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1 Continuity and limits

1.1 The concept of continuity
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Figure 1: The figure above is an example of linear growth. Thomas Robert Malthus (1766-1834) warned about the dangers of inhibited population growth.

A function is continuous if it has no jumps.
Thus, small changes in eachx0, the input,
correspond to small changes in the output,
f (x0).

A function is said to be discontinuous if it has jumps. The function is continuous if it has no jumps.

It follows that for a continuous function, small changes in eachx0, the input, thus correspond to small
changes in the output,f (x0).

Polynomials are continuous as are logarithms (for positivenumbers).

1.2 Discrete probabilities and cumulative distribution functions

x

y The cumulative distribution function for a
discrete random variable is discontinuous.

If X is a random variable with a discrete probability distribution, with probability mass function

p(x) = P[X = x]

then thecumulative distribution function, defined by

F(X) = P[X ≤ x]

is discontinuous. It’s jumps occur at the points which have positive probability.
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Example: If a coin is tossed 3 independent times andX denotes the number of heads, thenX can
only take on the values 0, 1, 2 and 3. The probability of landing exactlyx heads,P(X = x), is p(x) =
(n

x

)

pn(1− p)n−x. The probabilities are

x | p(x) | F(x)

----------------

0 | 1/8 | 1/8

1 | 3/8 | 4/8

2 | 3/8 | 7/8

3 | 1/8 | 1

The cumulative distribution function,F(x) = P[X ≤ x] = ∑t≤x p(t) has jumps and is therefore discon-
tinuous.

1.3 Notes on discontinuous function
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A function is discontinuous for certain val-
ues or between certain values of the vari-
able that does not vary continuously as
the variable increases. In other words,
"breaks" or "jumps."

A function can be discontinuous in a number of different ways. Most commonly, it may jump at certain
points or increase without bound in certain places.

Consider the functionf , defined byf (x) = 1/x whenx 6= 0. Naturally, 1/x is not defined forx= 0. This
function increases towards+∞ asx goes to zero from the right but decreases to−∞ asx goes to zero
from the left. Since the function does not have the same limitfrom the right and the left, it follows that
it can not be made continuous atx= 0 even if one tries to definef (0) as some number.

1.4 Continuity of polynomials

It is easy to show that simple polynomials such asp(x) = x, p(x) = a+bx, p(x) = ax2 +bx+ c are
continuous functions.

It is generally true that a polynomial of the form

p(x) = a0+a1x+a2x2+ . . .+anx
n

is a continuous function.

1.5 Simple Limits

In mathematics, the concept of a "limit" is used to describe the value that a function or sequence "ap-
proaches" as the input or index approaches some value. Limits are essential to calculus (and mathemat-
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All polynomials, p(x) = a0 + a1x +

a2x2 + . . .+anxn, are continuous.
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A "limit" is used to describe the value
that a function or sequence "approaches" as
the input or index approaches some value.
Limits are used to define continuity, deriva-
tives and integrals.

ical analysis in general) and are used to define continuity, derivatives and integrals.

Consider a function and a pointx0 .

If f (x) gets steadily close to some numberc asx gets close to a numberx0, thenc is called the limit of
f (x) asx goes tox0, written

c= lim
x→0

f (x)

If c= f (x0) then f is called continuous atx0.

Example:

Consider the function

g(x) =
1
x

wherex is a positive real number. Asx increases,g(x) decreases, approaching 0 but never getting there
since 1

x = 0 has no solution. One can therefore say, “The limit ofg(x), asx approaches infinity, is 0,”
and write

lim
x→∞

g(x) = 0.

1.6 More on limits

Example 1:
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Figure 4: The functionf (x) = 1
1+e−x .

Limits impose a certain range of values
that may be applied to the function.

The Beverton-Holt stock recruitment curve is given by:

R=
αS

1+ S
K

whereα,K > 0 are constants.

and S = biomass, R= recruitment

The behavior of this curve as S increasesS→ ∞ is

lim
S→∞

αS

1+ S
K

= αK.

This is seen by rewriting the formula as follows:

lim
S→∞

αS

1+ S
K

= lim
S→∞

α
1
S+

1
K

= αK.

Example 2:

A popular model for proportions is to use

f (x) =
1

1+e−x

Note: As x increases,e−x decreases which implies that the term 1+ e−x decreases and hence1
1+e−x

increases, from which it follows thatf is an increasing function.

Notice thatf (0) = 1
2 and further,

lim
x→∞

f (x) = 1.

This is seen from considering the components: Sincee−x = 1
ex and the exponential function goes to

infinity asx→ ∞, e−x goes to 0 and hencef (x) goes to 1.

Through a similar analysis one finds that

lim
x→−∞

f (x) = 0,

since, asx→ ∞, first−x→ ∞ and seconde−x → ∞.
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f (x) may tend towards different numbers
depending on whetherx→ x0:
from the right (x→ x0+ )
or from the left (x→ x0−).

1.7 One-sided limits

Sometimes a function is such thatf (x) tends to different numbers depending on whetherx→ x0 from
the right (x→ x0+) or from the left (x→ x0−).

If
lim

x→x0+
f (x) = f (x0)

then we say that f is continuous from the right atx0.

2 Sequences and series

2.1 Sequences

A sequenceis a string of indexed numbers
a1,a2,a3, . . .. We denote this sequence
with (an)n≥1.

In a sequence the same number can be appeared in several timesin different places.

Example 1

(1
n)n≥1 is the sequence 1, 1

2,
1
3,

1
4, . . ..

Example 2

(n)n≥1 is the sequence 1,2,3,4,5, . . ..

Example 3

(2nn)n≥1 is the sequence 2,8,24,64, . . ..

2.2 Convergent sequences

A sequencean is said toconvergeto the
number b if for everyε > 0 we can find an
N ∈ N such that|an − b| < ε for all n ≥
N. We denote this with limn→∞ an = b or
an → b, asn→ ∞.
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A sequencean is said toconvergeto the number b if for everyε > 0 we can find anN ∈ N such that
|an−b|< ε for all n≥ N. We denote this with limn→∞ an = b or an → b, asn→ ∞.

If x is a number then,

(1+ x
n)

n → ex asn→ ∞

Example 1

The sequence(1
n)n≥∞ converges to 0 asn→ ∞

Example 2

If x is a number then,

(1+ x
n)

n → ex asn→ ∞

2.3 Infinite sums (series)

We are interested in, whether infinte
sums of sequences can be defined. Let
(an)n→∞ be a sequence of numbers. We
define another sequence(sn)n→∞, where

sn =
n
∑

k=1
ak

. If (sn)n→∞ is convergent with
limn→∞ sn = Swe write

sn =
∞
∑

n=1
an = S

.

If
ak = xk,k= 0,1, .....

then

sn =
n

∑
k=0

xk = x0+ x1+ ......+ xn

Note also that
xsn = x(x0+ x1+ ......+ xn) = x+ x2+ .....+ xn+1

We have
sn = 1+ x+ x2+ ....+ xn

xsn = x+ x2+ .....+ xn+ xn+1

sn˘xsn = 1− xn+1

i.e.
sn(1− x) = 1− xn+1

and we have

sn =
1− xn+1

1− x

if x 6= 1. If 0< x< 1 thenxn+1 → 0 asn→ ∞ and we obtainsn → 1
1−x so∑∞

n=0xn = 1
1−x.

The exponential function can be written as a series (infinitesum):

ex =
∞

∑
n=0

xn

n!
.
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Knowing this we can see why the Poisson probabilities

p(x) = e−λ λx

x!

add to one:
∞

∑
x=0

p(x) =
∞

∑
x=0

e−λ λx

x!
= e−λ

∞

∑
x=0

λx

x!
= e−λeλ = 1.

2.4 Relation to expected values

The expected value for the Poisson is given
by

∞
∑

x=0
xp(x) =

∞
∑

x=0
xe−λ λx

x!

= λ

The expected value for the Poisson is given by

∞

∑
x=0

xp(x) =
∞

∑
x=0

xe−λ λx

x!

= e−λ
∞

∑
x=1

xλx

x!

= e−λ
∞

∑
x=1

λx

(x−1)!

= e−λλ
∞

∑
x=1

λ(x−1)

(x−1)!

= e−λλ
∞

∑
x=0

λx

x!

= e−λλeλ

= λ

3 Slopes of lines and curves

3.1 The slope of a line

The slope of a straight line represents the change in they coordinate corresponding to a unit change in
thex coordinate.

3.2 Segment slopes

Consider two points,(x0,y0) and(x1,y1). The slope of the straight line that goes through these points is

y1− y0

x1− x0
.
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Linear functions produce straight-line
graphs. In general, a straight line consist of
points in the plane which satisfy an equa-
tion of the form

y= a+bx,

wherea andb are fixed numbers.
The graph of the line is the set of points:

{(x,y) : x,y∈ R,y= a+bx} .
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Let’s assume we have a more general func-
tion
y= f (x)
To find the slope of line segment, consider
2 x-coordinatesx0 andx1 and look at the
slope between(x0, f (x0)) and(x1, f (x1))

Thus, the slope of a line segment passing throught the points(x0, f (x0)) and (x1, f (x1)), for some
function f is

f (x1)− f (x0)

x1− x0
.

If we let x1 = x0+h the slope of the segment is

f (x0+h)− f (x0)

h
.

3.3 The slope ofy= x2
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y Consider the task of computing the slope

of the functiony= x2 at a given point.

Consider the following function;

y= f (x) = x2
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In order to find the slope at a given point(x0), we look at

y=
f (x0+h)− f (x0)

h

for small values ofh.

For this particular function,f (x0) = x2, and hence

f (x0+h) = (x0+h)2 = x2+2hx0+h2.

The slope of a line segment is therefore given by

f (x0+h)− f (x0)

h
=

2hx0+h2

h
= 2x0+h.

As we make h steadily smaller, the segment slope, 2x0+h, tends towards 2x0.

It follows that the slope of the curveat a general pointx is given byy= 2x.

3.4 The tangent to a curve
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A tangentto a curve is a line that intersects
the curve at exactly one point. The slope
of a tangent to the graph of the function
y= f (x) at the point(x0, f (x0)) is

lim
h→0

f (x0 +h)− f (x0)

h
.

To find the slope of the tangent to a curve at a point, we look at the slope of a line segment between the
points(x0, f (x0)) and(x0+h, f (x0+h)), which is

f (x0+h)− f (x0)

h

and then we takeh to be closer and closer to 0. Thus the slope is

lim
h→0

f (x0+h)− f (x0)

h

when this limit exists.

Example 1

We wish to find the line that is tangent to the graph of the function f (x) = x2 at the point(1,1). First we
need to fin the slope of this tangent, it is given as

lim
h→0

(1+h)2−12

h
= lim

h→0

2h+h2

h
= lim

h→0
(2+h) = 2.

Then since we know the tangent goes through the point(1,1) the line isy= 2x−1.
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Consider a nonlinear functiony= f (x)
The slope of the line segment:
f (x0+h)− f (x0)

h
Now find the limit ash goes towards zero,
if it exists.

3.5 The slope of a general curve

Imagine a nonlinear function whose graph is a curve describeby the equation,

y= f (x)

Here we want to find the slope of a line tangent to the curve at a specific point(x0).

The slope of the line segment is given by following equation as explained earlier

f (x0+h)− f (x0)
h

Reducingh towards zero, gives the slope of this curve if it exists.
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4 Derivatives

4.1 The derivative as a limit

The derivative of the function f at the point
x is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists.
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The derivative of the function f at the point x is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists. When we writey= f (x), we commonly use the notationdy
dx or f ′(x) for this limit.

4.2 The derivative of f (x) = a+bx
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f(x)=3+2x

If f (x) = a+bx then f (x+h) = a+b(x+
h) = a+bx+bhand thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b

If f (x) = a+bx then f (x+h) = a+b(x+h)= a+bx+bhand thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b.

Thus f ′(x) = b.

4.3 The derivative of f (x) = xn

Let f (x) = xn, wheren is a positive integer. To findf ′ we calculate, using the binomial theorem in the
third step:

f (x+h)− f (x)
h

=
(x+h)n− xn

h

=
∑n−1

q=0xqhn−q

h

=
n−1

∑
q=0

xqhn−q−1 →
(

n
n−1

)

xn−1 = nxn−1

Thus, we obtainf ′(x) = nxn−1.

14



4.4 The derivative of ln and exp<Ólöf BM>

The derivatives of the exponential function
is the exponential function itself i.e.
if

f (x) = ex

then
f ′(x) = ex

The derivatives of the natural logarithm,

ln(x), is 1
x , i.e. if

g(x) = ln(x)

then

g′(x) = 1
x

4.5 The derivative of a sum and linear combination

If f andg are functions then the derivative
of f +g is given by f ′+g′

Similarly, the derivative of a linear combination is the linear combination of the derivatives.

If f andg are functions andk(x) = a f(x)+bg(x) thenk′(x) = a f ′(x)+bg′(x)

Example:
If f (x) = 2+3x andg(x)+ x3

then we know that
f ′(x) = 3, g(x) = 3x2

and if we write
h(x) = f (x)+g(x) = 2+3x+ x3

then
h′(x) = 3+3x2

4.6 The derivative of a polynomial

The derivative of a polynomial is the sum
of the derivatives of the terms of the poly-
nomial.

If

p(x) = a0+a1x+ ...+anxn

then

p′(x) = a1+2a2x+3a3x2+4a4x3+ ...+nanx(n−1)

If

p(x) = 2x4+ x3

then

15



p′(x) = 2dx4

dx + dx3

dx = 2 ·4x3+3x2 = 8x3+3x2

4.7 The derivative of a product

If
h(x) = f (x) ·g(x)

then

h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x)

Consider two functions,f andg and their product,h:

h(x) = f (x) ·g(x).

The derivative of the product is given by

h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x).

Example: Suppose the functionf is given by

f (x) = xex+ x2 lnx.

Then the derivative can be computed step by step as

f (x) =
dx
dx

ex+ x
dex

dx
+

dx2

dx
lnx+ x2d lnx

dx

= 1 ·ex+ x ·ex+2x · lnx+ x2 · 1
x

= ex (1+ x)+2xlnx+ x

4.8 Derivatives of composite functions

If f andg are functions andh= f ◦g so that

h(x) = f (g(x)) then

h′(x) = dh(x)
dx = f ′(g(x))g′(x)

1. For fixedx consider ;

f (p) = ln(px(1− p)n−x)

= ln px+ ln(1− p)n−x

= xln p+(n− x) ln(1− p)

f ′(p) = x
1
p
+

n− x
1− p

(−1)

=
x
p
− n− x

1− p

16



2. f (b) = (y−bx)2 (y,x fixed)

f ′(b) = 2(y−bx)(−x)

= −2x(y−bx)

= (−2xy)+ (2x2)b

5 Applications of differentiation

5.1 Tracking the sign of the derivative

If f is a function, then the sign of it’s
derivative,f ′ , indicates whetherf increas-
ing ( f ′ > 0), decreasing (f ′ < 0) or f ′ can
be zero at points wheref has a maximum,
minimum or a saddle point.
If f ′(x) > 0 for x < x0, f ′(x0) = 0 and

f ′(x)< 0 forx> x0 then f has a maximum
at x0
If f ′(x) < 0 for x < x0, f ′(x0) = 0 and

f ′(x)> 0 for x> x0 then f has a minimum
at x0
If f ′(x) > 0 for x < x0, f ′(x0) = 0 and

f ′(x) > 0 for x < x0 then f has a saddle
point atx0
If f ′(x) < 0 for x < x0, f ′(x0) = 0 and

f ′(x) < 0 for x < x0 then f has a saddle
point atx0

Example 1:

If f is a function such that it’s derivative

f ′(x) = (x−1)(x−2)(x−3)(x−4),

then applying the above criteria for maxima and minima, we see that f has maxima at 1 and 3 andf has
minima at 2 and 4.

5.2 Describing extrema

x0 with f ′(x0) = 0 corresponds to a max-

imum, if f ′′(x0)< 0

x0 with f ′(x0) = 0 corresponds to a mini-

mum, if f ′′(x0) > 0

If f ′(x0) = 0 corresponds to a maximum, then the derivative is decreasing and the second derivative can
not be positive, (i.e.f ′′(x0)≤ 0). In particular, if the second derivative is strictly negative, (f ′′(x0)< 0),
then we are assured that the point is indeed a maximum, and nota saddle point.

If f ′(x0) = 0 corresponds to a minimum, then the derivative is increasing and the second derivative can
not be negative, (i.e.f ′′(x0)≥ 0).

If the second derivative is zero, then the point may be a saddle point, as happens withf (x) = x3 atx= 0.
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5.3 The likelihood function

Recall that the probability mass function
(p.m.f) is a function, typically denotedp
sop(x) gives the probability of a given out-
come,x, of an experiment, based on some
parameter. We often write,
p(x) = P[X = x]
when we are going to take a sample of in-
dependent measurements, all fromp, then
the joint probability of a given set of num-
bers is,
p(x1) · p(x2) · p(x3) . . .p(xn)
Suppose each probability includes same
parameterθ, then this is typically written,
pθ(x1), . . .pθ(xn)
Now consider the set of outcomes
x1,x2 . . .,xn from the experiment. We can
now take the probability of this outcome
as a function of the parameters.
Lx(θ) = pθ(x1), . . .pθ(xn)
This is thelikelihood function and we of-
ten seek to maximize it given outcomes
from an experiment.

Recall that the probability mass function (p.m.f) is the function of p and p(x) gives the probability of a
given outcome of an experiment, based on same parameter. We often write,

P(x) = P[X = x]

when we are going to take a sample of independent measurements, all from p, then the joint probability
of a given set of number is,

p(x1) · p(x2) · p(x3) . . . p(xn)

Suppose each probability includes same parameterθ, then this is typically written,

pθ(x1), . . . pθ(xn)

Now consider the set of outcomesx1,x2 . . . ,xn from the experiment. We can now take the probability of
this outcome as a function of the parameters.

Lθ = pθ(x1), . . . pθ(xn)

This is thelikelihood function .

Suppose we toss a biased coinn independent times and obtain x heads, we know the probability of
obtaining x heads is,
(n

x

)

px(1− p)n−x.

The parameter of interest is p and the likelihood function is,

L(p) =
(n

x

)

px(1− p)n−x. If p is unknown we sometimes wish to maximize this function with respect to
p in order to estimate thereal probabilityp.

5.4 Plotting the likelihood <Chiara>

5.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.fpθ,

then the valuêθ which gives the maximum
of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator
(MLE) of θ
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If L is a likelihood function for a p.m.fpθ, then the valuêθ which gives the maximum of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator ofθ

If x is the number of heads fromn independent tosses of a coin, the likelihood function is;

Lx(p) =

(

n
x

)

px(1− p)n−x

Maximizing of this is equivalent to maximizing the logarithm of the likelihood, since logarithmic func-
tions are increasing. The log-likelihood can be written as;

ln(L(p)) = ln

(

n
x

)

+ xln(p)+ (n− x) ln(1− p).

To find possible maxima , we need to differentiate this formula and set the derivative to zero

0= dl(p)
dp = 0+ x

p +
n−x
1−p(−1)

0= p(1− p) (x)p − p(1− p) n−x
1−p

0= (1− p)x− p(n− x)

0= x− px− pn+ px= x− pn

So

0= x− pn

p= x
n is the extremum and we can write

p̂= x
n for the MLE

5.6 Least squares estimation

Least squares: Estimate the parametersθ
by minimizing

n
∑
i=1

(yi −gi (θ))
2

Suppose we have a model linking data to parameters. In general we are predictingyi asgi (θ).

In this case it makes sense to estimate parametersθ by minimizing

n

∑
i=1

(yi −gi(θ))2.

Example 1: One may predict numbers,xi , as a mean,µ, plus error. Consider the simple modelxi =
µ+ εi , whereµ is an unknown parameter (constant) andεi is the error in measurement when obtaining
the i’th observations,xi , i = 1, . . . ,n.
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A natural method to estimate the parameter is to minimize thesquared deviations

min
µ

n

∑
i=1

(x−µ)2 .

It is not hard to see that the ˆµ that minimizes this is the mean:

µ̂= x̄.

Example 2: One also commonly predicts datay1, · · · ,yn with values on straight line, i.e. withα+βxi ,
wherex1, . . . ,xn are fixed numbers.

This leads to the regression problem of finding those parameter values,α̂ and β̂, which give the best
fitting straight line in the sense that of ordinary least squares:

min
α,β

∑ (yi − (α+βxi))
2

Example 3: As a general exercise in finding the extrema of a function, let’s look at the functionf (θ) =
∑n

i=1(xiθ−3)2 wherexi are some constants. We wish to find theθ that minimizes this sum. We simply
differentiate w.r.t.θ to obtain f ′(θ) = ∑n

i=12(xiθ−3)x1 = 2∑n
i=1x2

i θ−2∑n
i=13xi . Thus

f ′(θ) = 2θ
n

∑
i=1

x2
i −2

n

∑
i=1

3xi = 0

⇔ θ =
∑n

i=13xi

∑n
i=1x2

i

.

6 Integrals and probability density functions

6.1 Area under a curve

x

y

a b

f(x)=c

area=c*(b−a)

x

y

a

a f(x)=x

area=1/2 a2

x

y

a b

f(x)=x

area=1/2 b2−1/2 a2

Figure 5: Example 1, 2 and 3

The area under a curve between x=a and
x=b (for a positive function) is called the
integral of the function.

The area under a curve between x=a and x=b (for a positive function) is called the integral of the function
denoted:

∫ b
a f (x)dx when this exists.

20



6.2 The antiderivative

Given a functionf , if there is another func-
tion F such thatF ′ = f , we say thatF is
the antiderivativeof f . For a functionf
the antiderivative is denoted by

∫
f dx.

Example 1
∫

xndx= 1
n+1xn+1.

Example 2
∫

exdx= ex.

Example 3
∫ 1

xdx= ln(x).

Example 4
∫

2xex2
dx= ex2

.

6.3 The fundamental theorem of calculus

The fundamental theorem of calculus
states: The area under the graph of the
function f on the interval[a,b] is equal
to the difference of the values of its an-
tiderivative ata and b. That is, if F is
the antiderivative off , then the area un-
der the graph off on the interval[a,b] is
F(b)−F(a). This difference is often writ-

ten as
∫ b
a f dx or [F(x)]ba.

Example 1

The area under the graph ofxn between 0 and 3 is
∫ 3

0 xndx= [ 1
n+1xn+1]30 =

1
n+13n+1− 1

n+10n+1 = 3n+1

n+1

Example 2

The area under the graph ofex between 3 and 4 is
∫ 4

3 exdx= [ex]43 = e4−e3

Example 3

The area under the graph of1
x between 1 anda is

∫ a
1

1
xdx= [ln(x)]a1 = ln(a)− ln(1) = ln(a).

6.4 Density functions

If X is a random variable such that

P(a≤ X ≤ b) =

b∫

a

f (x)dx,

for some functionf which satisfiesf (x) ≥ 0 for all x and
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x

f(
x) 1

1x

The probability density function (p.d.f.)
and the cumulative distribution function
(c.d.f.).

∞∫

−∞

f (x)dx= 1

then f is said to be a probability density function (p.d.f.) forX.

The function

F(x) =

x∫

−∞

f (t)dt

is the cumulative distribution function (c.d.f.).

Example 1: Consider a random variableX from the uniform distribution, denoted byX ∼U(0,1). This
distribution has density

f (x) =

{

1 if 0 ≤ x≤ 1
0 e.w.

The cumulative distribution function is given by

P[X ≤ x] =

x∫

−∞

f (t)dt =







0 if x< 0
x if 0 ≤ x≤ 1
1

Example 2: SupposeX ∼ P(λ), where X may denote the number of events per unit time. The p.m.f.
of X is described byp(x) = P[X = x] = e−λ λx

x! for x = 0,1,2, .... Consider now the waiting time, T,
between events, or simply until the first event. Consider theeventT > t for some number t>o. If
X ∼ p(λ) denotes the number of events per unit time, then letXt denote the number of events during the
time period for 0 through t. The it is natural to assume

Xt ∼ P(λt) and it follows thatT > t if and only if Xt = 0 and we obtainP[T > t] = P[Xt = 0] = e−λt . It
follows that the c.d.f. of T isFT(t) = P[T ≤ t] = 1−P[T > t] = 1−e−λt for t > 0.

The p.d.f. of T is thereforefT(t) = F ′
T(t) =

d
dt FT(t) = d

dt (1−e−λt = 0−e−λt ∗ (−λ) = λe−λt for t ≥ 0
and fT(t) = 0 for t = 0.

This resulting densityf (t) =

{

λe−λt for t ≥ 0
0 for t < 0

describes the exponential distribution.

This distribution has expected valueE[T] =
∞∫

−∞
t f (t)dt =

∞∫
0

tλe−λtdt
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We setu= λt anddu= λdt

∫
ue−udu= 1

λ

∞∫
0

ue−udu= 1
λ







∞∫
0

1 ·e−udu

[−ue−u ]∞0

=

[

1
λ
(−e−u)

]∞

0
−0=

1
λ

6.5 Probabilities in R: The normal distribution

R has functions to compute values of prob-
ability density functions (p.d.f.) and cu-
mulative distribution functions (c.m.d.) for
most common distributions.

The p.d.f. for the normal distribution is

p(t) =
1√
2π

e−
t2
2

The c.d.f. for the normal distribution is

Φ(x) =
x∫

−∞

1√
2πe−

t2
2 dt

dnorm() gives the value of the normal p.d.f.

pnorm() gives the value of the normal c.d.f.
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Figure 6: Top: The probability density function for the normal distribution. Bottom: The cumulative distribution function for the normal distribution.

6.6 Some rules of integration

Example 1

By integration by parts we obtain
∫

ln(x)xdx= 1
2x2 ln(x)−∫ 1

2x2 · 1
xdx= 1

2x2 ln(x)−∫ 1
2xdx= 1

2x2 ln(x)−
1
4x2.

Example 2
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Consider
∫ 2

1 2xex2
dx. By settingx= g(t) =

√
t we obtain

∫ 2

1
2xex2

dx=
∫ 4

1
2
√

tet 1

2
√

t
dt =

∫ 4

1
etdt = e4−e.

The two most common "tricks" applied in integration are a) integration by parts and b) integration by
substitution.

a) Integration by parts

Since( f g)′ = f ′g+ f g′, by integrating both sides of the equation we obtain

f g=
∫

f ′gdx+
∫

f g′dx⇔
∫

f g′dx= f g−
∫

f ′gdx.

b) Integration by substitution

Consider the definite integral
∫ b

a f (x)dx and letg be a one-to-one, differential function from the interval
(c,d) to (a,b). Then ∫ b

a
f (x)dx=

∫ d

c
f (g(y))g′(y)dy.

7 Principles of programming

7.1 Modularity

Modularity is designing a system that is di-
vided into a set of functional units (named
modules) that can be composed into a
larger application. So any programming
project could be split into logical modules
piece of codes which become together.

Typically input, initialization, analysis and output commands are grouped into separate parts.

Example
Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set115.dat", header=T)


ols<- 
("le", "osl")

Analysis

Mn<-mean(dat[, 
ols[1℄℄)

Output

print (Mn)
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7.2 Modularity and functions

In many cases groups of commands can be
collected together into a function.

Typically a project has several such functions.

Example:
Suppose you want to plot the weight vs. length for several datasets in
http://hi.is/ gunnar/kennsla/alsm/data
A function can then be set up with the number as an argument:

plotwtle<-fun
tion (fnum){

fname<-paste(

"http://hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")


at("The URL B", fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("Data from file number", fnum)

plot(dat$le,dat$osl,main=ttl)

}

Now call this with

plotwtle(105)

7.3 Modularity and files

It is advisable to split larger projects into
several manageable files.

Once a project reaches more than five lines of codes, these should be stored in one or more separate
files. In order to combine these files which are having different commands, a single “source” command
file can be created.

Typically function definitions are stored in separate files,so one may have several separate files like;

"input.r" "function.r" "analysis.r" "output.r"

While developing the analysis, the data would only be read once with

source(“input.r”)

The goal of this practice is to end up with a set of files which are completely self-contained, so one can
start with an empty R session and give only the commands like

source (“input.r”) source (“functions.r”) source (“analysis.r”)

Further, this ensures the repeatability.

Example:
For a given project “input”, “functions” “analysis” and “output” files can be created as below.

input.r
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dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set115.dat", header=T)

functions.r

plotwtle<-fun
tion(fnum){

fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")


at("The URL is",fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("My data set was",fnum)

plot(dat$le,dat$osl,main=ttl,xlab="Length(
m)",ylab="Live weight (g)")

}

output.r

sour
e("fun
tions.r")

for(i in 101:150){

fnam<-paste("plot",i,".pdf",sep="")

pdf(fnam)

plotwtle(i)

dev.off()

}

These files can be executed with source commands as below;

source (“input.r”)

source (“functions.r”)

source (“output.r”)

7.4 Structuring an R program

In order to control for organization, when larger projects are undertaken, they need to be split into
manageable pieces described as modules, functions, and files. In order to link these files that hold
different commands, one should use the "source" commands together in one file.

Example:

The file "run.r" could contain the sequence of commands:

source("setup.r")

source("analysis.r")

source("plot.r")

The benefits of this type of organization is that within the R interface there will not be 1000 lines of
code increasing the likelihood of misplacement or loss of methodology. In addition, this permits one to
edit in the file and to add comments.
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7.5 Loops, for

If a piece of code is to be run repeatedly,
the for-loop is normally used. This is of the
form: for(index in sequence) commands

Example 1:
To add numbers we can do e.g.

tot <- 100

for(i in 1:100){

tot <- tot + i

}


at ("the sum is ", tot, "\n")

Example 2:
Define the plot function

plotwtle <- AS BEFORE

To plot several of these we can use a sequence:

plot wtle(101)

plot wtle(102)

.

.

.

or a loop

for (i in 101:150){

fname<- paste("plot", i, ".pdf", sep="")

pdf(fname)

plotwtle(i)

dev.off()

}

7.6 The if and ifelse commands

The "if" statement is used to conditionally
execute statements.
The "ifelse" statement conditionally re-
places elements of a structure.

Example 1:
If we want to computexx for x-values in the range 0 through 5, we can use

xlist<-seq(0,5,0.01)
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y<-NULL

for(x in xlist){

if(x==0){

y<-
(y,1)

}else{

y<-
(y,x**x)

}

}

Example 2:

x<-seq(0,5,0.01)

y<-ifelse(x==0,1,x^x)

Example 3:

dat<-read.table ("file")

dat<-ifelse (dat==0,0.01,dat)

Example 4:

x<-ifelse (is.na(x),0,x)

7.7 Indenting

Code should be properly indented!

That is, functions, for-loops, if-statements should always be indented.

Example:
.....

7.8 Comments

All code should contain informative com-
ments.

####################
####SETUP DATA####
####################

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length
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y<-log(dat$wt) #log-transformation of weight

######################
####THE ANALYSIS####
######################

8 The Central Limit Theorem and related topics

8.1 The Central Limit Theorem
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Figure 7: The standard normal density

If measurements are obtained indepen-
dently and come from a process with fi-
nite variance, then the distribution of the
mean of these data tends towards a Gaus-
sian (normal) distribution as the sample
size increases.

The Central Limit Theorem states that ifX1,X2, . . . are i.i.d. random variables with meanµ and variance
σ2, then the distribution of̄Xn := X1+···+Xn

n tends towards a normal distribution. The random variableX̄n

can be approximated byN(µ,σ2/n).

The Gaussian distribution is given by the p.d.f.

ϕ(z) =
1√
2π

e
z2
2

for z∈R

The distribution has an expected value of zero;

µ=

∫
zϕ(z)dz= 0

and a variance of
σ2 =

∫
(z−µ)2ϕ(z)dz= 1

The general normal distribution, with arbitrary meanµ and varianceσ2 has the p.d.f.

f (y) =
1√
2πσ

e
−(y−µ)2

2σ2

Example 1:
If we collect measurements on waiting times, typically froman exponential distribution with density

λe−λt , t > 0
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then the mean of several such waiting times will tend to have anormal distribution.

Example 2:
We are often interested in computing

w=
x̄−µ0

s√
n

which has a t-distribution if thexi are independent outcomes from a normal distribution. Ifn is large
andσ2 is finite thenw will look as it came from a normal distribution.

8.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of
0 and 1 values (counts of failures = 0 and
successes =1) so a simple, single binomial
outcome will correspond to coming from
a normal distribution if the count is large
enough.

Consider the binomial probabilities:

p(x) =

(

n
x

)

px(1− p)n−x

for x= 0,1,2,3, · · · ,n

Wheren is a non-negative integer. Supposep is a small positive number, specifically consider a sequence
of decreasingp-values, specified withpn =

λ
n and consider the behavior of the probability asn→ ∞

we obtain:

(

n
x

)

px
n(1− pn)

n−x =
n!

x!(n− x!)

(

λ
n

)x(

1− λ
n

)n−x

(1)

=
n(n−1)(n−2) · · ·(n− x+1)

x!

λ
n

x

(

1− λ
n

)x

(

1− λ
n

)n

(2)

=
n(n−1)(n−2) · · ·(n− x+1)

x!nx

λx
(

1− λ
n

)x

(

1− λ
n

)n

(3)

(4)

Notice thatn(n−1)(n−2)···(n−x+1)
nx → 1 asn→ ∞. Also notice that(1− λ

n)
x → 1 asn→ ∞. Also

lim
n→∞

(

1− λ
n

)

= e−λ

and it follows that

lim
n→∞

(

n
x

)

px
n(1− pn)

n−x =
e−λλx

x!
,x= 0,1,2, · · · ,n

and hence the binomial probabilities may be approximated with the corresponding Poisson.
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Example 1:

The mean of a binomial (n,p) variable isµ= n · p and the variance isσ2 = np(1− p)

The R command pbinom(q,n,p) calculates the probability of qsuccesses in n trials assuming that the
probability of a success is p in each trial (binomial distribution). The normal approximation of this dis-
tribution can be calculated with pnorm(q,mu,sigma) which becomes pnorm(q,n*p,sqrt(n*p(1-p)). Three
numerical examples (note that pbinom and pnorm give similarvalues for large n):

> pbinom(3,10,0.2)

[1℄ 0.8791261

> pnorm(3,10*0.2,sqrt(10*0.2*(1-0.2)))

[1℄ 0.7854023

> pbinom(3,20,0.2)

[1℄ 0.4114489

> pnorm(3,20*0.2,sqrt(20*0.2*(1-0.2)))

[1℄ 0.2880751

> pbinom(30,200,0.2)

[1℄ 0.04302156

> pnorm(30,200*0.2,sqrt(200*0.2*(1-0.2)))

[1℄ 0.03854994

Example 2:

We are often interested in computingw= x̄−µ
s/
√

n

which has a t distribution if thexi are independent outcomes from a normal distribution. If n islarge and
σ2 is finite, this will look as if it comes from a normal distribution.

The numerical examples below demonstrate how the t distribution approaches the normal distribution.

> qnorm(0.7)

[1℄ 0.5244005

#This is the value whi
h gives the 
umulative probability of p=0.7 for a n~(0,1)

> qt(0.7,2)

[1℄ 0.6172134

#The value, whi
h gives the 
umulative probability of p=0.7 with n=2 for the t-distribution.

> qt(0.7,5)

[1℄ 0.5594296

> qt(0.7,10)

[1℄ 0.541528

> qt(0.7,20)

[1℄ 0.5328628

> qt(0.7,100)

[1℄ 0.5260763

8.3 Monte Carlo simulation <Warsha>

Example:

Suppose our measurements come from an exponential distribution and we want to compute
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Figure 8: A simulated set oft-values based on data from an exponential distribution.

If we know an underlying process we can
simulate data from the process and evalu-
ate the distribution of any quantity based
on such data.

t =
x−µ
s/
√

n

but we want to know the distribution of those whenµ is the true mean.

For instance,n= 5 andµ= 1, we can simulate (repeatedly)x1, . . . ,x5 and compute a t-value for each.
The following R commands can be used for this:

> library(MASS)

> n<-5

> mu<-1

> lambda<-1

> tve
<-NULL

> for(sim in 1:10000){

> x<-rexp(n,lambda)

> xbar<-mean(x)

> s<-sd(x)

> t<-(xbar-mu)/(s/sqrt(n))

> tve
<-
(tve
,t)

> }

#then do...

> truehist(tve
) #truehist gives a better histogram

> sort(tve
)[9750℄

> sort(tve
)[250℄
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9 Miscellanea

9.1 Simple probabilities in R

R has functions to compute probabilities
based on most common distributions.
If X is a random variable with a known
distribution, then R can typically compute
values of the c.d.f. or:

F(x) = P[X ≤ x]

newpage inserted in example
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Example 1

If X ∼ b(n, p) has binomial distribution, i.e.

P(X = x) =

(

n
x

)

px(1− p)n−x,

then cumulative probabilities can be computed with pbinom,e.g.

>pbinom(5,10,0.5)

gives
P[X ≤ 5] = 0.623

where

X ∼ b(n= 10, p=
1
2
)

Further,

>pbinom(10,10,0.5)

[1℄ 1

and

>pbinom(0,10,0.5)

[1℄ 0.0009765625

or 1
2

10
= 1

1024 (
1
2 ∗ 1

2 ∗ .....∗ 1
2 = 1

210 =
1

2024)

It is sometime of interest to computeP[X = x] in this case, and this is given by the dbinom function, e.g.

>dbinom(1,10,0.5)

[1℄ 0.009765625

or 10
1024
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Example 2

SupposeX has a uniform distribution between 0 and 1, i.e.X ∼U(0,1).
Then the punif function will return probabilities of the form

P[X ≤ x] =
∫ x

−∞
f (t)dt =

∫ x

0
f (t)dt

where f (t) = 1 if 0 ≤ t ≤ 1 and f (t) = 0 otherwise. For example:

>punif(0.75)

[1℄ 0.75

To obtainP[a≤ X ≤ b], we use punif twice, e.g.

>punif(0.75)-punif(0.25)

[1℄ 0.5
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Figure 9: Example 2

newpage inserted

36



newpage inserted

9.2 Computing normal probabilities in R

To compute probabilitiesX ∼ n(µ,σ2) is
usually transformed, since we know that

Z :=
X−µ

σ
∼ (0,1)

The probabilities can then be computed
for eitherX or Z with the pnorm function
in R.

SupposeX has a normal distribution with meanµ and variance

X ∼ n(µ,σ2)

then to compute probabilities,X is usually transformed, since we know that

Z :=
X−µ

σ
∼ (0,1)

and the probabilities can be computed for eitherX or Z with the pnorm function.

Example 1:
If Z ∼ n(0,1) then we can e.g. obtainP[Z ≤ 1.96] with

> pnorm(1.96)

[1℄ 0.9750021

> pnorm(0)

[1℄ 0.5

> pnorm(1.96)-pnorm(1.96)

[1℄ 0

> pnorm(1.96)-pnorm(-1.96)

[1℄ 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 2:
If X ∼ n(42,32) then we can compute probabilites either by transforming

P[X ≤ x] = P[
X−µ

σ
≤ x−µ

σ
]

= P[Z ≤ x−µ
σ

]

and calling pnorm with the computed valuez= x−µ
σ , or call pnorm withx and specifyµ andσ.

To computeP[X ≤ 48], either setz= (48−42)/3= 2 and obtain

> pnorm(2)

[1℄ 0.9772499
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or specifyµ andσ

> pnorm(42,42,3)

[1℄ 0.5
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9.3 Introduction to hypothesis testing

If we have a random samplex1, . . . ,xn from a normal distribution, then we consider them to be outcomes
of independent random variablesX1, . . . ,Xn where

Xi ∼ n(µ,σ2) Typically, µ andσ2 are unknown but assume for now thatσ2 is known.

Consider the hypothesis

H0 : µ= µ0 vs. H1 : µ> µ0

whereµ0 is a specified number.

Under the assumption of independence, the sample mean

x= 1
n ∑n

i=1xi

is also an observation from a normal distribution, with meanµ but a smaller variance.

Specifically,x is the outcome of

X = 1
n ∑n

i=1Xi

and

X ∼ n(µ, σ2

n )

so the standard deviation of X isσ√n,

so the appropriate error measure forx is f racσ
√

n, whenσ is unknown.

If H0 is true, then

z := x−µ0
σ/

√
n

is an observation from ann∼ n(0,1) distribution, i.e. an outcome of

Z = X−µ0
σ/

√
n

whereZ ∼ n(0,1) whenH0 is correct. It follows that e.g.P[|Z| > 1.96] = 0.05 and if we observe
|Z|> 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is quantile of the normal distribution and we can obtain other quantiles
with the pnorm function, e.g. qnorm(0.975) gives 1.96.
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