
dev.opera.com/articles/wifi-ble-javascript/

Electronics for the JavaScript Developer
using Wi-Fi and Bluetooth LE

by Sayanee Basu

Introduction
The Internet of Things is gaining
momentum in the recent years as
more embedded computing
devices are being connected to
the Internet. What does this
mean for us web developers?
This article will explore two
common wireless protocols, Wi-
Fi and BLE and will take you
through the starting steps in
connecting sensors and servo
motors to the Internet. Then we
will learn how to control these
devices and access the sensor
data using JavaScript!

In this article we will explore
two platforms: Spark for Wi-Fi
and TI Sensor Tag for BLE with practical examples. At any time, you can also look at the complete annotated
code for each example. It will be fun!

Pre-requisites
This article assumes that you are already an intermediate to advanced level JavaScripter. We will primarily use node
and npm for server side and simple frontend JavaScript to create some control UI on a web browser. You don’t need
any prior knowledge of electronics. Seeing you can effect change and gather data from the physical world can be
exciting and I hope through this article you will get that first excitement to dive into the fun world of electronics and
web technologies! Let’s get started!

https://dev.opera.com/articles/wifi-ble-javascript/
https://dev.opera.com/authors/sayanee-basu/
https://www.npmjs.com/
https://nodejs.org/
https://github.com/operasoftware/devopera/tree/master/articles/wifi-ble-javascript/code
https://github.com/operasoftware/devopera/tree/master/articles/wifi-ble-javascript/code
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?INTC=SensorTag&HQS=sensortag
https://www.spark.io/
http://en.wikipedia.org/wiki/Bluetooth_low_energy
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Internet_of_Things

dev.opera.com/articles/wifi-ble-javascript/

Spark and Wi-Fi
One of the reasons why Spark is a great platform especially for any electronics beginner are its detailed
documentation as well as the community forum. In this section, we will play with a light sensor and then control
a servo from the web browser. Let’s first list the electronics components you will need so that you can buy them
if you want to physically follow through the examples:

Spark Core

• Pinout diagram

• LED colors/actions and their meanings

Spark store

https://dev.opera.com/articles/wifi-ble-javascript/
http://docs.spark.io/start/#step-3-connect-your-core-to-the-cloud
https://store.spark.io/?product=spark-core
http://docs.spark.io/assets/images/spark-pinout.png
https://community.spark.io/
http://docs.spark.io/
http://docs.spark.io/
https://www.spark.io/

dev.opera.com/articles/wifi-ble-javascript/

Breadboard
Wikipedia

Horizontal rows

• Red: HIGH or Vin (~6V)

• Blue / Black: LOW or Ground (0V)

 Wiring pattern in a
breadboard.

You will get a
breadboard when
you buy the Spark
Core

Micro-B to USB cable:

You will get this cable when you buy the Spark Core or this might be your mobile charger.

https://dev.opera.com/articles/wifi-ble-javascript/
http://docs.spark.io/start/
http://docs.spark.io/start/
http://docs.spark.io/start/
http://docs.spark.io/start/
http://en.wikipedia.org/wiki/Breadboard

dev.opera.com/articles/wifi-ble-javascript/

Jumper cables

Tip: Use the same color wires as the schematic so that it will be faster to trace the wires for debugging.
E.g. use Red for power and Black for ground.

Adafruit or Sparkfun

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.sparkfun.com/products/8431
http://www.adafruit.com/product/758

dev.opera.com/articles/wifi-ble-javascript/

Light dependent resistor: LDR or photocell

Tip: LDR has no polarity, so either leg can be connected to the analog pin or the ground.

Adafruit and Sparkfun

1k ohm resistor

Tip: Resistor has no polarity, so either leg can be connected to the analog pin or the ground.

Sparkfun

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.sparkfun.com/products/8980
https://www.sparkfun.com/products/9088
http://www.adafruit.com/product/161

dev.opera.com/articles/wifi-ble-javascript/

Servo

• Wikipedia

• Spark and servo

Tip: For wiring — Yellow is Signal, Orange is +5V (VIN), Brown is ground

Adafruit or Sparkfun

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.sparkfun.com/products/9065
http://www.adafruit.com/product/169
http://docs.spark.io/shields/#setting-up-the-shield-8-micro-servo-1
http://en.wikipedia.org/wiki/Servo_(radio_control)

dev.opera.com/articles/wifi-ble-javascript/

10 micro Farad Capacitor

• Wikipedi ds a

• Capacitors

Tip: Capacitors have polarity. On the plastic above one of the pins you’ll see a light colored strip with

a negative sign – on it. Always connect that pin to GND pins or rails.

https://dev.opera.com/articles/wifi-ble-javascript/
http://docs.spark.io/shields/#setting-up-the-shield-2-electrolytic-capacitor-100uf-5
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Capacitor

dev.opera.com/articles/wifi-ble-javascript/

1. Setup

In this section, we will connect the Spark Core to your Spark account and then connect it to the local
Wi-Fi. To setup the Spark Core, signup for an account. Then connect the Spark Core to your laptop via
the USB cable. You should see a fast-paced blinking blue light which means the Spark Core is waiting
for Wi-Fi credentials.

To associate the Spark Core with your account (also known as “claiming the core”), we will use the

spark-cli module. Next, we will give the Spark Core our local Wi-Fi credentials so it can connect

to the Wi-Fi network.

$ npm install -g spark-cli
$ spark setup # connect the Spark Core to your account
$ spark setup Wi-Fi # connect the Spark Core to your Wi-Fi

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.spark.io/signup

dev.opera.com/articles/wifi-ble-javascript/

If you have setup the Spark Core correctly, you will see a breathing cyan light as shown below.

Connected: video (external link to vine.co)

Next, we will note down two important values (device id and access token) for your Spark Core that
will be needed for any secure communication. Open Spark’s web editor, Spark Build for this and note
down these 2 values.

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.spark.io/build
https://mtc.cdn.vine.co/r/videos/DB9E0E87311015399731217969152_1d6c83d12a3.4.3.2795910212236322177_4RBA9frM0a4pwIG_RbZgo.ZOBEbBr_CpxzoOsBNuExDz6TFldcjJSYHVh203e6F4.mp4?versionId=orM0m0DvLYdciAwsb6DYHhqb974AHMj_

dev.opera.com/articles/wifi-ble-javascript/

In the next couple of sections we will go through two examples. These two examples show two different ways
you can use Spark:

1. Sensing with an LDR (light dependent resistor) with:

• firmware code that will publish the sensor values

• spark npm module to pick up the values periodically

2. Moving a servor with buttons on a web browser with:

• pre-built firmware code voodootiki spark

• express, spark-io and johnny-five npm modules to built a simple button that can turn the server

from the browser

2. Sensing photocell values
Blink the on-board D7 LED.

As the very first step, we will learn how to blink an LED. This is the hello world of electronics. Open the

Spark web editor and copy the simple blinking LED code. Here it uses a simple firmware code to blink the on-

board LED D7 every 1 second. To flash the firmware code onto your Spark Core, click the flash icon at the

top of the left sidebar and wait for the LED on board to come back to the breathing cyan pattern. You should see

the LED D7 blinking.

https://dev.opera.com/articles/wifi-ble-javascript/
http://docs.spark.io/firmware/
file:///home/joe_deken/code/spark-blinky/blinky.ino
https://www.spark.io/build
https://www.spark.io/build
https://www.npmjs.com/package/johnny-five
https://www.npmjs.com/package/spark-io
https://www.npmjs.com/package/express
https://github.com/voodootikigod/voodoospark
https://www.npmjs.com/package/spark
http://docs.spark.io/firmware/

dev.opera.com/articles/wifi-ble-javascript/

Wire up the breadboard for detecting photocell values.

Here we will need a couple of jumper wires, one photocell and 1kΩ resistor. We will firstly wireup the Red wire to

pin Vin and the horizontal lines +. And similarly, the Black wire to pin Gnd and the horizontal line -. Next we will

connect the photocell (or LDR) to pin A0 on the Spark Core and the ground, horizontal line -. LDRs do not have any

polarity, so we can connect either of the legs to Gnd. Finally, with the 1kΩ resistor, we will connect to pins A0 and

Vin on the Spark Core. This circuit might remind you of your high school physics voltage divider circuit.

Flash the firmware code to read the photocell values

While you see the breathing cyan on the Spark Core, take the LDR firmware code and flash it onto the Spark
Core with the web ide. The firmware code does a couple of things. Every 200ms, it take the analog reading from

pin A0, to which we connected the LDR and

then publishes it as a Variable on the Spark

Cloud which can then be queried using standard
Web APIs. For easy detection and debugging we

are also turning on and off the on-board LED D7

to indicate our code is running.

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.spark.io/build
file:///home/joe_deken/code/spark-ldr/ldr.ino
http://www.build-electronic-circuits.com/ldr-circuit-diagram/

dev.opera.com/articles/wifi-ble-javascript/

Install the npm module spark

$ npm install spark

Use JavaScript to query the sensor values.

Here’s now the fun part and we will query the sensor values using the simple spark code in a file ldr.js

var spark = require('spark');

spark.login({
 username: process.env.EMAIL,
 password: process.env.PASSWORD
}).then(
 function(token) {
 // Your program can successfully connect
 // to the published data from the sensor
 console.log('Connected to your light sensor successfully!');
 // console.log('Access Token: ' + token.access_token);
 spark.listDevices().then(
 function(devices){
 // console.log('\nDevices: ', devices);
 var device = devices[0];
 // With every published event getLight,
 // display the sensor value
 device.onEvent('getLight', function(reply) {
 var now = new Date();
 if (reply && reply.data) {
 // Some fun derivations based on the sensor
value
 if (parseInt(reply.data) < 1000) {
 // Shine a torch light on the LDR
 // amend 1000 according to your
environment
 console.log(
 now.getSeconds() + ': ' +
 reply.data + ' bright!'
);
 } else if (parseInt(reply.data) > 2000) {
 // Cover the LDR amend 2000
 // according to your environment
 console.log(
 now.getSeconds() + ': ' +
 reply.data + ' dark! '
);
 } else {
 console.log(
 now.getSeconds() + ': ' +
 reply.data
);
 }
 }
 });
 },
 function(err) {
 console.log('List devices call failed: ', err);
 }
);
 }, function(err) {
 console.log('Ooops error: ' + err);
 }
);

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.npmjs.com/package/spark

dev.opera.com/articles/wifi-ble-javascript/

Let’s run this code from the command line using your Spark account’s email and password:

$ EMAIL="{SPARK_EMAIL_ADDRESS}" PASSWORD="{SPARK_ACCOUNT_PASSWORD}" node ldr.js

You should next see a stream of sensor data. Shine a flashlight on the LDR and the value should change
and a comment would be displayed. Cover the LDR totally and you will see another comment! So now
whatever you do physically in the real world can be sensed with node and JavaScript! Such sensors can
be used to sense open/close cupboard doors and light levels in rooms.

This is just the start in playing with the Spark JavaScript API for the server-side. There are many more
firmware code libraries available that you can instantly flash to the your SparkCore and collect the
results via the events api.

https://dev.opera.com/articles/wifi-ble-javascript/
http://docs.spark.io/javascript/#supported-commands-events
https://www.spark.io/build#libraries
http://docs.spark.io/javascript/#getting-started-logging-in

dev.opera.com/articles/wifi-ble-javascript/

3. Control a Servo

Let’s wire up the breadboard with a servo this time!

We will use a servo motor and a capacitor. Wire up the Black / Brown wire to the Gnd pin of the Spark

Core, Orange / Red to the Vin of the Spark Core and finally the Yellow wire will be used to wire up to

the analog pin A0 of the Spark Core. We will also use a capacitor between the Vin of the Spark Core

and Gnd of the Spark Core to stabilize the power to the servo. Capacitor is optional, but it’s good to

have it for stability.

The control of the servo is fairly easy. It can rotate 180 degrees. So, when the signal is 0V, it will rotate

to 0 degrees and at the other end, when the signal is 5V it will rotate to 180 degrees. To help us do the

analog output of these
signals, we will use a
firmware called
VoodooSpark.

Flash the pre-built firmware
Voodoospark using the
Spark web editor and wait
for the breathing cyan light

VoodooSpark will allow a
local TCP connection
instead of the usual HTTP
protocol that we used in the
earlier example. This allows
controlling the Spark Core
in real-time.

https://dev.opera.com/articles/wifi-ble-javascript/
https://github.com/voodootikigod/voodoospark
https://www.spark.io/build
https://raw.githubusercontent.com/voodootikigod/voodoospark/master/firmware/voodoospark.cpp

dev.opera.com/articles/wifi-ble-javascript/

Finally, we will use Express to create
the routes that will trigger the
rotation of the servo through an

html page.

Use JavaScript to send signals to the servo via a web browser

$ npm install express johnny-five spark-io

We will need 3 modules. Spark-io to output the TCP packets which VooDooSpark firmware on the
Spark Core understands. Johnny-Five package uses Spark-io and provides higher level interfaces to
many devices such as sensors, motors, switches, etc. And finally Express to serve a webpage and pass
HTTP requests from the browser to the Spark Core.

Store the Spark device id and access token in config file.

Create file ~/.sparkrc to store your config and add the file to your profile with source

~/.sparkrc:

export SPARK_TOKEN="{SPARK_ACCESS_TOKEN}"
export SPARK_DEVICE_ID="{SPARK_DEVICE_ID}"

Create the JavaScript code in file servo.js.

var express = require('express')
var five = require('johnny-five');
var Spark = require('spark-io');
var app = express();

https://dev.opera.com/articles/wifi-ble-javascript/
https://github.com/rwaldron/spark-io#getting-started
https://github.com/strongloop/express
https://github.com/rwaldron/johnny-five/tree/master/lib
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/spark-io

dev.opera.com/articles/wifi-ble-javascript/

var servo;

// Connect to the Spark Core with the authentication info
var board = new five.Board({
 io: new Spark({
 token: process.env.SPARK_TOKEN,
 deviceId: process.env.SPARK_DEVICE_ID
 })
});

// Use analog pin A0
board.on('ready', function() {
 servo = new five.Servo({
 pin: 'A0'
 });
 console.log('Servo is ready!');

});

app.use(express.static(__dirname));

// Move to servo to a certain degree
// github.com/rwaldron/johnny-five/blob/master/lib/servo.js#L241-251
app.get('/rotate/:deg', function (req, res) {
 if (servo) {
 servo.to(parseInt(req.params.deg))
 console.log('Rotate ' + req.params.deg + 'deg');
 }
})

var server = app.listen(3000, function () {
 console.log(
 'Control the servo at http://localhost:' + server.address().port
);
})

Finally we will create the super simple html page index.html which will call the routes for the

different angles.

10 deg
170 deg

Run the code with the node server and click the angles to make the servo move in the physical world!

$ node servo.js

https://dev.opera.com/articles/wifi-ble-javascript/

dev.opera.com/articles/wifi-ble-javascript/

This example is just the tip of the iceberg in how you can control many other devices such as motors
and switch with the web interface. I find the Johnny-Five library files very useful to peek into many
more things we can hook up and play with!

Play video "wifi-ble-javascript/servo.mp4" (external link to opera.com)

TI Sensor Tag and BLE
In this section, we will use the Bluetooth Low Energy (BLE) protocol with the TI SensorTag, which is
designed for developers to play with various sensors and BLE. The SensorTag comes with a BLE chip
on-board along with sensors such as IR temperature sensor, humidity sensor, pressure sensor,
accelerometer, etc in a compact handy device. The advantage of using BLE is its low power
consumption. The SensorTag can be powered with just a coin cell potentially for years.

To play with the TI SensorTag, you need a couple of things:

1. TI SensorTag powered with a single coin cell
2. The machine on which you will run the JavaScript code should have BLE hardware.

The main npm module that we will be using to interface with the SensorTag is senstortag which is
based on an underlying generic node BLE central module, noble. We will attempt to read the IR
temperature from the SensorTag and log the gyroscope data while rotating the sensortag. Let’s get
started by requiring the modules and connecting to the sensortag.

Create a file sensortag.js, connect, discover and then disconnect the device:

https://dev.opera.com/articles/wifi-ble-javascript/
https://www.npmjs.com/package/noble
https://www.npmjs.com/package/sensortag
http://processors.wiki.ti.com/index.php/Simplelink_SensorTag
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?INTC=SensorTag&HQS=sensortag
https://dev.opera.com/articles/wifi-ble-javascript/servo.mp4
https://github.com/rwaldron/johnny-five/tree/master/lib

dev.opera.com/articles/wifi-ble-javascript/

var async = require('async');
var SensorTag = require('sensortag');

SensorTag.discover(function(sensorTag) {

 sensorTag.on('disconnect', function() {
 console.log('Disconnected!');
 process.exit(0);
 });

 async.series([
 function(callback) {
 console.log('Connect!');
 sensorTag.connect(callback);
 },
 function(callback) {
 console.log('Discovered');
 sensorTag.discoverServicesAndCharacteristics(callback);
 },
 function(callback) {
 console.log('Disconnected');
 sensorTag.disconnect(callback);
 }
]);

});

Because the events connect, discovered and disconnected should happen sequentially when

the previous event is done, we will use the npm module async to deal with callbacks.

Read the IR Temperature once between the events discovered and disconnected:

function(callback) {
 console.log('IR Temperature enabled');
 sensorTag.enableIrTemperature(callback);
},

function(callback) {
 console.log('readIrTemperature');
 sensorTag.readIrTemperature(
 function(objectTemperature, ambientTemperature) {
 console.log(
 '\tobject temperature = %d °C',
 objectTemperature.toFixed(1)
);
 console.log(
 '\tambient temperature = %d °C',
 ambientTemperature.toFixed(1)
);
 callback();
 }
);
},

Finally, we will add in the gyroscope reading and when the SensorTag is physically rotated, the

https://dev.opera.com/articles/wifi-ble-javascript/

dev.opera.com/articles/wifi-ble-javascript/

JavaScript should output the updated values from the gyroscope. We hook onto the gyroscope events
after the IR temperature reading. We have to specifically enable the gyroscope readings using the

notifyGyroscope API.

// readIRTemperature
function(callback) {
 console.log('Gyroscope enabled');
 sensorTag.enableGyroscope(callback);
},

function(callback) {
 setTimeout(callback, 1000);
},

function(callback) {
 sensorTag.on('gyroscopeChange', function(x, y, z) {
 console.log('On Gyrosope change: '
 + x.toFixed(1) + '°/s[X]\t'
 + y.toFixed(1) + '°/s[Y]\t'
 + z.toFixed(1) + '°/s[Z]');
 });

 sensorTag.notifyGyroscope(function() {
 console.log('Start tracking gyroscope!');
 });
}

// Comment out disconnect
// function(callback) {
// console.log('Disconnected');
// sensorTag.disconnect(callback);
// }

https://dev.opera.com/articles/wifi-ble-javascript/

dev.opera.com/articles/wifi-ble-javascript/

You can refer to the entire code here. Let’s run it!

$ node sensortag.js

That is just a tiny example on how to interface with a BLE device. To dabble more, have a look at all
the sensors data you can query in the SensorTag as well as the underlying noble module. The author of
both these modules, Sandeep Mistry has open sourced many more BLE related npm packages such as
the ones we can interface with iBeacons or Arduino library. Have a go at them!

https://dev.opera.com/articles/wifi-ble-javascript/
https://github.com/sandeepmistry/arduino-BLEPeripheral
https://github.com/sandeepmistry/node-bleacon
https://github.com/sandeepmistry?tab=repositories
https://github.com/sandeepmistry/noble
https://github.com/sandeepmistry/node-sensortag/blob/master/test.js
https://github.com/sandeepmistry/node-sensortag/blob/master/test.js
https://github.com/operasoftware/devopera/tree/master/articles/wifi-ble-javascript/code/sensor-tag

dev.opera.com/articles/wifi-ble-javascript/

More resources
The easiest way to start learning to interface web technologies with electronics is to choose a hardware platform
which already comes with a JavaScript API. Here are some examples of more such platforms other than the
Spark and SensorTag that we covered:

• Tessel — hardware api

• Arduino Yun — Johnny-Five

• Raspberry PI — node.js build for Linux arm pi, io.js builds for armv6l and armv7l

Hardware and electronics interfacing might be daunting at first, but the good news is there are many community
events, forums, blog posts and modules/libraries available online. Here are some to check out:

• Nodebots — JavaScript based robotics events around the world

• Nodecopter — Node and drones community hacking events

• CyclonJS — JavaScript framework for robotics

• Serial port — Along with Wi-Fi and BLE, try out interfacing with the Z-Wave and Zigbee

• USB — communicate with USB devices

 Shurthi, NodeBoats workshop facilitator at JS Conf Asia 2014, tracking a participant’s boat
controlled with Spark Core, VoodooSpark, Spark-io and Johnny Five.

I hope this article gave you not only the initial steps for getting started, but plenty of resource to hack
on your own or even get involved with the community! It might be challenging at start, but seeing your
code literally come to life in the physical world will be immensely rewarding.

Come and hack away with electronics and JavaScript!

• har dware

• javascript

https://dev.opera.com/articles/wifi-ble-javascript/
file:///tags/javascript/
file:///tags/hardware/
file:///tags/hardware/
http://2014.jsconf.asia/
https://www.facebook.com/media/set/?set=a.615900415180712.1073741830.224477610989663&type=3
https://twitter.com/shurru
https://github.com/nonolith/node-usb
http://www.zigbee.org/
http://www.z-wave.com/modules/ZwaveStart/
https://github.com/voodootikigod/node-serialport
http://cylonjs.com/
http://www.nodecopter.com/
http://nodebots.io/
https://iojs.org/dist/
https://nodejs.org/dist/v0.10.28/
http://www.raspberrypi.org/
https://github.com/rwaldron/johnny-five
http://arduino.cc/en/Main/ArduinoBoardYun?from=Products.ArduinoYUN
https://tessel.io/docs/hardwareAPI
https://tessel.io/

	by Sayanee Basu
	Introduction
	Pre-requisites

	Spark and Wi-Fi
	Spark Core
	Breadboard
	Jumper cables
	Light dependent resistor: LDR or photocell
	1k ohm resistor
	Servo
	10 micro Farad Capacitor
	1. Setup
	2. Sensing photocell values
	3. Control a Servo

	TI Sensor Tag and BLE
	More resources

