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1 Continuity and limits

1.1 The concept of continuity

Unlimited Growth

Growth

A functionis continuousif it has no jumps.
Thus, small changes in eagl, the input,
&1 correspond to small changes in the output,
f(xo).

Time

Figure 1: The figure above is an example of linear growth. TamRobert Malthus (1766-1834) warned about the dangersitfiited population growth.

A function is said to be discontinuous if it has jumps. Thection is continuous if it has no jumps.

It follows that for a continuous function, small changes atlexg, the input, thus correspond to small
changes in the outputxo).

Polynomials are continuous as are logarithms (for positiv@bers).

1.2 Discrete probabilities and cumulative distribution functions

> — The cumulative distribution function for a
discrete random variable is discontinuous.

If X is a random variable with a discrete probability distribatiwith probability mass function

then thecumulative distribution functigrdefined by
F(X)=P[X <X

is discontinuous. It's jumps occur at the points which hawsifve probability.



Example: If a coin is tossed 3 independent times axXidienotes the number of heads, thércan
only take on the values 0, 1, 2 and 3. The probability of lagdiractlyx headsP(X = x), is p(x) =
() P"(1— p)"*. The probabilities are

o | 1/8 | 1/8
1 13/8 | 4/8
2 | 3/8 | 7/8
3 11/8 |1

The cumulative distribution functiorf; (x) = P[X < X] = 3« p(t) has jumps and is therefore discon-
tinuous.

1.3 Notes on discontinuous function

\\ A function is discontinuous for certain val-

ues or between certain values of the vari-

able that does not vary continuously as
the variable increases. In other words,
o "breaks" or "jumps.”

A function can be discontinuous in a number of different wayisst commonly, it may jump at certain
points or increase without bound in certain places.

Consider the functiotfi, defined byf (x) = 1/xwhenx #£ 0. Naturally, /xis not defined fox = 0. This
function increases towardsc asx goes to zero from the right but decreases-to asx goes to zero
from the left. Since the function does not have the same fimih the right and the left, it follows that
it can not be made continuous)at 0 even if one tries to defing(0) as some number.

1.4 Continuity of polynomials

It is easy to show that simple polynomials suchpds) = x, p(X) = a+ bx, p(x) = ax? + bx+c are
continuous functions.

It is generally true that a polynomial of the form
p(X) = a0 +arx+ape + ...+ anx"

is a continuous function.

1.5 Simple Limits

In mathematics, the concept of a "limit" is used to descrifgeualue that a function or sequence "ap-
proaches" as the input or index approaches some value.d arétessential to calculus (and mathemat-
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All polynomials, p(x) = ag + ajx +
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A "limit" is used to describe the value

> that a function or sequence "approaches" as
the input or index approaches some value.
Limits are used to define continuity, deriva-
tives and integrals.
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ical analysis in general) and are used to define continugtyyatives and integrals.
Consider a function and a poirg .

If f(X) gets steadily close to some numlsexsx gets close to a numbesg, thenc is called the limit of
f(x) asx goes taxg, written

c= )|(ILT!) f(x)
If c= f(xp) thenf is called continuous a.
Example:
Consider the function
1
g(x) = X

wherex is a positive real number. Asincreasesg(x) decreases, approaching 0 but never getting there
since% = 0 has no solution. One can therefore say, “The limigof), asx approaches infinity, is 0,
and write

lim g(x) =0.

X—00

1.6 More on limits

Example 1:



06

Figure 4: The functiorf (x) = H%‘

The Beverton-Holt stock recruitment curve is given by:

aS
R= S
1+
wherea,K > 0 are constants.
and S = biomass, R=recruitment
The behavior of this curve as S increaSes « is
. aS
lim s = oK.
S—oo 1+ K

Example 2:
A popular model for proportions is to use

B 1
T 1lteX

f(x)

Limits impose a certain range of values
that may be applied to the function.

Note: As x increaseg * decreases which implies that the term- & * decreases and henggtfx

increases, from which it follows thdtis an increasing function.

Notice thatf (0) =  and further,
lim f(x) =1.

X—00

This is seen from considering the components: Sirce= g and the exponential function goes to

infinity asx — oo, e * goes to 0 and hendgx) goes to 1.
Through a similar analysis one finds that

lim f(x)=0,

X——00

since, ax — o, first —x — 0 and secon@ * — oo,




f(x) may tend towards different numbers
= S — depending on whether— xg:

from the right € — xg.; )

or from the left & — xg_).

1.7 One-sided limits
Sometimes a function is such thi(x) tends to different numbers depending on whether xy from
the right & — Xo. ) or from the left & — Xo_).
If
lim f(x) = f(xo)

X—X0+

then we say that f is continuous from the righikgt

2 Sequences and series

2.1 Sequences

A sequencés a string of indexed numbers
ap,ap,az,.... We denote this sequence
with (an)p>1-

In a sequence the same number can be appeared in severatidifésrent places.
Example 1

(})n=1is the sequence $,2.1, ...

Example 2

(n)n>1 is the sequence 2,3,4,5, .. ..

Example 3

(2"n)n>1 is the sequence 8,24,64, .. ..

2.2 Convergent sequences

A sequencean is said toconvergeto the
number b if for evere > 0 we can find an
N € N such thatjan —b| < € for all n >
N. We denote this with lif—c an = bor
an — b, asn — oo,




A sequencey, is said toconvergeto the number b if for everg > 0 we can find arN € N such that
|an — b| < € for all n > N. We denote this with lir,. a8y = boras — b, asn — .

If X is a number then,

(1+%)"—»easn—

Example 1

The sequenc(a%)nzm converges to O ag— o
Example 2

If x is a number then,

(1+%"—>e‘asn—

2.3 Infinite sums (series)

We are interested in, whether infinte

sums of sequences can be defined. Let
(an)n—o be a sequence of numbers. We
define another sequen(s )n— e, Where

If (sn)n—w is convergent with
limn— o0 Sn = Swe write

then

Note also that

We have
Si=14+X+X+ .. +X
XS = X+ X+ oo+ X XL
S’]VXS'] _ 1_Xn+1
i.e.
Si(1—x)=1—x"1
and we have
1_Xn+l
T 1-—x

if x# 1. If 0 < x < 1 thenx"** — 0 asn — o and we obtairs, — 1%; SOy v o X" = 1.

The exponential function can be written as a series (infgita):



Knowing this we can see why the Poisson probabilities

AX
= ei)\ —_
x!

SIS TSLINEY S

2.4 Relation to expected values

p(x)

add to one:

The expected value for the Poisson is given
by

© X
xp(X) = z xe L
x=0

3 Slopes of lines and curves

3.1 The slope of aline

The slope of a straight line represents the change iy twordinate corresponding to a unit change in
thex coordinate.

3.2 Segment slopes

Consider two points(Xp, o) and(x1,y1). The slope of the straight line that goes through these p@nt

Y1—Yo

X1—Xo

10



0 2 4 6 8 10

Linear functions produce straight-line

graphs. In general, a straight line consist of
points in the plane which satisfy an equa-
tion of the form

y=a-+bx

wherea andb are fixed numbers.
The graph of the line is the set of points:

{(xy):x,yeR,y=a+bx}.

Let’s assume we have a more general func-
tion

y=1(x)

To find the slope of line segment, consider
2 x-coordinatesqg andx; and look at the
slope betweetixg, f(xg)) and(xq , f(x1))

Thus, the slope of a line segment passing throught the p@inis (%)) and (xi, f(x1)), for some

functionf is
f(x1) — f(x0)
X1—Xo
If we let x; = Xp + h the slope of the segment is

f(xo+h) — f(x)
. :

3.3 The slope ofy = x?

11

Consider the task of computing the slope
of the functiony = X2 ata given point.




In order to find the slope at a given poinx), we look at

f(xo+h) — f(x)
h

for small values oh.

For this particular functionf (xo) = X, and hence

f(xo+h) = (xo+h)2 = x% 4 2hxg + h?.

The slope of a line segment is therefore given by

f(xo+h)—f(x) 2hxp+h?

h h =2%+h.

As we make h steadily smaller, the segment slopg-+2h, tends towards.

It follows that the slope of the cunat a general pointxis given byy = 2x.

3.4 Thetangentto a curve

100

A tangento a curve is a line that intersects
the curve at exactly one point. The slope
s 4 of a tangent to the graph of the function
y= f(x) at the point(xg. f(xg)) is

40

jim f0+h —f(xo)
h—0 h

To find the slope of the tangent to a curve at a point, we lookestope of a line segment between the
points(xo, f(x0)) and(xo + h, f (Xo+ h)), which is

f(xo+h) — f(xo)
h

and then we takh to be closer and closer to 0. Thus the slope is

h—0 h

when this limit exists.
Example 1

We wish to find the line that is tangent to the graph of the fiamct (x) = x? at the point(1,1). First we
need to fin the slope of this tangent, it is given as

2_12 2
jim =1 20N =2
h—0 h h—0 h h—0

Then since we know the tangent goes through the gaird)) the line isy = 2x— 1.

12



Consider a nonlinear function= f(x)

The slope of the line segment:
~ o fxo+h)—f(xg)

Now fing the limit ash goes towards zero,

5 4 if it exists.

3.5 The slope of a general curve

Imagine a nonlinear function whose graph is a curve desbsitibe equation,
y=1f(x

Here we want to find the slope of a line tangent to the curve peaific point(xg).
The slope of the line segment is given by following equatisegplained earlier

f(xo+h)—f(xo)
h

Reducingh towards zero, gives the slope of this curve if it exists.

4  Derivatives

4.1 The derivative as a limit

The derivative of the function f at the point
xis defined as

jim FOxHN) — (9
h—0 h

if this limit exists.

13



The derivative of the function f at the point x is defined as

im f(x+h)—f(x)
h—0 h

if this limit exists. When we writgy = f(x), we commonly use the notaticﬂ§ or f/(x) for this limit.

4.2 The derivative of f (x) = a-+ bx

If f(x) =a+bxthenf(x+h) =a+b(x+
h) =a+ bx+bhand thus

i 1OCEW =00 L bh

h—0 h “hsoh

If f(x) =a+bxthenf(x+h) =a+b(x+h)=a+bx+bhand thus
bh

im (XN -9 . bh_
h—0 h—0 h

Thusf/(x) = h.

4.3 The derivative of f (x) = X"

Let f(x) = X", wheren is a positive integer. To find’ we calculate, using the binomial theorem in the
third step:

f(x+h) —f(x) (x+h)"—x"
h - h
s o
h
n

n-1
=3 Xt ( )x”l =nxX"?
&o n-1

Thus, we obtairf’(x) = nxX"~1,

14



4.4  The derivative of In and exp<Oléf BM>

The derivatives of the exponential function
is the exponential function itself i.e.
if

f(x) = e

then

t(x) =
The derivatives of the natural logarithm,
In(x), is &, i.e. if

9(¥) =In(x)

then 1
{ ==
=5

45 The derivative of a sum and linear combination

If f andg are functions then the derivative
of f +gis given byf’ + ¢/

Similarly, the derivative of a linear combination is thedar combination of the derivatives.
If f andg are functions anéi(x) = af(x) + bg(x) thenk'(x) = af’(x) + bg/(x)

Example:

If f(x) =2+ 3xandg(x) +x3
then we know that

f/(x) = 3,9(x) = 3%

and if we write

h(x) = f(X) +g(X) =2+ 3x+x
then

h'(x) = 3+ 3%?

4.6 The derivative of a polynomial

The derivative of a polynomial is the sum
of the derivatives of the terms of the poly-
nomial.

If

p(x) = ag+ a1X+ ... +anX"

then

P (X) = a1 + 2apx+ 3agx® + 4ag® + ... + nax("-Y
If

p(x) = 24+ 3

then

15



P(x) =298 19X _ 2,43 1 332 — 83+ 32

4.7 The derivative of a product

If
n(9 = 1(9-g(x)

then

(0 = 109900+ () g (%)

Consider two functionsf andg and their product:
h(x) = £(x) - 9(x).
The derivative of the product is given by
W () = '(x) - g(x) + f(x) - g'(x).
Example: Suppose the functiohis given by
f(x) = x€' + x%Inx.

Then the derivative can be computed step by step as

de¢  d¥? >dInx
— + ——Inx+x"——
dx = dx

dx
f(x) = &ex—kx ix
= 1-eX+x-eX+2x-Inx+x2-)—1(

= &(1+x) +2xInx+x

4.8 Derivatives of composite functions

If f andgare functions anti= f og so that

h(x) = f(g(x)) then

W oo = 409 — (g00)g/ (9

1. For fixedx consider ;

flp) = In(P‘Q-p"™)
= Inp*+In(1-p)"*
= xlnp+(n—=x)In(1—p)



2. f(b) = (y—bx)? (y,x fixed)

f'(b) = 2(y—bx)(—x)
= —2x(y—bx)
(—2xy) + (2x%)b

5 Applications of differentiation

5.1 Tracking the sign of the derivative

If f is a function, then the sign of it's
derivative, f/, indicates whethef increas-
ing (f/ > 0), decreasingf( < 0) or f’ can
be zero at points wherkhas a maximum,
minimum or a saddle point.

If £/(x) >0 for x < x, f(x9) = 0 and
/(x) < Oforx> Xg thenf has a maximum
atxg

If £/(x) <0 for x < xg, f'(xg) =0 and
/(x) > 0forx> Xp thenf has a minimum
atxgy

If £/(x) >0 for x < g, f/(xg) = 0 and
/(x) > 0 for x < Xg then f has a saddle
point atxy

If £/(x) <0 for x < %, f'(xg) =0 and
/(x) < 0 for x < Xg then f has a saddle
point atxy

Example 1:

If fis a function such that it’s derivative
f'(x) = (x—1)(x—2)(x—3)(x - 4),

then applying the above criteria for maxima and minima, weetkatf has maxima at 1 and 3 arichas
minima at 2 and 4.

5.2 Describing extrema

Xg with f’(xo) = 0 corresponds to a max-
imum, if £/ (xg) < 0
Xg with f’(xo) = 0 corresponds to a mini-
mum, if f”/(xg) > 0

If f/(xo) = 0 corresponds to a maximum, then the derivative is decrgasid the second derivative can
not be positive, (i.ef”(xp) < 0). In particular, if the second derivative is strictly nége, (f”(xo) < 0),
then we are assured that the point is indeed a maximum, aradszaidle point.

If /(x0) = 0 corresponds to a minimum, then the derivative is increpaird the second derivative can
not be negative, (i.ef” (xg) > 0).

If the second derivative is zero, then the point may be a sguiuiht, as happens with(x) = xZ atx = 0.

17



5.3 The likelihood function

Recall that the probability mass function
(p.m.f) is a function, typically denoteg
sop(x) gives the probability of a given out-
come,x, of an experiment, based on some
parameter. We often write,

P = PX =

when we are going to take a sample of in-
dependent measurements, all frgmthen
the joint probability of a given set of num-
bers is,

p(xq) - P(X2) - P(X3).-.-p(¥n)

Suppose each probability includes same
paramete®, then this is typically written,

P (X1),---Pg(xn)

Now consider the set of outcomes
X1,%...,Xn from the experiment. We can
now take the probability of this outcome
as a function of the parameters.

Lx(8) = pg(xq).---Pg(xn)

This is thelikelihood function and we of-
ten seek to maximize it given outcomes
from an experiment.

Recall that the probability mass function (p.m.f) is thedtion of p and p(x) gives the probability of a
given outcome of an experiment, based on same parameteift&denrite,

when we are going to take a sample of independent measurgra#fitom p, then the joint probability
of a given set of number is,

p(x1) - p(x2) - PX3) - - - P(%n)
Suppose each probability includes same paranfetiien this is typically written,

Po(X1), - - Po(Xn)

Now consider the set of outcomes xz. .., x, from the experiment. We can now take the probability of
this outcome as a function of the parameters.

Le = Pa(X1),- .- Pa(Xn)
This is thelikelihood function.

Suppose we toss a biased coiindependent times and obtain x heads, we know the probabilit
obtaining x heads is,

(P (L—p"
The parameter of interest is p and the likelihood function is

L(p) = (3) P*(1— p)"* If pis unknown we sometimes wish to maximize this function witsprect to

p in order to estimate theeal probability p.

5.4 Plotting the likelihood <Chiara>

5.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.pg,

then the valu® which gives the maximum
of L: .
L(B) = meax(Le)

is the maximum likelihood estimator
(MLE) of 8

18



If L is a likelihood function for a p.m.fpg, then the valu® which gives the maximum of L:
L(B) = max(Le)

is the maximum likelihood estimator 6f

If xis the number of heads fromindependent tosses of a coin, the likelihood function is;

Lx(p) = (2) P(1-p)™

Maximizing of this is equivalent to maximizing the logaittof the likelihood, since logarithmic func-
tions are increasing. The log-likelihood can be written as;

In(L(p)) = In <2> +xIn(p) + (n—x)In(1— p).

To find possible maxima , we need to differentiate this folmrand set the derivative to zero

dl —
0= 42 =0+ X4 1=X(—1)

0=p(1—p) % - p(1-p)I=

0= (1-p)x—p(n—x)

0=X—pX— pn+ px=X—pn

So

O=x—pn

p= )ﬁ is the extremum and we can write

p = 2 for the MLE

5.6 Least squares estimation

Least squares: Estimate the parameters
by minimizing

n
3 vi-gi(e)?
i=1

Suppose we have a model linking data to parameters. In deme@xe predicting; asg; (6).

In this case it makes sense to estimate param@teysninimizing

n

> i 91(6))%

Example 1: One may predict numbers;, as a meany, plus error. Consider the simple modek=
U+ €, wherep is an unknown parameter (constant) &nd the error in measurement when obtaining
thei’'th observationsy, i =1,...,n.

19



A natural method to estimate the parameter is to minimizestiuared deviations
n

muin;(x— w?.

It is not hard to see that thetfiat minimizes this is the mean:

fl=x
Example 2: One also commonly predicts data - - - ,y, with values on straight line, i.e. with + Bx;,
wherexs, ..., X, are fixed numbers.

This leads to the regression problem of finding those pammveluesd and f3 which give the best
fitting straight line in the sense that of ordinary least sgaa

miny (v~ (a-+ )’

Example 3: As a general exercise in finding the extrema of a functiofs, lebk at the functiorf (8) =

SI,(x6— 3)? wherex are some constants. We wish to find ththat minimizes this sum. We simply
differentiate w.r.t8 to obtainf’(8) = $" ; 2(x0 — 3)x; =231 ;x20 — 25" ; 3x. Thus

n n
0) =205 ¥ —25 3, =0
252

> it 3%
S

& 0=

6 Integrals and probability density functions

6.1 Area under a curve

o
The area under a curve between x=a and

x=b (for a positive function) is called the
integral of the function.

Figure 5: Example 1, 2 and 3

The area under a curve between x=a and x=b (for a positiveitum)és called the integral of the function
denoted:féfJ f (x)dxwhen this exists.

20



6.2 The antiderivative

Given a functiorf, if there is another func-
tion F such thatF’ = f, we say thaF is
the antiderivativeof f. For a functionf
the antiderivative is denoted hyfdx

Example 1
[xhdx= GEx
Example 2
Jefdx=¢€*.
Example 3

[ Edx=In(x).
Example 4

[2xeldx=e®.

6.3 The fundamental theorem of calculus

The fundamental theorem of calculus
states: The area under the graph of the
function f on the interval[a,b] is equal

to the difference of the values of its an-
tiderivative ata and b. That is, if F is
the antiderivative off, then the area un-
der the graph of on the intervala,b] is
F(b) —F(a). This difference is often writ-

ten asfab fdxor [F(x)]g,

Example 1
The area under the graphxfbetween 0 and 3 ify X"dx = [;2;x"1]3 = 1;3m+1 — L on+l = ?]":
Example 2

The area under the graphe@fbetween 3 and 4 i§; e‘dx= €] = &' — €
Example 3

The area under the graph gfoetween 1 and s [ Ldx= [In(x)]¢ = In(a) — In(1) = In(a).

6.4 Density functions

If X is a random variable such that
b
P(a< X <b) Z/f(x)dx
a

for some functionf which satisfiesf (x) > 0 for all x and

21



The probability density function (p.d.f.)
= and the cumulative distribution function
(c.d.f).

0

/f(x)dx: 1

—o00

thenf is said to be a probability density function (p.d.f.) %r

The function

is the cumulative distribution function (c.d.f.).

Example 1: Consider a random variab¥from the uniform distribution, denoted by~ U (0,1). This
distribution has density
f(x):{ 1 ifo<x<1
0 ew.

The cumulative distribution function is given by

X 0 ifx<O
P[ng]:/f(t)dt: x if0<x<1
A 1

Example 2: SupposeX ~ P(A), where X may denote the number of events per unit time. Thefp.m
of X is described byp(x) = P[X = x| = e*hﬁ—!x for x=0,1,2,.... Consider now the waiting time, T,
between events, or simply until the first event. ConsidereyentT > t for some number t>o. If
X ~ p(A) denotes the number of events per unit time, theX/elenote the number of events during the
time period for O through t. The it is natural to assume

X ~ P(At) and it follows thafT > t if and only if X, = 0 and we obtaiP[T >t] = P[X = 0] = e ™. It
follows that the c.d.f. of Tigr(t) =P[T <t]=1—-P[T >t]=1—e Mfort > 0.

The p.d.f. of T is therefordr (t) = Ff(t) = $Fr(t) = $(1-eM=0-eMx(-A)=AeMfort >0
andfy(t) =0fort =0.

Ae M for t>0
0 for t<O
describes the exponential distribution.

This resulting densityf (t) = {

[ee]

This distribution has expected valET] = [ tf(t)dt = [tAe Mdt
0

—00
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We setu = At anddu= Adt

o0 oo1-e*“d
fue*“du:%gue*”du:% Of !

[~ue ]
- [zeen], 05

6.5 Probabilities in R: The normal distribution

R has functions to compute values of prob-
ability density functions (p.d.f.) and cu-
mulative distribution functions (c.m.d.) for
most common distributions.

The p.d.f. for the normal distribution is

The c.d.f. for the normal distribution is

X

t2
D)= [ \/iz_ne*”Zdt
dnorm() gives the value of the normal p.d.f.

pnorm() gives the value of the normal c.d.f.

dnorm(t)
00 01 02 03 04

00 02 04 06 08 10

Figure 6: Top: The probability density function for the nairdistribution. Bottom: The cumulative distribution fuien for the normal distribution.

6.6 Some rules of integration

Example 1

By integration by parts we obtajfin(x)xdx= 3x2In(x) — [ x2- 1dx= 1x2In(x) — [ 3xdx= $x2In(x) —
1,2
.

Example 2
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Considerfl2 2xe’dx By settingx = g(t) = vt we obtain

2 > B 4 1 B 4 a4
/12xe?‘ olx_/1 2\/fetz—\/fdt—/1 ddt—e*—e

The two most common "tricks" applied in integration are aggmation by parts and b) integration by
substitution.

a) Integration by parts

Since(fg)’ = f'g+ fd, by integrating both sides of the equation we obtain

fg:/f’gdx+/fg’dx<:>/fg’dx: fg—/f’gdx

b) Integration by substitution
Consider the definite integrﬁJ f(x)dxand letg be a one-to-one, differential function from the interval
(c,d) to (a,b). Then
b d
| to0dx= [ (gt oy

7 Principles of programming

7.1 Modularity

Modularity is designing a system that s di-

vided into a set of functional units (named

modules) that can be composed into a
larger application. So any programming

project could be split into logical modules

piece of codes which become together.

Typically input, initialization, analysis and output coramis are grouped into separate parts.

Example
Input

dat<-read.table("http://notendur.hi.is/“gunnar/kennsla/alsm/data/set115.dat", header=T)
cols<- c("le", "osl")

Analysis
Mn<-mean(dat[, cols[1]])
Output

print (Mn)
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7.2 Modularity and functions

In many cases groups of commands can be
collected together into a function.

Typically a project has several such functions.

Example:

Suppose you want to plot the weight vs. length for severasias in
http://hi.is/ gunnar/kennsla/alsm/data

A function can then be set up with the number as an argument:

plotwtle<-function (fnum){

fname<-paste(
"http://hi.is/"gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")
cat ("The URL B", fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("Data from file number", fnum)
plot(dat$le,dat$osl,main=ttl)

}

Now call this with

plotwtle(105)

7.3 Modularity and files

It is advisable to split larger projects into
several manageable files.

Once a project reaches more than five lines of codes, thes#dshe stored in one or more separate
files. In order to combine these files which are having difitcommands, a single “source” command
file can be created.

Typically function definitions are stored in separate filgspne may have several separate files like;

“input.r" "function.r" "analysis.r" "output.r"
While developing the analysis, the data would only be readavith
source(“input.r”)

The goal of this practice is to end up with a set of files whigdh@mpletely self-contained, so one can
start with an empty R session and give only the commands like

source (“input.r’) source (“functions.r”) source (“anaiy.r”)
Further, this ensures the repeatability.

Example:
For a given project “input”, “functions

”

analysis” and “tput” files can be created as below.

input.r
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dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set115.dat", header=T)

functions.r

plotwtle<-function(fnum){
fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")
cat ("The URL is",fname,"\n")
dat<-read.table(fname,header=T)
ttl<-paste("My data set was",fnum)
plot(dat$le,dat$osl,main=ttl,xlab="Length(cm)",ylab="Live weight (g)")
}

output.r

source("functions.r")

for(i in 101:150){
fnam<-paste("plot",i,".pdf",sep="")
pdf (fnam)
plotwtle(i)
dev.off ()

}

These files can be executed with source commands as below;

source (“input.r)
source (“functions.r”)

source (“output.r”)

7.4  Structuring an R program

In order to control for organization, when larger projeats andertaken, they need to be split into
manageable pieces described as modules, functions, asd fileorder to link these files that hold
different commands, one should use the "source" commagedster in one file.

Example:

The file "run.r" could contain the sequence of commands:

source("setup.r)
source("analysis.r")

source("plot.r")

The benefits of this type of organization is that within thenfeiface there will not be 1000 lines of
code increasing the likelihood of misplacement or loss athmé@ology. In addition, this permits one to
edit in the file and to add comments.
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7.5 Loops, for

If a piece of code is to be run repeatedly,
the for-loop is normally used. This is of the
form: for(index in sequence) commands

Example 1:
To add numbers we can do e.g.

tot <- 100

for(i in 1:100){
tot <- tot + 1

}

cat ("the sum is ", tot, "\n")

Example 2:
Define the plot function

plotwtle <- AS BEFORE

To plot several of these we can use a sequence:

plot wtle(101)
plot wtle(102)

or a loop

for (i in 101:150){

fname<- paste("plot", i, ".pdf", sep="")
pdf (fname)

plotwtle(i)

dev.off ()

}

7.6 The if and ifelse commands

The "if" statement is used to conditionally
execute statements.

The "ifelse" statement conditionally re-
places elements of a structure.

Example 1:
If we want to compute* for x-values in the range 0 through 5, we can use

xlist<-seq(0,5,0.01)
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y<-NULL
for(x in xlist){
if (x==0){
y<-c(y,1)
}elsed{
y<-c(y,x**x)
}
}

Example 2:

x<-seq(0,5,0.01)
y<-ifelse(x==0,1,x"x)

Example 3:
dat<-read.table ("file")
dat<-ifelse (dat==0,0.01,dat)

Example 4:

x<-ifelse (is.na(x),0,x)

7.7 Indenting

Code should be properly indented!

That is, functions, for-loops, if-statements should alg/bg indented.

Example:

7.8 Comments

All code should contain informative com-
ments.

BHAHHHHHHHHHH
#HAHSETUP DATA####
BHHHHHHHHHHHHH

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length
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y<-log(dat$wt) #log-transformation of weight

BHAHHHHHHAR AR
#H##THE ANALY SISH###
BHAHHHHHHAR AR

8 The Central Limit Theorem and related topics

8.1 The Central Limit Theorem

= If measurements are obtained indepen-
s dently and come from a process with fi-
nite variance, then the distribution of the
mean of these data tends towards a Gaus-
sian (normal) distribution as the sample
- size increases.

Figure 7: The standard normal density

The Central Limit Theorem states thaf, Xo, ... are i.i.d. random variables with megrand variance
02, then the distribution oXy, := w tends towards a normal distribution. The random variaxgle

can be approximated by(u, 6%/n).

The Gaussian distribution is given by the p.d.f.

forzeR

The distribution has an expected value of zero;

n= /zcl)(z)dz: 0

and a variance of

o*— [(z-w(2dz—1

The general normal distribution, with arbitrary mgaand variance? has the p.d.f.

1 ~(y-w?
() = e

Example 1:
If we collect measurements on waiting times, typically framexponential distribution with density

A Mt>0
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then the mean of several such waiting times will tend to hawveranal distribution.

Example 2:
We are often interested in computing

which has a t-distribution if the; are independent outcomes from a normal distributiom if large
ando? is finite thenw will look as it came from a normal distribution.

8.2 Properties of the binomial and Poisson distributions

The binomial distributionis really a sum of
0 and 1 values (counts of failures = 0 and
successes =1) so a simple, single binomial
outcome will correspond to coming from
a normal distribution if the count is large
enough.

Consider the binomial probabilities:

forx=0,1,2,3,---,n

Wherenis a non-negative integer. Suppgsis a small positive number, specifically consider a sequence
of decreasing-values, specified witlp, = % and consider the behavior of the probabilityras oo

we obtain:
M xq o yn—x  _ n' AX _l "
<X>pn(1 o)™ = X!(n_x!)(n) -2 &)
_ n(n=1(n-2)---(n—x+1) %X 1_5 n o
X! (1_&))( n
n
_ nn-13)(n-2)--(n—x+1) N 1_5 " 3)
XX (1_5)" n
n
4)
Notice that™-1(-2-(Xt1) _, 1 450 — w. Also notice thafl—2)* — 1 asn — w. Also

lim (1— é) —e?
n—oo n

and it follows that

n—oo

—A)\X
. n . €A
lim (X) pl)"(l(l_ pn)n X— T,X: 0,1,27"' ,n
and hence the binomial probabilities may be approximatéid thie corresponding Poisson.
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Example 1:
The mean of a binomial (n,p) variablejis= n- p and the variance is> = np(1 — p)

The R command pbinom(q,n,p) calculates the probability sefigcesses in n trials assuming that the
probability of a success is p in each trial (binomial disitibn). The normal approximation of this dis-
tribution can be calculated with pnorm(g,mu,sigma) whiehdmes pnorm(q,n*p,sqrt(n*p(1-p)). Three
numerical examples (note that pbinom and pnorm give siradares for large n):

> pbinom(3,10,0.2)

[1] 0.8791261

> pnorm(3,10%0.2,sqrt(10%0.2%(1-0.2)))
[1] 0.7854023

> pbinom(3,20,0.2)

[1] 0.4114489

> pnorm(3,20%0.2,sqrt(20%0.2%(1-0.2)))
[1] 0.2880751

> pbinom(30,200,0.2)

[1] 0.04302156

> pnorm(30,200%0.2,sqrt (200%0.2%(1-0.2)))
[1] 0.03854994

Example 2:

. . . X—H
We are often interested in computing= n

which has a t distribution if thg are independent outcomes from a normal distribution. Iflarige and
o? is finite, this will look as if it comes from a normal distritai.

The numerical examples below demonstrate how the t distoib@approaches the normal distribution.

> gnorm(0.7)

[1] 0.5244005

#This is the value which gives the cumulative probability of p=0.7 for a n~(0,1)
> qt(0.7,2)

[1] 0.6172134

#The value, which gives the cumulative probability of p=0.7 with n=2 for the t-distribution.
> qt(0.7,5)

[1] 0.5594296

> qt(0.7,10)

[1] 0.541528

> qt(0.7,20)

[1] 0.5328628

> qt(0.7,100)
[1] 0.5260763

8.3 Monte Carlo simulation <Warsha>

Example:

Suppose our measurements come from an exponential digtritand we want to compute
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If we know an underlying process we can
simulate data from the process and evalu-
ate the distribution of any quantity based
on such data.
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L
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L

-
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L

Figure 8: A simulated set afvalues based on data from an exponential distribution.

= XM
s/v/n

but we want to know the distribution of those wheis the true mean.

For instancen = 5 andu = 1, we can simulate (repeatedlyy),...,xs and compute a t-value for each.
The following R commands can be used for this:

library (MASS)

n<-5

mu<-1

lambda<-1

tvec<-NULL

for(sim in 1:10000){
x<-rexp(n,lambda)
xbar<-mean (x)
s<-sd(x)
t<-(xbar-mu)/(s/sqrt(n))
tvec<-c(tvec,t)

V VV V V V V V V V V.YV

#then do...

> truehist(tvec) #truehist gives a better histogram
> sort(tvec) [9750]
> sort(tvec) [250]

newpage inserted
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9 Miscellanea

9.1 Simple probabilities in R

R has functions to compute probabilities
based on most common distributions.

If X is a random variable with a known
distribution, then R can typically compute
values of the c.d.f. or:

F(x)=P[X <X

newpage inserted in example
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Example 1

If X ~b(n, p) has binomial distribution, i.e.
Px=x = (3 )2 P
then cumulative probabilities can be computed with pbinem,

>pbinom(5,10,0.5)

gives
P[X < 5] =0.623
where 1
X~b(n=10,p= E)
Further,

>pbinom(10,10,0.5)
[1] 1

and

>pbinom(0,10,0.5)
[1] 0.0009765625

110 1 1.1 1_ 1 _ 1
O3 = 1002 (3 3% %3 = 310 = 20

-

Itis sometime of interest to compuX = x] in this case, and this is given by the dbinom function, e.g.

>dbinom(1,10,0.5)
[1] 0.009765625

10
O 1574

newpage inserted in example
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Example 2

Suppos&X has a uniform distribution between 0 and 1, Xe~ U (0,1).
Then the punif function will return probabilities of the far

X

PMgﬂ:/

—00

fmmzﬁﬁmm

wheref(t) =1if 0 <t <1andf(t) = 0 otherwise. For example:

>punif (0.75)
[1] 0.75

To obtainP[a < X < b], we use punif twice, e.g.

>punif (0.75) -punif (0.25)
[1] 0.5

newpage inserted in example
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109

Figure 9: Example 2

newpage inserted
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9.2 Computing normal probabilities in R

To compute probabilitieX ~ n(y, 02) is
usually transformed, since we know that

X—u

Z:= = ~(0,1)

The probabilities can then be computed
for eitherX or Z with the pnorm function
inR.

Suppos&X has a normal distribution with mearand variance
X ~n(,0?)
then to compute probabilitieX; is usually transformed, since we know that
X—p
Z:=—~(01
—~(0.1)

and the probabilities can be computed for eitkear Z with the pnorm function.

Example 1:
If Z ~n(0,1) then we can e.g. obtaP[Z < 1.96] with

> pnorm(1.96)
[1] 0.9750021

> pnorm(0)
[1] 0.5

> pnorm(1.96)-pnorm(1.96)
(11 0

> pnorm(1.96)-pnorm(-1.96)
[1] 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 2:
If X ~ n(42,3?) then we can compute probabilites either by transforming
pp(E;g::quSiiffgfj;B]
o o
—pz<H
o

. . X1 . .
and calling pnorm with the computed valze- ==, or call pnorm withx and specifyiando.

To computeP[X < 48], either sez = (48— 42) /3= 2 and obtain

> pnorm(2)
[1] 0.9772499
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or specifypando

> pnorm(42,42,3)
[1] 0.5

newpage inserted
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9.3 Introduction to hypothesis testing

If we have a random samplg, . . ., X, from a normal distribution, then we consider them to be omies
of independent random variabl¥s, ..., X, where

X ~ n(u,0®) Typically, u anda? are unknown but assume for now ttegtis known.
Consider the hypothesis

Ho:MH=HMoVS.H1:pu> o

whereyy is a specified number.

Under the assumption of independence, the sample mean

X= % SiL1X

is also an observation from a normal distribution, with mpdout a smaller variance.
Specificallyx is the outcome of

X=33L1X

and

X ~n(, %)

so the standard deviation of X %

so the appropriate error measurexXas fraco,/n, whena is unknown.

If Hg is true, then

z:= %

is an observation from am~ n(0, 1) distribution, i.e. an outcome of

_ X-lo
Z_oﬁ

whereZ ~ n(0,1) whenHo is correct. It follows that e.g.P[|Z| > 1.96] = 0.05 and if we observe
|Z| > 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is quantile of the normal disttiln and we can obtain other quantiles
with the pnorm function, e.g. gnorm(0.975) gives 1.96.
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