option value="Hawaii">Hawaii</option>
<option value="Idaho">Idaho</option>
<option value="Illinois">Illinois</option>
<option value="Indiana">Indiana</option>
<option value="Iowa">Iowa</option>
<option value="Kansas">Kansas</option>
<option value="Kentucky">Kentucky</option>
<option value="Louisiana">Louisiana</option>
<option value="Maine">Maine</option>
<option value="Maryland">Maryland</option>
<option value="Massachusetts">Massachusetts</option>
<option value="Michigan">Michigan</option>
<option value="Minnesota">Minnesota</option>
<option value="Mississippi">Mississippi</option>
<option value="Missouri">Missouri</option>
<option value="Montana">Montana</option>
<option value="Nebraska">Nebraska</option>
<option value="Nevada">Nevada</option>
<option value="New Hampshire">New Hampshire</option>
<option value="New Jersey">New Jersey</option>
<option value="New Mexico">New Mexico</option>
<option value="New York">New York</option>
<option value="North Carolina">North Carolina</option>
<option value="North Dakota">North Dakota</option>
<option value="Ohio">Ohio</option>
<option value="Oklahoma">Oklahoma</option>
<option value="Oregon">Oregon</option>
<option value="Pennsylvania">Pennsylvania</option>
<option value="Rhode Island">Rhode Island</option>
<option value="South Carolina">South Carolina</option>
<option value="South Dakota">South Dakota</option>
<option value="Tennessee">Tennessee</option>
<option value="Texas">Texas</option>
<option value="Utah">Utah</option>
<option value="Vermont">Vermont</option>

Validate input values and other 524

Shiny is an RStudio project. © 2014 RStudio, Inc.

<option value="Virginia">Virginia</option>
<option value="Washington">Washington</option>
<option value="West Virginia">West Virginia</option>
<option value="Wisconsin">Wisconsin</option>
<option value="Wyoming">Wyoming</option></select>
 <script type="application/json" data-for="in2">{}</script>
 </div>
 </div>
 <div id="plot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
</div>

in server.R
function(input, output) {
 output$plot <- renderPlot({
 validate(
 need(input$in1, 'Check at least one letter!'),
 need(input$in2 != '', 'Please choose a state.')
)
 plot(1:10, main = paste(c(input$in1, input$in2), collapse = ', '))
 })
}

function(input, output) {
 output$plot <- renderPlot({
 validate(
 need(input$in1, 'Check at least one letter!'),
 need(input$in2 != '', 'Please choose a state.')
)
 plot(1:10, main = paste(c(input$in1, input$in2), collapse = ', '))
 })
}
<environment: 0x48c5130>

Session object 525

3.104 Session object

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Session object
Value
clientData
A reactiveValues object that contains information about the client.

allowDataUriScheme is a logical value that indicates whether the browser is able to handle URIs that use
the data: scheme.

pixelratio reports the "device pixel ratio" from the web browser, or 1 if none is reported. The value is 2 for
Apple Retina displays.

singletons - for internal use
url_protocol , url_hostname , url_port , url_pathname , url_search , and url_hash_initial can

be used to get the components of the URL that was requested by the browser to load the Shiny app page.
These values are from the browser's perspective, so neither HTTP proxies nor Shiny Server will affect these
values. The url_search value may be used with parseQueryString to access query string parameters.

clientData also contains information about each output. output_outputId_width and
output_outputId_height give the dimensions (using offsetWidth and offsetHeight) of the DOM element

that is bound to outputId , and output_outputId_hidden is a logical that indicates whether the element is
hidden. These values may be NULL if the output is not bound.

input
The session's input object (the same as is passed into the Shiny server function as an argument).

isClosed()
A function that returns TRUE if the client has disconnected.

onEnded(callback)
Synonym for onSessionEnded .

onFlush(func, once=TRUE)
Registers a function to be called before the next time (if once=TRUE) or every time (if once=FALSE) Shiny flushes
the reactive system. Returns a function that can be called with no arguments to cancel the registration.

onFlushed(func, once=TRUE)
Registers a function to be called after the next time (if once=TRUE) or every time (if once=FALSE) Shiny flushes the
reactive system. Returns a function that can be called with no arguments to cancel the registration.

onSessionEnded(callback)
Registers a function to be called after the client has disconnected. Returns a function that can be called with no
arguments to cancel the registration.

output
The session's output object (the same as is passed into the Shiny server function as an argument).

reactlog
For internal use.

Session object 526

Shiny is an RStudio project. © 2014 RStudio, Inc.

registerDataObj(name, data, filterFunc)
Publishes any R object as a URL endpoint that is unique to this session. name must be a single element character
vector; it will be used to form part of the URL. filterFunc must be a function that takes two arguments: data (the
value that was passed into registerDataObj) and req (an environment that implements the Rook specification
for HTTP requests). filterFunc will be called with these values whenever an HTTP request is made to the URL
endpoint. The return value of filterFunc should be a Rook-style response.

request
An environment that implements the Rook specification for HTTP requests. This is the request that was used to
initiate the websocket connection (as opposed to the request that downloaded the web page for the app).

sendCustomMessage(type, message)
Sends a custom message to the web page. type must be a single-element character vector giving the type of
message, while message can be any jsonlite-encodable value. Custom messages have no meaning to Shiny itself;
they are used soley to convey information to custom JavaScript logic in the browser. You can do this by adding
JavaScript code to the browser that calls Shiny.addCustomMessageHandler(type, function(message){...})
as the page loads; the function you provide to addCustomMessageHandler will be invoked each time
sendCustomMessage is called on the server.

sendInputMessage(inputId, message)
Sends a message to an input on the session's client web page; if the input is present and bound on the page at the
time the message is received, then the input binding object's receiveMessage(el, message) method will be
called. sendInputMessage should generally not be called directly from Shiny apps, but through friendlier wrapper
functions like updateTextInput .

Description
Shiny server functions can optionally include session as a parameter (e.g.
function(input, output, session)). The session object is an environment that can be used to access

information and functionality relating to the session. The following list describes the items available in the
environment; they can be accessed using the $ operator (for example, session$clientData$url_search).

Convert an expression to a function 527

3.105 Convert an expression to a function

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Convert an expression to a function
exprToFunction(expr, env = parent.frame(2), quoted = FALSE, caller_offset = 1)

Arguments
expr A quoted or unquoted expression, or a function.

env The desired environment for the function. Defaults to the calling environment two steps back.

quoted Is the expression quoted?

caller_offset If specified, the offset in the callstack of the functiont to be treated as the caller.

Description
This is to be called from another function, because it will attempt to get an unquoted expression from two calls back.

Details
If expr is a quoted expression, then this just converts it to a function. If expr is a function, then this simply returns expr
(and prints a deprecation message). If expr was a non-quoted expression from two calls back, then this will quote the
original expression and convert it to a function.

Examples
Example of a new renderer, similar to renderText
This is something that toolkit authors will do
renderTriple <- function(expr, env=parent.frame(), quoted=FALSE) {
 # Convert expr to a function
 func <- shiny::exprToFunction(expr, env, quoted)

 function() {
 value <- func()
 paste(rep(value, 3), collapse=", ")
 }
}

Example of using the renderer.
This is something that app authors will do.
values <- reactiveValues(A="text")

Not run:
Create an output object
output$tripleA <- renderTriple({

Convert an expression to a function 528

Shiny is an RStudio project. © 2014 RStudio, Inc.

values$A
})
End(Not run)

At the R console, you can experiment with the renderer using isolate()
tripleA <- renderTriple({
 values$A
})

isolate(tripleA())

[1] "text, text, text"

"text, text, text"

Install an expression as a function 529

3.106 Install an expression as a function

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Install an expression as a function
installExprFunction(expr, name, eval.env = parent.frame(2), quoted = FALSE,

assign.env = parent.frame(1), label = as.character(sys.call(-1)[[1]]))

Arguments
expr A quoted or unquoted expression

name The name the function should be given

eval.env The desired environment for the function. Defaults to the calling environment two steps back.

quoted Is the expression quoted?

assign.env The environment in which the function should be assigned.

label A label for the object to be shown in the debugger. Defaults to the name of the calling function.

Description
Installs an expression in the given environment as a function, and registers debug hooks so that breakpoints may be
set in the function.

Details
This function can replace exprToFunction as follows: we may use func <- exprToFunction(expr) if we do
not want the debug hooks, or installExprFunction(expr, "func") if we do. Both approaches create a function
named func in the current environment.

See also
Wraps exprToFunction ; see that method's documentation for more documentation and examples.

Parse a GET query string from a URL 530

3.107 Parse a GET query string from a URL

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Parse a GET query string from a URL
parseQueryString(str, nested = FALSE)

Arguments
str The query string. It can have a leading "?" or not.

nested Whether to parse the query string of as a nested list when it contains pairs of square brackets [] . For
example, the query a[i1][j1]=x&b[i1][j1]=y&b[i2][j1]=z will be parsed as
list(a = list(i1 = list(j1 = 'x')), b = list(i1 = list(j1 = 'y'), i2 = list(j1 = 'z')))

when nested = TRUE , and list(`a[i1][j1]` = 'x', `b[i1][j1]` = 'y', `b[i2][j1]` = 'z')
when nested = FALSE .

Description
Returns a named list of key-value pairs.

Examples
parseQueryString("?foo=1&bar=b%20a%20r")

$foo
[1] "1"

$bar
[1] "b a r"

Not run:
Example of usage within a Shiny app
shinyServer(function(input, output, clientData) {

output$queryText <- renderText({
query <- parseQueryString(clientData$url_search)

Ways of accessing the values
if (as.numeric(query$foo) == 1) {
Do something
}
if (query[["bar"]] == "targetstring") {
Do something else
}

Return a string with key-value pairs

Parse a GET query string from a URL 531

Shiny is an RStudio project. © 2014 RStudio, Inc.

paste(names(query), query, sep = "=", collapse=", ")
})
})
End(Not run)

Run a plotting function and save the 532

3.108 Run a plotting function and save the

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Run a plotting function and save the
output as a PNG
plotPNG(func, filename = tempfile(fileext = ".png"), width = 400, height = 400, res = 72,

...)

Arguments
func A function that generates a plot.

filename The name of the output file. Defaults to a temp file with extension .png .

width Width in pixels.

height Height in pixels.

res Resolution in pixels per inch. This value is passed to png . Note that this affects the resolution of PNG
rendering in R; it won't change the actual ppi of the browser.

... Arguments to be passed through to png . These can be used to set the width, height, background
color, etc.

Description
This function returns the name of the PNG file that it generates. In essence, it calls png() , then func() , then
dev.off() . So func must be a function that will generate a plot when used this way.

Details
For output, it will try to use the following devices, in this order: quartz (via png), then CairoPNG , and finally png .
This is in order of quality of output. Notably, plain png output on Linux and Windows may not antialias some point
shapes, resulting in poor quality output.

In some cases, Cairo() provides output that looks worse than png() . To disable Cairo output for an app, use
options(shiny.usecairo=FALSE) .

Make a random number generator 533

3.109 Make a random number generator

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Make a random number generator
repeatable
repeatable(rngfunc, seed = runif(1, 0, .Machine$integer.max))

Arguments
rngfunc The function that is affected by the R session's seed.

seed The seed to set every time the resulting function is called.

Value
A repeatable version of the function that was passed in.

Description
Given a function that generates random data, returns a wrapped version of that function that always uses the same
seed when called. The seed to use can be passed in explicitly if desired; otherwise, a random number is used.

Note
When called, the returned function attempts to preserve the R session's current seed by snapshotting and restoring
.Random.seed .

Examples
rnormA <- repeatable(rnorm)
rnormB <- repeatable(rnorm)
rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

[1] 1.5308819 0.9697510 0.5213101

rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

[1] 1.5308819 0.9697510 0.5213101

rnormA(5) # [1] 1.8285879 -0.7468041 -0.4639111 -1.6510126 -1.4686924

[1] 1.5308819 0.9697510 0.5213101 1.0563204 0.1629233

rnormB(5) # [1] -0.7946034 0.2568374 -0.6567597 1.2451387 -0.8375699

Print message for deprecated 534

3.110 Print message for deprecated

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Print message for deprecated
functions in Shiny
shinyDeprecated(new = NULL, msg = NULL, old = as.character(sys.call(sys.parent()))[1L],

version = NULL)

Arguments
new Name of replacement function.

msg Message to print. If used, this will override the default message.

old Name of deprecated function.

version The last version of Shiny before the item was deprecated.

Description
To disable these messages, use options(shiny.deprecation.messages=FALSE) .

Collect information about the Shiny 535

3.111 Collect information about the Shiny

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Collect information about the Shiny
Server environment
serverInfo()

Value
A list of the Shiny Server information.

Description
This function returns the information about the current Shiny Server, such as its version, and whether it is the open
source edition or professional edition. If the app is not served through the Shiny Server, this function just returns
list(shinyServer = FALSE) .

Details
This function will only return meaningful data when using Shiny Server version 1.2.2 or later.

Global options for Shiny 536

3.112 Global options for Shiny

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Global options for Shiny
Description
There are a number of global options that affect Shiny's behavior. These can be set with (for example)
options(shiny.trace=TRUE) .

Details
shiny.launch.browser
A boolean which controls the default behavior when an app is run. See runApp for more information.

shiny.port
A port number that Shiny will listen on. See runApp for more information.

shiny.trace
If TRUE , all of the messages sent between the R server and the web browser client will be printed on the console.
This is useful for debugging.

shiny.reactlog
If TRUE , enable logging of reactive events, which can be viewed later with the showReactLog function. This incurs
a substantial performance penalty and should not be used in production.

shiny.usecairo
This is used to disable graphical rendering by the Cairo package, if it is installed. See plotPNG for more information.

shiny.maxRequestSize
This is a number which specifies the maximum web request size, which serves as a size limit for file uploads. If unset,
the maximum request size defaults to 5MB.

shiny.suppressMissingContextError
Normally, invoking a reactive outside of a reactive context (or isolate()) results in an error. If this is TRUE , don't
error in these cases. This should only be used for debugging or demonstrations of reactivity at the console.

shiny.host
The IP address that Shiny should listen on. See runApp for more information.

shiny.json.digits
The number of digits to use when converting numbers to JSON format to send to the client web browser.

shiny.error
This can be a function which is called when an error occurs. For example, options(shiny.error=recover) will
result a the debugger prompt when an error occurs.

shiny.observer.error
This can be a function that is called by an observer when an unhandled error occurs in it or an upstream reactive. By
default, these errors will result in a warning at the console, and the websocket connection will close.

shiny.table.class

Global options for Shiny 537

Shiny is an RStudio project. © 2014 RStudio, Inc.

CSS class names to use for tables.

shiny.deprecation.messages
This controls whether messages for deprecated functions in Shiny will be printed. See shinyDeprecated for more
information.

Find rows of data that are selected by 538

3.113 Find rows of data that are selected by

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Find rows of data that are selected by
a brush
brushedPoints(df, brush, xvar = NULL, yvar = NULL, panelvar1 = NULL, panelvar2 = NULL,

allRows = FALSE)

Arguments
df A data frame from which to select rows.

brush The data from a brush, such as input$plot_brush .

xvar,yvar A string with the name of the variable on the x or y axis. This must also be the name of a
column in df . If absent, then this function will try to infer the variable from the brush
(only works for ggplot2).

panelvar1,panelvar2 Each of these is a string with the name of a panel variable. For example, if with ggplot2,
you facet on a variable called cyl , then you can use "cyl" here. However, specifying
the panel variable should not be necessary with ggplot2; Shiny should be able to auto-
detect the panel variable.

allRows If FALSE (the default) return a data frame containing the selected rows. If TRUE , the
input data frame will have a new column, selected_ , which indicates whether the row
was inside the brush (TRUE) or outside the brush (FALSE).

Description
This function returns rows from a data frame which are under a brush used with plotOutput .

Details
It is also possible for this function to return all rows from the input data frame, but with an additional column
selected_ , which indicates which rows of the input data frame are selected by the brush (TRUE for selected,
FALSE for not-selected). This is enabled by setting allRows=TRUE option.

The xvar , yvar , panelvar1 , and panelvar2 arguments specify which columns in the data correspond to the x
variable, y variable, and panel variables of the plot. For example, if your plot is
plot(x=cars$speed, y=cars$dist) , and your brush is named "cars_brush" , then you would use
brushedPoints(cars, input$cars_brush, "speed", "dist") .

For plots created with ggplot2, it should not be necessary to specify the column names; that information will already
be contained in the brush, provided that variables are in the original data, and not computed. For example, with
ggplot(cars, aes(x=speed, y=dist)) + geom_point() , you could use
brushedPoints(cars, input$cars_brush) . If, however, you use a computed column, like
ggplot(cars, aes(x=speed/2, y=dist)) + geom_point() , then it will not be able to automatically extract

Find rows of data that are selected by 539

Shiny is an RStudio project. © 2014 RStudio, Inc.

column names and filter on them. If you want to use this function to filter data, it is recommended that you not use
computed columns; instead, modify the data first, and then make the plot with "raw" columns in the modified data.

If a specified x or y column is a factor, then it will be coerced to an integer vector. If it is a character vector, then it will
be coerced to a factor and then integer vector. This means that the brush will be considered to cover a given
character/factor value when it covers the center value.

If the brush is operating in just the x or y directions (e.g., with brushOpts(direction = "x") , then this function
will filter out points using just the x or y variable, whichever is appropriate.

See also
plotOutput for example usage.

Create an object representing 540

3.114 Create an object representing

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an object representing
brushing options
brushOpts(id = NULL, fill = "#9cf", stroke = "#036", opacity = 0.25, delay = 300,

delayType = c("debounce", "throttle"), clip = TRUE, direction = c("xy", "x", "y"),

resetOnNew = FALSE)

Arguments
id Input value name. For example, if the value is "plot_brush" , then the coordinates will be

available as input$plot_brush .

fill Fill color of the brush.

stroke Outline color of the brush.

opacity Opacity of the brush

delay How long to delay (in milliseconds) when debouncing or throttling, before sending the brush data to
the server.

delayType The type of algorithm for limiting the number of brush events. Use "throttle" to limit the number
of brush events to one every delay milliseconds. Use "debounce" to suspend events while the
cursor is moving, and wait until the cursor has been at rest for delay milliseconds before sending
an event.

clip Should the brush area be clipped to the plotting area? If FALSE, then the user will be able to brush
outside the plotting area, as long as it is still inside the image.

direction The direction for brushing. If "xy" , the brush can be drawn and moved in both x and y directions.
If "x" , or "y" , the brush wil work horizontally or vertically.

resetOnNew When a new image is sent to the browser (via renderImage), should the brush be reset? The
default, FALSE , is useful if you want to update the plot while keeping the brush. Using TRUE is
useful if you want to clear the brush whenever the plot is updated.

Description
This generates an object representing brushing options, to be passed as the brush argument of imageOutput or
plotOutput .

Create an object representing click 541

3.115 Create an object representing click

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an object representing click
options
clickOpts(id = NULL, clip = TRUE)

Arguments
id Input value name. For example, if the value is "plot_click" , then the click coordinates will be available as

input$plot_click .

clip Should the click area be clipped to the plotting area? If FALSE, then the server will receive click events even
when the mouse is outside the plotting area, as long as it is still inside the image.

Description
This generates an object representing click options, to be passed as the click argument of imageOutput or
plotOutput .

Create an object representing 542

3.116 Create an object representing

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an object representing
double-click options
dblclickOpts(id = NULL, clip = TRUE, delay = 400)

Arguments
id Input value name. For example, if the value is "plot_dblclick" , then the click coordinates will be

available as input$plot_dblclick .

clip Should the click area be clipped to the plotting area? If FALSE, then the server will receive double-click
events even when the mouse is outside the plotting area, as long as it is still inside the image.

delay Maximum delay (in ms) between a pair clicks for them to be counted as a double-click.

Description
This generates an object representing dobule-click options, to be passed as the dblclick argument of
imageOutput or plotOutput .

Create an object representing hover 543

3.117 Create an object representing hover

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create an object representing hover
options
hoverOpts(id = NULL, delay = 300, delayType = c("debounce", "throttle"), clip = TRUE,

nullOutside = TRUE)

Arguments
id Input value name. For example, if the value is "plot_hover" , then the hover coordinates will be

available as input$plot_hover .

delay How long to delay (in milliseconds) when debouncing or throttling, before sending the mouse
location to the server.

delayType The type of algorithm for limiting the number of hover events. Use "throttle" to limit the number
of hover events to one every delay milliseconds. Use "debounce" to suspend events while the
cursor is moving, and wait until the cursor has been at rest for delay milliseconds before sending
an event.

clip Should the hover area be clipped to the plotting area? If FALSE, then the server will receive hover
events even when the mouse is outside the plotting area, as long as it is still inside the image.

nullOutside If TRUE (the default), the value will be set to NULL when the mouse exits the plotting area. If
FALSE , the value will stop changing when the cursor exits the plotting area.

Description
This generates an object representing hovering options, to be passed as the hover argument of imageOutput or
plotOutput .

Find rows of data that are near a 544

3.118 Find rows of data that are near a

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Find rows of data that are near a
click/hover/double-click
nearPoints(df, coordinfo, xvar = NULL, yvar = NULL, panelvar1 = NULL, panelvar2 = NULL,

threshold = 5, maxpoints = NULL, addDist = FALSE, allRows = FALSE)

Arguments
df A data frame from which to select rows.

coordinfo The data from a mouse event, such as input$plot_click .

xvar A string with the name of the variable on the x or y axis. This must also be the name of a column in
df . If absent, then this function will try to infer the variable from the brush (only works for ggplot2).

yvar A string with the name of the variable on the x or y axis. This must also be the name of a column in
df . If absent, then this function will try to infer the variable from the brush (only works for ggplot2).

panelvar1 Each of these is a string with the name of a panel variable. For example, if with ggplot2, you facet on
a variable called cyl , then you can use "cyl" here. However, specifying the panel variable should
not be necessary with ggplot2; Shiny should be able to auto-detect the panel variable.

panelvar2 Each of these is a string with the name of a panel variable. For example, if with ggplot2, you facet on
a variable called cyl , then you can use "cyl" here. However, specifying the panel variable should
not be necessary with ggplot2; Shiny should be able to auto-detect the panel variable.

threshold A maxmimum distance to the click point; rows in the data frame where the distance to the click is less
than threshold will be returned.

maxpoints Maximum number of rows to return. If NULL (the default), return all rows that are within the threshold
distance.

addDist If TRUE, add a column named dist_ that contains the distance from the coordinate to the point, in
pixels. When no mouse event has yet occured, the value of dist_ will be NA .

allRows If FALSE (the default) return a data frame containing the selected rows. If TRUE , the input data
frame will have a new column, selected_ , which indicates whether the row was inside the selected
by the mouse event (TRUE) or not (FALSE).

Description
This function returns rows from a data frame which are near a click, hover, or double-click, when used with
plotOutput . The rows will be sorted by their distance to the mouse event.

Details
It is also possible for this function to return all rows from the input data frame, but with an additional column

Find rows of data that are near a 545

Shiny is an RStudio project. © 2014 RStudio, Inc.

selected_ , which indicates which rows of the input data frame are selected by the brush (TRUE for selected,
FALSE for not-selected). This is enabled by setting allRows=TRUE option. If this is used, the resulting data frame

will not be sorted by distance to the mouse event.

The xvar , yvar , panelvar1 , and panelvar2 arguments specify which columns in the data correspond to the x
variable, y variable, and panel variables of the plot. For example, if your plot is
plot(x=cars$speed, y=cars$dist) , and your click variable is named "cars_click" , then you would use
nearPoints(cars, input$cars_brush, "speed", "dist") .

Examples
Not run:
Note that in practice, these examples would need to go in reactives
or observers.

This would select all points within 5 pixels of the click
nearPoints(mtcars, input$plot_click)

Select just the nearest point within 10 pixels of the click
nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)

End(Not run)

See also
plotOutput for more examples.

Create a Shiny app object 546

3.119 Create a Shiny app object

Shiny by RStudio

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Create a Shiny app object
shinyApp(ui = NULL, server = NULL, onStart = NULL, options = list(), uiPattern = "/")

shinyAppDir(appDir, options = list())

as.shiny.appobj(x)

"as.shiny.appobj"(x)

"as.shiny.appobj"(x)

"as.shiny.appobj"(x)

is.shiny.appobj(x)

"print"(x, ...)

"as.tags"(x, ...)

Arguments
ui The UI definition of the app (for example, a call to fluidPage() with nested controls)

server A server function

onStart A function that will be called before the app is actually run. This is only needed for shinyAppObj ,
since in the shinyAppDir case, a global.R file can be used for this purpose.

options Named options that should be passed to the `runApp` call. You can also specify width and height
parameters which provide a hint to the embedding environment about the ideal height/width for the app.

uiPattern A regular expression that will be applied to each GET request to determine whether the ui should be
used to handle the request. Note that the entire request path must match the regular expression in
order for the match to be considered successful.

appDir Path to directory that contains a Shiny app (i.e. a server.R file and either ui.R or www/index.html)

x Object to convert to a Shiny app.

... Additional parameters to be passed to print.

Value
An object that represents the app. Printing the object or passing it to runApp will run the app.

Description

Create a Shiny app object 547

Shiny is an RStudio project. © 2014 RStudio, Inc.

These functions create Shiny app objects from either an explicit UI/server pair (shinyApp), or by passing the path of
a directory that contains a Shiny app (shinyAppDir). You generally shouldn't need to use these functions to
create/run applications; they are intended for interoperability purposes, such as embedding Shiny apps inside a knitr
document.

Details
Normally when this function is used at the R console, the Shiny app object is automatically passed to the print()
function, which runs the app. If this is called in the middle of a function, the value will not be passed to print() and
the app will not be run. To make the app run, pass the app object to print() or runApp() .

Examples
Only run this example in interactive R sessions
if (interactive()) {
 shinyApp(
 ui = fluidPage(
 numericInput("n", "n", 1),
 plotOutput("plot")
),
 server = function(input, output) {
 output$plot <- renderPlot(plot(head(cars, input$n)))
 }
)

 shinyAppDir(system.file("examples/01_hello", package="shiny"))

 # The object can be passed to runApp()
 app <- shinyApp(
 ui = fluidPage(
 numericInput("n", "n", 1),
 plotOutput("plot")
),
 server = function(input, output) {
 output$plot <- renderPlot(plot(head(cars, input$n)))
 }
)

 runApp(app)
}

Evaluate an expression without a 548

3.120 Evaluate an expression without a

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW TUTORIAL ARTICLES GALLERY REFERENCE DEPLOY HELP

Evaluate an expression without a
reactive context
maskReactiveContext(expr)

Arguments
expr An expression to evaluate.

Value
The value of expr .

Description
Temporarily blocks the current reactive context and evaluates the given expression. Any attempt to directly access
reactive values or expressions in expr will give the same results as doing it at the top-level (by default, an error).

See also
isolate

OVERVIEW 549

3.121 OVERVIEW

Shiny by RStudio

Shiny is an RStudio project. © 2014 RStudio, Inc.

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Stop the currently running Shiny app
stopApp(returnValue = NULL)

Arguments
returnValue The value that should be returned from runApp .

Description
Stops the currently running Shiny app, returning control to the caller of runApp .

Create a web dependency 550

3.122 Create a web dependency

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Create a web dependency
createWebDependency(dependency)

Arguments
dependency A single HTML dependency object, created using htmlDependency . If the src value is named,

then href and/or file names must be present.

Value
A single HTML dependency object that has an href -named element in its src .

Description
Ensure that a file-based HTML dependency (from the htmltools package) can be served over Shiny's HTTP server.
This function works by using addResourcePath to map the HTML dependency's directory to a URL.

Resource Publishing 551

3.123 Resource Publishing

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Resource Publishing
addResourcePath(prefix, directoryPath)

Arguments
prefix The URL prefix (without slashes). Valid characters are a-z, A-Z, 0-9, hyphen, period, and

underscore; and must begin with a-z or A-Z. For example, a value of 'foo' means that any request
paths that begin with '/foo' will be mapped to the given directory.

directoryPath The directory that contains the static resources to be served.

Description
Adds a directory of static resources to Shiny's web server, with the given path prefix. Primarily intended for package
authors to make supporting JavaScript/CSS files available to their components.

Details
You can call addResourcePath multiple times for a given prefix ; only the most recent value will be retained. If
the normalized directoryPath is different than the directory that's currently mapped to the prefix , a warning will
be issued.

Examples

Resource Publishing 552

Shiny is an RStudio project. © 2014 RStudio, Inc.

addResourcePath('datasets', system.file('data', package='datasets'))

See also
singleton

Register an Input Handler 553

3.124 Register an Input Handler

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Register an Input Handler
registerInputHandler(type, fun, force = FALSE)

Arguments
type The type for which the handler should be added -- should be a single-element character vector.

fun The handler function. This is the function that will be used to parse the data delivered from the client before
it is available in the input variable. The function will be called with the following three parameters:

1. The value of this input as provided by the client, deserialized using RJSONIO.
2. The shinysession in which the input exists.
3. The name of the input.

force If TRUE , will overwrite any existing handler without warning. If FALSE , will throw an error if this class
already has a handler defined.

Description
Adds an input handler for data of this type. When called, Shiny will use the function provided to refine the data
passed back from the client (after being deserialized by RJSONIO) before making it available in the input variable
of the server.R file.

Details

Register an Input Handler 554

Shiny is an RStudio project. © 2014 RStudio, Inc.

This function will register the handler for the duration of the R process (unless Shiny is explicitly reloaded). For that
reason, the type used should be very specific to this package to minimize the risk of colliding with another Shiny
package which might use this data type name. We recommend the format of "packageName.widgetName".

Currently Shiny registers the following handlers: shiny.matrix , shiny.number , and shiny.date .

The type of a custom Shiny Input widget will be deduced using the getType() JavaScript function on the
registered Shiny inputBinding.

Examples
Not run:
Register an input handler which rounds a input number to the nearest integer
registerInputHandler("mypackage.validint", function(x, shinysession, name) {
if (is.null(x)) return(NA)
round(x)
})

On the Javascript side, the associated input binding must have a corresponding getType method:
getType: function(el) {
return "mypackage.validint";
}

End(Not run)

See also
removeInputHandler

Deregister an Input Handler 555

3.125 Deregister an Input Handler

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Deregister an Input Handler
removeInputHandler(type)

Arguments
type The type for which handlers should be removed.

Value
The handler previously associated with this type , if one existed. Otherwise, NULL .

Description
Removes an Input Handler. Rather than using the previously specified handler for data of this type, the default
RJSONIO serialization will be used.

See also
registerInputHandler

Mark a function as a render function 556

3.126 Mark a function as a render function

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Mark a function as a render function
markRenderFunction(uiFunc, renderFunc)

Arguments
uiFunc A function that renders Shiny UI. Must take a single argument: an output ID.

renderFunc A function that is suitable for assigning to a Shiny output slot.

Value
The renderFunc function, with annotations.

Description
Should be called by implementers of renderXXX functions in order to mark their return values as Shiny render
functions, and to provide a hint to Shiny regarding what UI function is most commonly used with this type of render
function. This can be used in R Markdown documents to create complete output widgets out of just the render
function.

Validate input values and other 557

3.127 Validate input values and other

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Validate input values and other
conditions
validate(..., errorClass = character(0))

need(expr, message = paste(label, "must be provided"), label)

Arguments
... A list of tests. Each test should equal NULL for success, FALSE for silent failure, or a string for

failure with an error message.

errorClass A CSS class to apply. The actual CSS string will have shiny-output-error- prepended to this
value.

expr An expression to test. The condition will pass if the expression meets the conditions spelled out in
Details.

message A message to convey to the user if the validation condition is not met. If no message is provided, one
will be created using label . To fail with no message, use FALSE for the message.

label A human-readable name for the field that may be missing. This parameter is not needed if message
is provided, but must be provided otherwise.

Description

Validate input values and other 558
For an output rendering function (e.g. renderPlot()), you may need to check that certain input values are
available and valid before you can render the output. validate gives you a convenient mechanism for doing so.

Details
The validate function takes any number of (unnamed) arguments, each of which represents a condition to test. If
any of the conditions represent failure, then a special type of error is signaled which stops execution. If this error is
not handled by application-specific code, it is displayed to the user by Shiny.

An easy way to provide arguments to validate is to use the need function, which takes an expression and a
string; if the expression is considered a failure, then the string will be used as the error message. The need function
considers its expression to be a failure if it is any of the following:

FALSE

NULL

""

An empty atomic vector
An atomic vector that contains only missing values
A logical vector that contains all FALSE or missing values
An object of class "try-error"
A value that represents an unclicked actionButton

If any of these values happen to be valid, you can explicitly turn them to logical values. For example, if you allow NA
but not NULL , you can use the condition !is.null(input$foo) , because !is.null(NA) == TRUE .

If you need validation logic that differs significantly from need , you can create other validation test functions. A
passing test should return NULL . A failing test should return an error message as a single-element character vector,
or if the failure should happen silently, FALSE .

Because validation failure is signaled as an error, you can use validate in reactive expressions, and validation
failures will automatically propagate to outputs that use the reactive expression. In other words, if reactive expression
a needs input$x , and two outputs use a (and thus depend indirectly on input$x), it's not necessary for the

outputs to validate input$x explicitly, as long as a does validate it.

Examples
in ui.R
fluidPage(
 checkboxGroupInput('in1', 'Check some letters', choices = head(LETTERS)),
 selectizeInput('in2', 'Select a state', choices = state.name),
 plotOutput('plot')
)

<div class="container-fluid">
 <div id="in1" class="form-group shiny-input-checkboxgroup shiny-input-container">
 <label class="control-label" for="in1">Check some letters</label>
 <div class="shiny-options-group">
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in11" value="A"/>
 A

Validate input values and other 559
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in12" value="B"/>
 B
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in13" value="C"/>
 C
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in14" value="D"/>
 D
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in15" value="E"/>
 E
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" name="in1" id="in16" value="F"/>
 F
 </label>
 </div>
 </div>
 </div>
 <div class="form-group shiny-input-container">
 <label class="control-label" for="in2">Select a state</label>
 <div>
 <select id="in2"><option value="Alabama" selected>Alabama</option>
<option value="Alaska">Alaska</option>
<option value="Arizona">Arizona</option>
<option value="Arkansas">Arkansas</option>
<option value="California">California</option>
<option value="Colorado">Colorado</option>
<option value="Connecticut">Connecticut</option>
<option value="Delaware">Delaware</option>
<option value="Florida">Florida</option>
<option value="Georgia">Georgia</option>
<option value="Hawaii">Hawaii</option>
<option value="Idaho">Idaho</option>
<option value="Illinois">Illinois</option>
<option value="Indiana">Indiana</option>
<option value="Iowa">Iowa</option>

Validate input values and other 560
<option value="Kansas">Kansas</option>
<option value="Kentucky">Kentucky</option>
<option value="Louisiana">Louisiana</option>
<option value="Maine">Maine</option>
<option value="Maryland">Maryland</option>
<option value="Massachusetts">Massachusetts</option>
<option value="Michigan">Michigan</option>
<option value="Minnesota">Minnesota</option>
<option value="Mississippi">Mississippi</option>
<option value="Missouri">Missouri</option>
<option value="Montana">Montana</option>
<option value="Nebraska">Nebraska</option>
<option value="Nevada">Nevada</option>
<option value="New Hampshire">New Hampshire</option>
<option value="New Jersey">New Jersey</option>
<option value="New Mexico">New Mexico</option>
<option value="New York">New York</option>
<option value="North Carolina">North Carolina</option>
<option value="North Dakota">North Dakota</option>
<option value="Ohio">Ohio</option>
<option value="Oklahoma">Oklahoma</option>
<option value="Oregon">Oregon</option>
<option value="Pennsylvania">Pennsylvania</option>
<option value="Rhode Island">Rhode Island</option>
<option value="South Carolina">South Carolina</option>
<option value="South Dakota">South Dakota</option>
<option value="Tennessee">Tennessee</option>
<option value="Texas">Texas</option>
<option value="Utah">Utah</option>
<option value="Vermont">Vermont</option>
<option value="Virginia">Virginia</option>
<option value="Washington">Washington</option>
<option value="West Virginia">West Virginia</option>
<option value="Wisconsin">Wisconsin</option>
<option value="Wyoming">Wyoming</option></select>
 <script type="application/json" data-for="in2">{}</script>
 </div>
 </div>
 <div id="plot" class="shiny-plot-output" style="width: 100% ; height: 400px"></div>
</div>

in server.R
function(input, output) {
 output$plot <- renderPlot({
 validate(
 need(input$in1, 'Check at least one letter!'),
 need(input$in2 != '', 'Please choose a state.')
)
 plot(1:10, main = paste(c(input$in1, input$in2), collapse = ', '))
 })
}

Validate input values and other 561

Shiny is an RStudio project. © 2014 RStudio, Inc.

function(input, output) {
 output$plot <- renderPlot({
 validate(
 need(input$in1, 'Check at least one letter!'),
 need(input$in2 != '', 'Please choose a state.')
)
 plot(1:10, main = paste(c(input$in1, input$in2), collapse = ', '))
 })
}
<environment: 0x5174bb8>

Session object 562

3.128 Session object

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Session object
Value
clientData
A reactiveValues object that contains information about the client.

allowDataUriScheme is a logical value that indicates whether the browser is able to handle URIs that use
the data: scheme.

pixelratio reports the "device pixel ratio" from the web browser, or 1 if none is reported. The value is 2 for
Apple Retina displays.

singletons - for internal use
url_protocol , url_hostname , url_port , url_pathname , url_search , and url_hash_initial can

be used to get the components of the URL that was requested by the browser to load the Shiny app page.
These values are from the browser's perspective, so neither HTTP proxies nor Shiny Server will affect these
values. The url_search value may be used with parseQueryString to access query string parameters.

clientData also contains information about each output. output_outputId_width and
output_outputId_height give the dimensions (using offsetWidth and offsetHeight) of the DOM element

that is bound to outputId , and output_outputId_hidden is a logical that indicates whether the element is
hidden. These values may be NULL if the output is not bound.

input
The session's input object (the same as is passed into the Shiny server function as an argument).

isClosed()

Session object 563
A function that returns TRUE if the client has disconnected.

onEnded(callback)
Synonym for onSessionEnded .

onFlush(func, once=TRUE)
Registers a function to be called before the next time (if once=TRUE) or every time (if once=FALSE) Shiny flushes
the reactive system. Returns a function that can be called with no arguments to cancel the registration.

onFlushed(func, once=TRUE)
Registers a function to be called after the next time (if once=TRUE) or every time (if once=FALSE) Shiny flushes the
reactive system. Returns a function that can be called with no arguments to cancel the registration.

onSessionEnded(callback)
Registers a function to be called after the client has disconnected. Returns a function that can be called with no
arguments to cancel the registration.

output
The session's output object (the same as is passed into the Shiny server function as an argument).

reactlog
For internal use.

registerDataObj(name, data, filterFunc)
Publishes any R object as a URL endpoint that is unique to this session. name must be a single element character
vector; it will be used to form part of the URL. filterFunc must be a function that takes two arguments: data (the
value that was passed into registerDataObj) and req (an environment that implements the Rook specification
for HTTP requests). filterFunc will be called with these values whenever an HTTP request is made to the URL
endpoint. The return value of filterFunc should be a Rook-style response.

request
An environment that implements the Rook specification for HTTP requests. This is the request that was used to
initiate the websocket connection (as opposed to the request that downloaded the web page for the app).

sendCustomMessage(type, message)
Sends a custom message to the web page. type must be a single-element character vector giving the type of
message, while message can be any RJSONIO-encodable value. Custom messages have no meaning to Shiny
itself; they are used soley to convey information to custom JavaScript logic in the browser. You can do this by adding
JavaScript code to the browser that calls Shiny.addCustomMessageHandler(type, function(message){...})
as the page loads; the function you provide to addCustomMessageHandler will be invoked each time
sendCustomMessage is called on the server.

sendInputMessage(inputId, message)
Sends a message to an input on the session's client web page; if the input is present and bound on the page at the
time the message is received, then the input binding object's receiveMessage(el, message) method will be
called. sendInputMessage should generally not be called directly from Shiny apps, but through friendlier wrapper
functions like updateTextInput .

Description
Shiny server functions can optionally include session as a parameter (e.g.
function(input, output, session)). The session object is an environment that can be used to access

information and functionality relating to the session. The following list describes the items available in the
environment; they can be accessed using the $ operator (for example, session$clientData$url_search).

Convert an expression to a function 564

3.129 Convert an expression to a function

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Convert an expression to a function
exprToFunction(expr, env = parent.frame(2), quoted = FALSE, caller_offset = 1)

Arguments
expr A quoted or unquoted expression, or a function.

env The desired environment for the function. Defaults to the calling environment two steps back.

quoted Is the expression quoted?

caller_offset If specified, the offset in the callstack of the functiont to be treated as the caller.

Description
This is to be called from another function, because it will attempt to get an unquoted expression from two calls back.

Details
If expr is a quoted expression, then this just converts it to a function. If expr is a function, then this simply returns expr
(and prints a deprecation message). If expr was a non-quoted expression from two calls back, then this will quote the
original expression and convert it to a function.

Examples

Convert an expression to a function 565

Shiny is an RStudio project. © 2014 RStudio, Inc.

Example of a new renderer, similar to renderText
This is something that toolkit authors will do
renderTriple <- function(expr, env=parent.frame(), quoted=FALSE) {
 # Convert expr to a function
 func <- shiny::exprToFunction(expr, env, quoted)

 function() {
 value <- func()
 paste(rep(value, 3), collapse=", ")
 }
}

Example of using the renderer.
This is something that app authors will do.
values <- reactiveValues(A="text")

Not run:
Create an output object
output$tripleA <- renderTriple({
values$A
})
End(Not run)

At the R console, you can experiment with the renderer using isolate()
tripleA <- renderTriple({
 values$A
})

isolate(tripleA())

[1] "text, text, text"

"text, text, text"

Install an expression as a function 566

3.130 Install an expression as a function

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Install an expression as a function
installExprFunction(expr, name, eval.env = parent.frame(2), quoted = FALSE,

assign.env = parent.frame(1), label = as.character(sys.call(-1)[[1]]))

Arguments
expr A quoted or unquoted expression

name The name the function should be given

eval.env The desired environment for the function. Defaults to the calling environment two steps back.

quoted Is the expression quoted?

assign.env The environment in which the function should be assigned.

label A label for the object to be shown in the debugger. Defaults to the name of the calling function.

Description
Installs an expression in the given environment as a function, and registers debug hooks so that breakpoints may be
set in the function.

Details
This function can replace exprToFunction as follows: we may use func <- exprToFunction(expr) if we do

Install an expression as a function 567

Shiny is an RStudio project. © 2014 RStudio, Inc.

not want the debug hooks, or installExprFunction(expr, "func") if we do. Both approaches create a function
named func in the current environment.

See also
Wraps exprToFunction ; see that method's documentation for more documentation and examples.

Parse a GET query string from a URL 568

3.131 Parse a GET query string from a URL

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Parse a GET query string from a URL
parseQueryString(str, nested = FALSE)

Arguments
str The query string. It can have a leading "?" or not.

nested Whether to parse the query string of as a nested list when it contains pairs of square brackets [] . For
example, the query a[i1][j1]=x&b[i1][j1]=y&b[i2][j1]=z will be parsed as
list(a = list(i1 = list(j1 = 'x')), b = list(i1 = list(j1 = 'y'), i2 = list(j1 = 'z')))

when nested = TRUE , and list(`a[i1][j1]` = 'x', `b[i1][j1]` = 'y', `b[i2][j1]` = 'z')
when nested = FALSE .

Description
Returns a named character vector of key-value pairs.

Examples
parseQueryString("?foo=1&bar=b%20a%20r")

$foo
[1] "1"

$bar

Parse a GET query string from a URL 569

Shiny is an RStudio project. © 2014 RStudio, Inc.

[1] "b a r"

Not run:
Example of usage within a Shiny app
shinyServer(function(input, output, clientData) {

output$queryText <- renderText({
query <- parseQueryString(clientData$url_search)

Ways of accessing the values
if (as.numeric(query$foo) == 1) {
Do something
}
if (query[["bar"]] == "targetstring") {
Do something else
}

Return a string with key-value pairs
paste(names(query), query, sep = "=", collapse=", ")
})
})
End(Not run)

Run a plotting function and save the 570

3.132 Run a plotting function and save the

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Run a plotting function and save the
output as a PNG
plotPNG(func, filename = tempfile(fileext = ".png"), width = 400, height = 400, res = 72,

...)

Arguments
func A function that generates a plot.

filename The name of the output file. Defaults to a temp file with extension .png .

width Width in pixels.

height Height in pixels.

res Resolution in pixels per inch. This value is passed to png . Note that this affects the resolution of PNG
rendering in R; it won't change the actual ppi of the browser.

... Arguments to be passed through to png . These can be used to set the width, height, background
color, etc.

Description
This function returns the name of the PNG file that it generates. In essence, it calls png() , then func() , then
dev.off() . So func must be a function that will generate a plot when used this way.

Run a plotting function and save the 571

Shiny is an RStudio project. © 2014 RStudio, Inc.

Details
For output, it will try to use the following devices, in this order: quartz (via png), then CairoPNG , and finally png .
This is in order of quality of output. Notably, plain png output on Linux and Windows may not antialias some point
shapes, resulting in poor quality output.

In some cases, Cairo() provides output that looks worse than png() . To disable Cairo output for an app, use
options(shiny.usecairo=FALSE) .

Make a random number generator 572

3.133 Make a random number generator

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Make a random number generator
repeatable
repeatable(rngfunc, seed = runif(1, 0, .Machine$integer.max))

Arguments
rngfunc The function that is affected by the R session's seed.

seed The seed to set every time the resulting function is called.

Value
A repeatable version of the function that was passed in.

Description
Given a function that generates random data, returns a wrapped version of that function that always uses the same
seed when called. The seed to use can be passed in explicitly if desired; otherwise, a random number is used.

Note
When called, the returned function attempts to preserve the R session's current seed by snapshotting and restoring

Make a random number generator 573

Shiny is an RStudio project. © 2014 RStudio, Inc.

.Random.seed .

Examples
rnormA <- repeatable(rnorm)
rnormB <- repeatable(rnorm)
rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

[1] 1.5308819 0.9697510 0.5213101

rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

[1] 1.5308819 0.9697510 0.5213101

rnormA(5) # [1] 1.8285879 -0.7468041 -0.4639111 -1.6510126 -1.4686924

[1] 1.5308819 0.9697510 0.5213101 1.0563204 0.1629233

rnormB(5) # [1] -0.7946034 0.2568374 -0.6567597 1.2451387 -0.8375699

[1] 0.2644419 0.2545899 -0.1941631 0.6304822 -0.7231721

Print message for deprecated 574

3.134 Print message for deprecated

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Print message for deprecated
functions in Shiny
shinyDeprecated(new = NULL, msg = NULL, old = as.character(sys.call(sys.parent()))[1L],

version = NULL)

Arguments
new Name of replacement function.

msg Message to print. If used, this will override the default message.

old Name of deprecated function.

version The last version of Shiny before the item was deprecated.

Description
To disable these messages, use options(shiny.deprecation.messages=FALSE) .

Collect information about the Shiny 575

3.135 Collect information about the Shiny

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Collect information about the Shiny
Server environment
serverInfo()

Value
A list of the Shiny Server information.

Description
This function returns the information about the current Shiny Server, such as its version, and whether it is the open
source edition or professional edition. If the app is not served through the Shiny Server, this function just returns
list(shinyServer = FALSE) .

Details
This function will only return meaningful data when using Shiny Server version 1.2.2 or later.

Global options for Shiny 576

3.136 Global options for Shiny

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Global options for Shiny
Description
There are a number of global options that affect Shiny's behavior. These can be set with (for example)
options(shiny.trace=TRUE) .

Details
shiny.launch.browser
A boolean which controls the default behavior when an app is run. See runApp for more information.

shiny.trace
If TRUE , all of the messages sent between the R server and the web browser client will be printed on the console.
This is useful for debugging.

shiny.reactlog
If TRUE , enable logging of reactive events, which can be viewed later with the showReactLog function. This incurs
a substantial performance penalty and should not be used in production.

shiny.usecairo
This is used to disable graphical rendering by the Cairo package, if it is installed. See plotPNG for more information.

shiny.maxRequestSize
This is a number which specifies the maximum web request size, which serves as a size limit for file uploads. If unset,
the maximum request size defaults to 5MB.

Global options for Shiny 577

Shiny is an RStudio project. © 2014 RStudio, Inc.

shiny.suppressMissingContextError
Normally, invoking a reactive outside of a reactive context (or isolate()) results in an error. If this is TRUE , don't
error in these cases. This should only be used for debugging or demonstrations of reactivity at the console.

shiny.host
The IP address that Shiny should listen on. See runApp for more information.

shiny.json.digits
The number of digits to use when converting numbers to JSON format to send to the client web browser.

shiny.error
This can be a function which is called when an error occurs. For example, options(shiny.error=recover) will
result a the debugger prompt when an error occurs.

shiny.observer.error
This can be a function that is called by an observer when an unhandled error occurs in it or an upstream reactive. By
default, these errors will result in a warning at the console, and the websocket connection will close.

shiny.table.class
CSS class names to use for tables.

shiny.deprecation.messages
This controls whether messages for deprecated functions in Shiny will be printed. See shinyDeprecated for more
information.

Create a Shiny app object 578

3.137 Create a Shiny app object

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Create a Shiny app object
shinyApp(ui = NULL, server = NULL, onStart = NULL, options = list(), uiPattern = "/")

shinyAppDir(appDir, options = list())

as.shiny.appobj(x)

"as.shiny.appobj"(x)

"as.shiny.appobj"(x)

"as.shiny.appobj"(x)

is.shiny.appobj(x)

"print"(x, ...)

"as.tags"(x, ...)

Arguments
ui The UI definition of the app (for example, a call to fluidPage() with nested controls)

server A server function

onStart A function that will be called before the app is actually run. This is only needed for shinyAppObj ,

Create a Shiny app object 579
since in the shinyAppDir case, a global.R file can be used for this purpose.

options Named options that should be passed to the `runApp` call. You can also specify width and height
parameters which provide a hint to the embedding environment about the ideal height/width for the app.

uiPattern A regular expression that will be applied to each GET request to determine whether the ui should be
used to handle the request. Note that the entire request path must match the regular expression in
order for the match to be considered successful.

appDir Path to directory that contains a Shiny app (i.e. a server.R file and either ui.R or www/index.html)

x Object to convert to a Shiny app.

... Additional parameters to be passed to print.

Value
An object that represents the app. Printing the object or passing it to runApp will run the app.

Description
These functions create Shiny app objects from either an explicit UI/server pair (shinyApp), or by passing the path of
a directory that contains a Shiny app (shinyAppDir). You generally shouldn't need to use these functions to
create/run applications; they are intended for interoperability purposes, such as embedding Shiny apps inside a knitr
document.

Details
Normally when this function is used at the R console, the Shiny app object is automatically passed to the print()
function, which runs the app. If this is called in the middle of a function, the value will not be passed to print() and
the app will not be run. To make the app run, pass the app object to print() or runApp() .

Examples
Only run this example in interactive R sessions
if (interactive()) {
 shinyApp(
 ui = fluidPage(
 numericInput("n", "n", 1),
 plotOutput("plot")
),
 server = function(input, output) {
 output$plot <- renderPlot(plot(head(cars, input$n)))
 }
)

 shinyAppDir(system.file("examples/01_hello", package="shiny"))

 # The object can be passed to runApp()
 app <- shinyApp(
 ui = fluidPage(

Create a Shiny app object 580

Shiny is an RStudio project. © 2014 RStudio, Inc.

 numericInput("n", "n", 1),
 plotOutput("plot")
),
 server = function(input, output) {
 output$plot <- renderPlot(plot(head(cars, input$n)))
 }
)

 runApp(app)
}

Evaluate an expression without a 581

3.138 Evaluate an expression without a

Shiny by RStudio

OVERVIEW

TUTORIAL

ARTICLES

GALLERY

REFERENCE

DEPLOY

HELP

Evaluate an expression without a
reactive context
maskReactiveContext(expr)

Arguments
expr An expression to evaluate.

Value
The value of expr .

Description
Temporarily blocks the current reactive context and evaluates the given expression. Any attempt to directly access
reactive values or expressions in expr will give the same results as doing it at the top-level (by default, an error).

See also
isolate

programs 582

A Program listings to create this document

A.1 recipe.txt
====/rNotes/shiny/20150906[recipe.txt] ====

1) for articles.pdf, reference.pdf, tutorial.pdf:

create from web page

get 2 levels

stay on same server

stay on same path

settings:

UNCHECKED: no headers/footers

CHECKED: create bookmarks

2) generate memo.tex

final version:

stg02.mkPdfSet.py --verb --stopaft 0

full version with extracted *.pdf and *.txt references:

stg02.mkPdfSet.py --verb --stopaft 0 --srcid

test version, only first 25 pages, each section, with extracted *.pdf and *.txt references:

stg02.mkPdfSet.py --verb --stopaft 25 --srcid

3) generate memo.pdf, with indexing

fulltex.bat

A.2 stg02.mkPdfSet.py
\LGnotes\rNotes\shiny\20150906[stg02.mkPdfSet.py] ---- paginate, index, and consolidate Shiny *pdfs

import re

import os

import sys

import subprocess

import optparse

prsr = optparse.OptionParser()

prsr.add_option("--noburst", action="store_true", dest="noburst", default=False)

prsr.add_option("--verbose", action="store_true", dest="verbose", default=False)

prsr.add_option("--stopaft", action="store", dest="stopaft", default=10, type="int")

prsr.add_option("--srcid", action="store_true", dest="srcid", default=False)

prsr.add_option("--nodrop", action="store_false", dest="dodrop", default=True)

opts,args = prsr.parse_args()

if opts.noburst:

sys.stderr.write(".... --noburst is TRUE: skipping pdftk burst\n")

else:

sys.stderr.write(".... bursting articles.pdf\n")

ret = subprocess.call("pdftk.exe articles.pdf burst output \\tmp\\2art_%04d.pdf ")

sys.stderr.write(".... bursting tutorial.pdf\n")

ret = subprocess.call("pdftk.exe tutorial.pdf burst output \\tmp\\1tut_%04d.pdf ")

sys.stderr.write(".... bursting reference.pdf\n")

ret = subprocess.call("pdftk.exe reference.pdf burst output \\tmp\\3ref_%04d.pdf ")

fh_out = open("memo.tex","w")

fh_out.write(r"""

\def\Orientation{\PDFPORTRAIT}

\input{startup.tex}

\input{\SDEstudies/SASmacro/TeXfiles/TeXPrologA.tex}

\def\LongTitleID{Shiny Consolidated Documentation Set}

\def\TitleStr{from shiny.rstudio.com}

\def\SectHeadStr{Shiny Tutorial and Articles}

\input{\SDEstudies/SASmacro/TeXfiles/TeXStyle.tex}

stg02.mkPdfSet.py 583

\def\SectHead#1{%%%%%

\markboth{\quad{#1} \hfill \quad}

{{#1} \hfill \quad}

}%%%%

\setlength{\evensidemargin}{-.5in}

\setlength{\oddsidemargin}{-.5in}

\setlength{\topmargin}{-.8in}

\setlength{\textwidth}{7.5in}

\setlength{\textheight}{10.3in}

\usepackage{makeidx}

\makeindex

\input{\SDEstudies/SASmacro/TeXfiles/TeXPrologB.tex}

\printindex

\addcontentsline{toc}{section}{Index}

""")

indexpats maps regular expressions to index terms to be used in TeX

indexpats = {

re.compile("action.?Button",re.I) : r"\index{inputs!actionButton}"

, re.compile("checkboxGroupInput",re.I) : r"\index{inputs!checkboxGroupInput}"

, re.compile("checkboxInput",re.I) : r"\index{inputs!checkboxInput}"

, re.compile("dateInput",re.I) : r"\index{inputs!dateInput}"

, re.compile("dateRangeInput",re.I) : r"\index{inputs!dateRangeInput}"

, re.compile("numericInput",re.I) : r"\index{inputs!numericInput}"

, re.compile("textInput",re.I) : r"\index{inputs!textInput}"

, re.compile("selectInput",re.I) : r"\index{inputs!selectInput}"

, re.compile("submitButton",re.I) : r"\index{inputs!submitButton}"

, re.compile("clickId",re.I) : r"\index{mouse!clickId}"

, re.compile("clientdata", re.I) : r"\index{clientData}"

, re.compile("plotOutput",re.I) : r"\index{outputs!plotOutput}"

, re.compile("dataTableOutput",re.I) : r"\index{outputs!dataTableOutput}"

, re.compile("verbatimTextOutput",re.I) : r"\index{outputs!verbatimTextOutput}"

, re.compile("fluidPage", re.I) : r"\index{fluidPage}"

, re.compile("fluidrow", re.I) : r"\index{fluidrow}"

, re.compile("hoverId",re.I) : r"\index{mouse!hoverId}"

, re.compile("HTML\(") : r"\index{HTML}"

, re.compile("isolate", re.I) : r"\index{isolate}"

, re.compile("navbarMenu",re.I) : r"\index{navbarMenu}"

, re.compile("navbarPage",re.I) : r"\index{navbarPage}"

, re.compile("outputOptions",re.I) : r"\index{outputOptions}"

, re.compile("plotPNG",re.I) : r"\index{plotPNG}"

, re.compile("renderDataTable",re.I) : r"\index{renderDataTable}"

, re.compile("invalidateLater",re.I) : r"\index{invalidateLater}"

, re.compile("conditionalPanel",re.I) : r"\index{conditionalPanel}"

, re.compile("renderUI",re.I) : r"\index{renderUI}"

, re.compile("RJSONIO",re.I) : r"\index{RJSONIO}"

, re.compile("selectInput",re.I) : r"\index{selectInput}"

, re.compile("session\$clientData",re.I) : r"\index{session!clientData}"

, re.compile("session\$output",re.I) : r"\index{session!output}"

, re.compile("session\$user",re.I) : r"\index{session!user}"

, re.compile("session\)") : r"\index{session!argument}"

, re.compile("reactiveValues", re.I) : r"\index{reactiveValues}"

, re.compile("tabPanel", re.I) : r"\index{tabPanel}"

, re.compile("tabsetPanel", re.I) : r"\index{tabsetPanel}"

, re.compile("tabsetPanel",re.I) : r"\index{tabsetPanel}"

, re.compile("updateCheckboxGroupInput",re.I) : r"\index{updates!updateCheckboxGroupInput}"

, re.compile("updateCheckboxInput",re.I) : r"\index{updates!updateCheckboxInput}"

, re.compile("updateDateRangeInput",re.I) : r"\index{updates!updateDateRangeInput}"

, re.compile("updateDateInput",re.I) : r"\index{updates!updateDateInput}"

, re.compile("updateSelectInput",re.I) : r"\index{updates!updateSelectInput}"

, re.compile("updateNumericInput",re.I) : r"\index{updates!updateNumericInput}"

, re.compile("updateTextInput",re.I) : r"\index{updates!updateTextInput}"

, re.compile("updateTabsetPanel",re.I) : r"\index{updates!updateTabsetPanel}"

, re.compile("validate",re.I) : r"\index{validate}"

, re.compile("updateRadioButtons",re.I) : r"\index{updates!updateRadioButtons}"

, re.compile("includeText",re.I) : r"\index{includeText}"

, re.compile("jQuery",re.I) : r"\index{jQuery}"

, re.compile("log.visualizer",re.I) : r"\index{logging}"

, re.compile("MathJax",re.I) : r"\index{MathJax}"

, re.compile("animate",re.I) : r"\index{animate}"

, re.compile("xxxx",re.I) : r"\index{xxxx}" #### to copy and change xxxx

}

stg02.mkPdfSet.py 584

dropdict = { #### manually drop these burst pages

"2art_0020.pdf" : 1

, "2art_0023.pdf" : 1

}

pgcnt = 0

sctn = "Unk"

srchead = "Undef"

rgxAnchor = re.compile("OVERVIEW *TUTORIAL *ARTICLES *GALLERY *REFERENCE *DEPLOY *HELP")

for f in sorted(os.listdir("/tmp")) :

if opts.verbose:

sys.stderr.write(".... %s\n" % f)

if opts.dodrop and f in dropdict:

sys.stderr.write(".... dropping %s\n" % f)

continue

mtch = re.search("^(2art|1tut|3ref).+([0-9]{4}).pdf$",f)

if mtch:

pgcnt += 1

if opts.verbose:

sys.stderr.write(".... mg1: %s mg2: %s\n" % (mtch.group(1), mtch.group(2)))

if int(mtch.group(2)) == 1:

clrpg = ""

pgcnt = 1

if mtch.group(1)=="1tut":

fh_out.write(r"\clearpage\section{Tutorial}\SectHead{Shiny Tutorial} %s" % "\n")

sctn = "tut"

if mtch.group(1)=="2art":

fh_out.write(r"\clearpage\section{Articles}\SectHead{Shiny Articles} %s" % "\n")

sctn = "art"

if mtch.group(1)=="3ref":

fh_out.write(r"\clearpage\section{Function Reference}\SectHead{Shiny Function Reference} %s" % "\n")

sctn = "ref"

else:

clrpg = r"\clearpage"

if opts.stopaft > 0 and pgcnt > opts.stopaft:

continue;

sys.stderr.write("\n.... page %d: %s\n" % (pgcnt,f))

ret = subprocess.call("pdfcrop.exe --margins \"-1 -2 -1 -2\" --clip \\tmp\\%s \\tmp\\clp_%s " % (f,f))

ret = subprocess.call("pdftotext -raw \\tmp\\%s" % f)

fh_txt = open(("/tmp/%s" % f).replace(".pdf",".txt"))

pdftxt = [ln.rstrip() for ln in fh_txt.readlines()]

jointxt = " ".join(pdftxt)

txtlen = len(pdftxt)

if txtlen > 3:

if opts.srcid:

srchead = "%s: %d lines" % (f.replace("_", "_"), txtlen)

if rgxAnchor.search(jointxt):

if sctn == "tut":

ret = subprocess.call("pdfcrop.exe --margins \"-1 -68 -1 -1 \" --clip \\tmp\\%s \\tmp\\clp_%s " % (f,f))

if opts.srcid == False:

srchead = "%s: %s" % (pdftxt[2],pdftxt[3])

else:

srchead = "%s: %s [%s: %d lines]" % (pdftxt[2], pdftxt[3], f.replace("_", "_"), txtlen)

if re.match("LESSON", pdftxt[2]):

fh_out.write(r"%s\subsection{%s:%s}%s" % (clrpg,pdftxt[2],pdftxt[3],"\n"))

else:

fh_out.write(r"%s\subsection{%s}%s" % (clrpg,pdftxt[2],"\n"))

clrpg = ""

if sctn == "art":

ret = subprocess.call("pdfcrop.exe --margins \"-1 -68 -1 -1 \" --clip \\tmp\\%s \\tmp\\clp_%s " % (f,f))

if opts.srcid == False:

srchead = pdftxt[2]

else:

srchead = "%s [%s: %d lines]" % (pdftxt[2], f.replace("_", "_"), txtlen)

fh_out.write(r"%s\subsection{%s}%s" % (clrpg,pdftxt[2],"\n"))

fulltex.bat 585

clrpg = ""

if sctn == "ref":

nbase = 1

if rgxAnchor.search(pdftxt[nbase+1]):

nbase = nbase + 1

if re.search("OVERVIEW",pdftxt[1]) and re.search("HELP",pdftxt[7]):

nbase = 7

nbase = nbase+1

ret = subprocess.call("pdfcrop.exe --margins \"-1 -68 -1 -1 \" --clip \\tmp\\%s \\tmp\\clp_%s " % (f,f))

if opts.srcid == False:

srchead = pdftxt[nbase]

else:

srchead = "%s [%s: %d lines]" % (pdftxt[nbase], f.replace("_", "_"), txtlen)

mtch = re.match("([^(]+)", pdftxt[nbase])

if mtch:

fh_out.write(r"%s\subsection{%s: %s}%s" % (clrpg,mtch.group(1),pdftxt[2],"\n"))

fh_out.write(r"%s\subsection{%s}%s" % (clrpg,pdftxt[nbase].replace("_", "_",12),"\n"))

else:

fh_out.write(r"%s\subsection{%s}%s" % (clrpg,pdftxt[nbase].replace("_", "_",12),"\n"))

clrpg = ""

fh_out.write(r"%s\SectHead{%s}\includegraphics[scale=.95]{/tmp/clp_%s}%s" % (clrpg, srchead, f,"\n"))

for xpr in indexpats.keys() :

if xpr.search(jointxt):

sys.stderr.write(".... %s\n" % indexpats[xpr])

fh_out.write(indexpats[xpr])

else:

sys.stderr.write("++++ skipping page %d ++++\n" % pgcnt)

fh_txt.close()

fh_out.write(r"""

\cleardoublepage\appendix\section{Program listings to create this document} \SectHead{programs}

\subsection{recipe.txt}\SectHead{recipe.txt}

{\footnotesize\importverbatim{recipe.txt}

\end{verbatim}}

\subsection{stg02.mkPdfSet.py}\SectHead{stg02.mkPdfSet.py}

{\footnotesize\importverbatim{stg02.mkPdfSet.py}

\end{verbatim}}

\subsection{fulltex.bat}\SectHead{fulltex.bat}

{\footnotesize\importverbatim{fulltex.bat}

\end{verbatim}}

\end{document}%s

""" % "\n")

fh_out.close()

A.3 fulltex.bat
@echo ==== fulltex.bat ====

call latex memo

call latex memo

makeindex memo.idx

call latex memo

call latex memo

makeindex memo.idx

call latex memo

call latex memo

call latex memo

	Index
	Tutorial
	Teach yourself Shiny
	Are you ready for Shiny?
	The Shiny Webinar
	LESSON 1:Welcome to Shiny
	LESSON 2:Build a user-interface
	LESSON 3:Add control widgets
	LESSON 4:Display reactive output
	LESSON 5:Use R scripts and data
	LESSON 6:Use reactive expressions
	LESSON 7:Share your apps

	Articles
	Articles
	The basic parts of a Shiny app
	How to build a Shiny app
	How to launch a Shiny app
	How to get help
	Single-file Shiny apps
	App formats and launching apps
	Persistent data storage in Shiny apps
	Application layout guide
	Display modes
	Tabsets
	Customize your UI with HTML
	Build your entire UI with HTML
	Build a dynamic UI that reacts to user
	Shiny HTML Tags Glossary
	Progress indicators
	Getting started with shinyapps.io
	Setting up custom domains with
	Scaling and Performance Tuning with
	Share data across sessions with
	Migrating shinyapps.io authentication
	Introduction to Shiny Server
	Save your app as a function
	Sharing apps to run locally
	Introduction to R Markdown
	Introduction to interactive documents
	R Markdown integration in the
	The R Markdown Cheat sheet
	Using Action Buttons
	Using sliders
	Help users download data from your
	Using selectize input
	Render images in a Shiny app
	How to use DataTables in a Shiny
	Reactivity: An overview
	Stop reactions with isolate()
	Execution scheduling
	How to understand reactivity in R
	Write error messages for your UI with
	Scoping rules for Shiny apps
	Debugging techniques for Shiny apps
	Learn about your user with
	Unicode characters in Shiny apps
	Style your apps with CSS
	Build custom input objects
	Build custom output objects
	Add Google Analytics to a Shiny app
	How to create User Privileges
	Allow different libraries for different
	Interactive plots
	Selecting rows of data
	Interactive plots - advanced
	Upgrade notes for Shiny 0.11
	Upgrade notes for Shiny 0.12

	Function Reference
	Function reference version 0.12.1
	Panel with absolute positioning
	Create a Bootstrap page
	Create a column within a UI definition
	Conditional Panel
	Create a page with a fixed layout
	Create a page with fluid layout
	Create a header panel
	Create a help text element
	Create an icon
	Create a main panel
	Create a page with a top level
	Create a navigation list panel
	Create a page with a sidebar
	Layout a sidebar and main area
	Create a sidebar panel
	Create a tab panel
	Create a tabset panel
	Create a panel containing an
	Input panel
	Flow layout
	Split layout
	Lay out UI elements vertically
	Create a well panel
	Load the MathJax library and typeset
	Action button/link
	Checkbox Group Input Control
	Checkbox Input Control
	Create date input
	Create date range input
	File Upload Control
	Create a numeric input control
	Create radio buttons
	Create a select list input control
	Slider Input Widget
	Create a submit button
	Create a text input control
	Create a password input control
	Change the value of a checkbox
	Change the value of a checkbox
	Change the value of a date input on
	Change the start and end values of a
	Change the value of a number input
	Change the value of a radio input on
	Change the value of a select input on
	Change the value of a slider input on
	Change the selected tab on the client
	Change the value of a text input on
	Create an HTML output element
	Create an plot or image output
	Set options for an output object.
	Create a table output element
	Create a text output element
	Create a verbatim text output element
	Create a download button or link
	Reporting progress (object-oriented
	Reporting progress (functional API)
	HTML Builder Functions
	Mark Characters as HTML
	Include Content From a File
	Include content only once
	HTML Tag Object
	Validate proper CSS formatting of a
	Evaluate an expression using tags
	Plot Output
	Text Output
	Printable Output
	Table output with the JavaScript
	Image file output
	Table Output
	UI Output
	File Downloads
	Plot output (deprecated)
	Print output (deprecated)
	Table output (deprecated)
	Text output (deprecated)
	UI output (deprecated)
	Scheduled Invalidation
	Checks whether an object is a
	Create a non-reactive scope for an
	Make a reactive variable
	Create a reactive observer
	Event handler
	Create a reactive expression
	Reactive file reader
	Reactive polling
	Timer
	Create an object for storing reactive
	Convert a reactivevalues object to a
	Reactive domains
	Reactive Log Visualizer
	Create a Shiny UI handler
	Define Server Functionality
	Run Shiny Application
	Run Shiny Example Applications
	Run a Shiny application from a URL
	Stop the currently running Shiny app
	Create a web dependency
	Resource Publishing
	Register an Input Handler
	Deregister an Input Handler
	Mark a function as a render function
	Validate input values and other
	Session object
	Convert an expression to a function
	Install an expression as a function
	Parse a GET query string from a URL
	Run a plotting function and save the
	Make a random number generator
	Print message for deprecated
	Collect information about the Shiny
	Global options for Shiny
	Find rows of data that are selected by
	Create an object representing
	Create an object representing click
	Create an object representing
	Create an object representing hover
	Find rows of data that are near a
	Create a Shiny app object
	Evaluate an expression without a
	OVERVIEW
	Create a web dependency
	Resource Publishing
	Register an Input Handler
	Deregister an Input Handler
	Mark a function as a render function
	Validate input values and other
	Session object
	Convert an expression to a function
	Install an expression as a function
	Parse a GET query string from a URL
	Run a plotting function and save the
	Make a random number generator
	Print message for deprecated
	Collect information about the Shiny
	Global options for Shiny
	Create a Shiny app object
	Evaluate an expression without a

	Program listings to create this document
	recipe.txt
	stg02.mkPdfSet.py
	fulltex.bat

