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Preface
 

I decided to write this book in order to convince the next generation of students and
researchers that data analysis is a powerful tool for answering many important and

interesting questions about societies and human behavior. Today’s societies confront

a number of challenging problems, including those in economics, politics, education,

and public health. Data-driven approaches are useful for solving these problems, and

we need more talented individuals to work in this area. I hope that this book will

entice young students and researchers into the fast-growing field of quantitative social

science.

This book grew out ofthe two undergraduate courses I have taught at Princeton over

the last several years: POL 245: Visualizing Data and POL 345: Quantitative Analysis

and Politics. While teaching these courses, I realized that students need to be exposed

to exciting ideas from actual quantitative social science research as early in the course

as possible. For this reason, unlike traditional introductory statistics textbooks, this

book features data analysis from the very beginning, using examples directly taken

from published social science research. The book provides readers with extensive data

analysis experience before introducing probability and statistical theories. The idea is

that by the time they reach those challenging chapters, readers will understand why

those materials are necessary in order to conduct quantitative social science research.

The book starts with a discussion of causality in both experimental and obser—

vational studies using the examples of racial discrimination and get-out-the-vote

campaigns. We then cover measurement and prediction as two other primary goals

of data analysis in social science research. The book also includes a chapter on the

analysis of textual, network, and spatial data, giving readers a glimpse of modern

quantitative social science research. Probability and statistical theories are introduced
after these data analysis chapters. The mathematical level of the book is kept to

a minimum, and neither calculus nor linear algebra is used. However, the book

introduces probability and statistical theories in a conceptually rigorous manner so

that readers can understand the underlying logic.

This book would not exist without support from a number of individuals. I would

like to thank my colleagues at Princeton, especially those in the Dean of the College’s

office and the McGraw Center for Teaching and Learning, for their generous support.

I was one of the first beneficiaries of the 250th Anniversary Fund for Teaching

Innovation in Undergraduate Education. I thank Liz Colagiuri, Khristina Gonzalez,

Lisa Herschbach, Clayton Marsh, Diane McKay, and Nic Voge, who trusted my

ambitious vision of how introductory data analysis and statistics should be taught.
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They allowed me to design a course at the Freshman Scholars Institute (PSI), and many

of the ideas in this book were born there. The PSI is a great diversity initiative for
first-generation college students, and I am proud to be a part of it. I am also grateful
to Princeton University administrators for their generous support for my teaching
initiatives. They include Jill Dolan, Chris Eisgruber, Dave Lee, Nolan McCarty, Debbie
Prentice, and Val Smith.

I especially thankmy coinstructors who helped me develop the materials included in

this book. James Lo, Jonathan Olmsted, and Will Lowe made significant contributions
to POL 245 taught at FSI. I was fortunate to have an amazing group ofgraduate students

who served as teaching assistants for my courses. They include Alex Acs, Iaquilyn
Waddell Boie, Will Bullock, Munji Choi, Winston Chou, Elisha Cohen, Brandon de
la Cuesta, Ted Enamorado, Matt Incantalupo, Tolya Levshin, Asya Magazinnik, Carlos
Velasco Rivera, Alex Tarr, Bella Wang, and Teppei Yamamoto, several ofwhom won

teaching awards for their incredible work. Evan Chow and Hubert Iin contributed to
the creation of swirl exercises. Other students, including Alessia Azermadhi, Naoki

Egami, Tyler Pratt, and Arisa Wada, helped me develop materials at various stages of
this book project.

During the production phase ofthis book, the following individuals gave me detailed
comments and suggestions that have significantly improved the presentation: Iaquilyn

Waddell Boie, Lauren Konken, Katie McCabe, Grace Rehaut, Ruby Shao, and Tyler

Simko. Without their contributions, this book would have looked quite different. I also

thank at least several hundred students at Princeton and many other institutions who
used an earlier version of this book. Their extensive feedback has helped me revise the

manuscript. I also thank Neal Beck, Andy Hall, Ryan Moore, and Marc Ratkovic for

their comments on earlier versions of the manuscript. I wish to thank Eric Crahan and

Brigitte Pelner of Princeton University Press for guiding me through the publication
process.

Several people had a significant impact on how this book is written. My graduate

school adviser, Gary King, taught me everything, from how to conduct quantitative
social science research to how to teach statistics to social scientists. Although more
than a decade has passed since I left Harvard, Gary has always been someone to whom

I can turn for advice and support. Three ofmy Princeton colleagues—Christina Davis,

Amaney Jamal, and Evan Liebenman—formed the team “old dogs learning new tricks”
and took the three-course graduate quantitative methods sequence. Their willingness
to patiently sit through my lectures gave me new motivation. They also set a great
example for young researchers that even senior scholars should continue learning.
Interactions with them during those classes gave me new insights about how statistical
methods should be taught.
My deepest gratitude goes to my family. My mother, Fumiko, my father, Takashi,

and my brother, Mineki, have always encouraged me to pursue my dreams regardless
of what they are. Although we now live on opposite sides of the globe, every day I

feel lucky to have such a wonderful family. My parents—in-law, Al and Carole Davis,

have been supportive ofme since the mid-199OS when I first came to the United States
without being able to speak or understand much English. They have always made me

feel at home and part of their family. My two wonderful children, Keiji and Misaki,

have been a source ofjoy and happiness. However difficult my work is, their beautiful
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smiles remind me what the most important things are in my life. Finally, I dedicate
this book to my wife, Christina, who has been the best partner and a constant source

of inspiration for more than two decades. Christina encouraged me to write this book,

and as always I am glad to have followed her advice. Even though one never observes

counterfactuals, I can say with confidence that I have lived and will continue to live life

to the fullest because of our partnership.

Kosuke Imai

November 2016

Princeton, New Jersey
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Chapter 1
 

Introduction

In God we trust; all others must bring data.

——-Wil|iam Edwards Deming

Quantitative social science is an interdisciplinary field encompassing a large number

of disciplines, including economics, education, political science, public policy, psy—

chology, and sociology. In quantitative social science research, scholars analyze data

to understand and solve problems about society and human behavior. For example,
researchers examine racial discrimination in the labor market, evaluate the impact

of new curricula on students’ educational achievements, predict election outcomes,

and analyze social media usage. Similar data-driven approaches have been taken

up in other neighboring fields such as health, law, journalism, linguistics, and even

literature. Because social scientists directly investigate a wide range ofreal-world issues,

the results of their research have enormous potential to directly influence individual

members of society, government policies, and business practices.
Over the last couple of decades, quantitative social science has flourished in a

variety of areas at an astonishing speed. The number of academic journal articles

that present empirical evidence from data analysis has soared. Outside academia,

many organizations—including corporations, political campaigns, news media, and

government agencies—increasingly rely on data analysis in their decision-making

processes. Two transformative technological changes have driven this rapid growth of

quantitative social science. First, the Internet has greatly facilitated the data revolution,
leading to a spike in the amount and diversity of available data. Information sharing

makes it possible for researchers and organizations to disseminate numerous data sets

in digital form. Second, the computational revolution, in terms of both software and

hardware, means that anyone can conduct data analysis using their personal computer

and favorite data analysis software.
As a direct consequence of these technological changes, the sheer volume of data

available to quantitative social scientists has rapidly grown. In the past, researchers

largely relied upon data published by governmental agencies (e.g., censuses, election

outcomes, and economic indicators) as well as a small number of data sets collected

by research groups (e.g., survey data from national election studies and hand-coded

data sets about war occurrence and democratic institutions). These data sets still
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play an important role in empirical analysis. However, the wide variety of new
data has significantly expanded the horizon of quantitative social science research.
Researchers are designing and conducting randomized experiments and surveys on
their own. Under pressure to increase transparency and accountability, government
agencies are making more data publicly available online. For example, in the United
States, anyone can download detailed data on campaign contributions and lobbying
activities to their personal computers. In Nordic countries like Sweden, a wide range

of registers, including income, tax, education, health, and workplace, are available for
academic research.
New data sets have emerged across diverse areas. Detailed data about consumer

transactions are available through electronic purchasing records. International trade

data are collected at the product level between many pairs of countries over sev-

eral decades. Militaries have also contributed to the data revolution. During the
Afghanistan war in the 20005, the United States and international forces gathered
data on the geo-location, timing, and types of insurgent attacks and conducted data
analysis to guide counterinsurgency strategy. Similarly, governmental agencies and

nongovernmental organizations collected data on civilian casualties from the war.

Political campaigns use data analysis to devise voter mobilization strategies by targeting

certain types of voters with carefully selected messages.
These data sets also come in varying forms. Quantitative social scientists are

analyzing digitized texts as data, including legislative bills, newspaper articles, and

the speeches of politicians. The availability of social media data through websites,
blogs, tweets, SMS messaging, and Facebook has enabled social scientists to explore
how people interact with one another in the online sphere. Geographical information

system (GIS) data sets are also widespread. They enable researchers to analyze the

legislative redistricting process or civil conflict with attention paid to spatial loca-

tion. Others have used satellite imagery data to measure the level of electrification
in rural areas of developing countries. While still rare, images, sounds, and even

videos can be analyzed using quantitative methods for answering social science

questions.

Together with the revolution of information technology, the availability of such

abundant and diverse data means that anyone, from academics to practitioners, from

business analysts to policy makers, and from students to faculty, can make data—driven

discoveries. In the past, only statisticians and other specialized professionals conducted

data analysis. Now, everyone can turn on their personal computer, download data

from the Internet, and analyze them using their favorite software. This has led to
increased demands for accountability to demonstrate policy effectiveness. In order to

secure funding and increase legitimacy, for example, nongovernmental organizations

and governmental agencies must now demonstrate the efficacy of their policies and
programs through rigorous evaluation.

This shift towards greater transparency and data—driven discovery requires that

students in the social sciences learn how to analyze data, interpret the results, and
effectively communicate their empirical findings. Traditionally, introductory statistics
courses have focused on teaching students basic statistical concepts by having them

conduct straightforward calculations with paper and pencil or, at best, a scientific

calculator. Although these concepts are still important and covered in this book, this
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traditional approach cannot meet the current demands of society. It is simply not

sufficient to achieve “statistical literacy” by learning about common statistical concepts

and methods. Instead, all students in the social sciences should acquire basic data

analysis skills so that they can exploit the ample opportunities to learn from data and

make contributions to society through data-driven discovery.

The belief that everyone should be able to analyze data is the main motivation for

writing this book. The book introduces the three elements of data analysis required

for quantitative social science research: research contexts, programming techniques,

and statistical methods. Any of these elements in isolation is insufficient. Without

research contexts, we cannot assess the credibility of assumptions required for data

analysis and will not be able to understand what the empirical findings imply. Without

programming techniques, we will not be able to analyze data and answer research ques-

tions. Without the guidance of statistical principles, we cannot distinguish systematic

patterns, known as signals, from idiosyncratic ones, known as noise, possibly leading

to invalid inference. (Here, inference refers to drawing conclusions about unknown

quantities based on observed data.) This book demonstrates the power of data analysis

by combining these three elements.

This book is written for anyone who wishes to learn data analysis and statistics for

the first time. The target audience includes researchers, undergraduate and graduate

students in social science and other fields, as well as practitioners and even ambitious

high-school students. The book has no prerequisite other than some elementary

algebra. In particular, readers do not have to possess knowledge of calculus or

probability. No programming experience is necessary, though it can certainly be

helpful. The book is also appropriate for those who have taken a traditional “paper-

and-pencil” introductory statistics course where little data analysis is taught. Through

this book, students will discover the excitement that data analysis brings. Those who

want to learn R programming might also find this book useful, although here the

emphasis is on how to use R to answer quantitative social science questions.

As mentioned above, the unique feature of this book is the presentation of pro-

gramming techniques and statistical concepts simultaneously through analysis of data

sets taken directly from published quantitative social science research. The goal is

to demonstrate how social scientists use data analysis to answer important questions

about societal problems and human behavior. At the same time, users of the book will

learn fundamental statistical concepts and basic programming skills. Most importantly,

readers will gain experience with data analysis by examining approximately forty

data sets.

The book consists of eight chapters. The current introductory chapter explains

how to best utilize the book and presents a brief introduction to R, a popular

open-source statistical programming environment. R is freely available for download

and runs on Macintosh, Windows, and Linux computers. Readers are strongly en-

couraged to use RStudio, another freely available software package that has numerous

features to make data analysis easier. This chapter ends with two exercises that are
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designed to help readers practice elementary R functionalities using data sets from
published social science research. All data sets used in this book are freely available for
download via links from http: / /press . princeton . edu/qss/. Links to other
useful materials, such as the review exercises for each chapter, can also be found on
the website. With the exception of chapter 5, the book focuses on the most basic
syntax of R and does not introduce the wide range of additional packages that are
available. However, upon completion of this book, readers will have acquired enough
R programming skills to be able to utilize these packages.

Chapter 2 introduces causality, which plays an essential role in social science
research whenever we wish to find out whether a particular policy or program changes
an outcome of interest. Causality is notoriously difficult to study because we must infer
counterfactual outcomes that are not observable. For example, in order to understand
the existence of racial discrimination in the labor market, we need to know whether an
African-American candidate who did not receive a job offer would have done so if they
were white. We will analyze the data from a well-known experimental study in which
researchers sent the résurnés of fictitious job applicants to potential employers after
randomly choosing applicants’ names to sound either African-American or Caucasian.
Using this study as an application, the chapter will explain how the randomization
of treatment assignment enables researchers to identify the average causal effect of
the treatment.

Additionally, readers will learn about causal inference in observational studies where

researchers do not have control over treatment assignment. The main application is a

classic study whose goal was to figure out the impact of increasing the minimum wage

on employment. Many economists argue that a minimum-wage increase can reduce

employment because employers must pay higher wages to their workers and are there-

fore made to hire fewer workers. Unfortunately, the decision to increase the minimum

wage is not random, but instead is subject to many factors, like economic growth,

that are themselves associated with employment. Since these factors influence which
companies find themselves in the treatment group, a simple comparison between those

who received treatment and those who did not can lead to biased inference.

We introduce several strategies that attempt to reduce this type of selection bias

in observational studies. Despite the risk that we will inaccurately estimate treatment

effects in observational studies, the results of such studies are often easier to generalize

than those obtained from randomized controlled trials. Other examples in chapter 2

include a field experiment concerning social pressure in get-out-the-vote mobilization.

Exercises then include a randomized experiment that investigates the causal effect

of small class size in early education as well as a natural experiment about political

leader assassination and its effects. In terms of R programming, chapter 2 covers logical
statements and subsetting.

Chapter 3 introduces the fundamental concept of measurement. Accurate mea-
surement is important for any data-driven discovery because bias in measurement

can lead to incorrect conclusions and misguided decisions. We begin by considering
how to measure public opinion through sample surveys. We analyze the data from a
study in which researchers attempted to measure the degree of support among Afghan

citizens for international forces and the Taliban insurgency during the Afghanistan
war. The chapter explains the power of randomization in survey sampling. Specifically,



1.1 Overview of the Book —

random sampling ofrespondents from a population allows us to obtain a representative

sample. As a result, we can infer the opinion of an entire population by analyzing one

small representative group. We also discuss the potential biases of survey sampling.

Nonresponses can compromise the representativeness of a sample. Misreporting poses

a serious threat to inference, especially when respondents are asked sensitive questions,

such as whether they support the Taliban insurgency.

The second half of chapter 3 focuses on the measurement of latent or unobservable

concepts that play a key role in quantitative social science. Prominent examples of such

concepts include ability and ideology. In the chapter, we study political ideology. We

first describe a model frequently used to infer the ideological positions of legislators

from roll call votes, and examine how the US Congress has polarized over time. We

then introduce a basic clustering algorithm, k-means, that makes it possible for us to

find groups of similar observations. Applying this algorithm to the data, we find that in

recent years, the ideological division within Congress has been mainly characterized by

the party line. In contrast, we find some divisions within each party in earlier years. This

chapter also introduces various measures of the spread of data, including quantiles,

standard deviation, and the Gini coefficient. In terms of R programming, the chapter

introduces various ways to visualize univariate and bivariate data. The exercises include

the reanalysis of a controversial same-sex marriage experiment, which raises issues of

academic integrity while illustrating methods covered in the chapter.

Chapter 4 considers prediction. Predicting the occurrence of certain events is

an essential component of policy and decision-making processes. For example, the

forecasting of economic performance is critical for fiscal planning, and early warnings

of civil unrest allow foreign policy makers to act proactively. The main application of

this chapter is the prediction of US presidential elections using preelection polls. We

show that we can make a remarkably accurate prediction by combining multiple polls

in a straightforward manner. In addition, we analyze the data from a psychological

experiment in which subjects are shown the facial pictures of unknown political

candidates and asked to rate their competence. The analysis yields the surprising result

that a quick facial impression can predict election outcomes. Through this example,

we introduce linear regression models, which are useful tools to predict the values of

one variable based on another variable. We describe the relationship between linear

regression and correlation, and examine the phenomenon called “regression towards

the mean,” which is the origin of the term “regression.”
Chapter 4 also discusses when regression models can be used to estimate causal

effects rather than simply make predictions. Causal inference differs from standard

prediction in requiring the prediction of counterfactual, rather than observed, out—
comes using the treatment variable as the predictor. We analyze the data from a

randomized natural experiment in India where randomly selected villages reserved

some ofthe seats in their village councils for women. Exploiting this randomization, we

investigate whether or not having female politicians affects policy outcomes, especially

concerning the policy issues female voters care about. The chapter also introduces

the regression discontinuity design for making causal inference in observational

studies. We investigate how much of British politicians’ accumulated wealth is due

to holding political office. We answer this question by comparing those who barely

won an election with those who narrowly lost it. The chapter introduces powerful but
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challenging R programming concepts: loops and conditional statements. The exercises
at the end of the chapter include an analysis of whether betting markets can precisely
forecast election outcomes.

Chapter 5 is about the discovery of patterns from data of various types. When
analyzing “big data,” we need automated methods and visualization tools to iden-
tify consistent patterns in the data. First, we analyze texts as data. Our primary
application here is authorship prediction of The Federalist Papers, which formed
the basis of the US Constitution. Some of the papers have known authors while

others do not. We show that by analyzing the frequencies of certain words in the
papers with known authorship, we can predict whether Alexander Hamilton or
James Madison authored each of the papers with unknown authorship. Second, we
show how to analyze network data, focusing on explaining the relationships among
units. Within marriage networks in Renaissance Florence, we quantify the key role
played by the Medici family. As a more contemporary example, various measures of

centrality are introduced and applied to social media data generated by US senators
on Twitter.

Finally in chapter 5, we introduce geo-spatial data. We begin by discussing the
classic spatial data analysis conducted by John Snow to examine the cause of the

1854 cholera outbreak in London. We then demonstrate how to visualize spatial data

through the creation of maps, using US election data as an example. For spatial—

temporal data, we create a series of maps as an animation in order to visually

characterize changes in spatial patterns over time. Thus, the chapter applies various

data visualization techniques using several specialized R packages.

Chapter 6 shifts the focus from data analysis to probability, a unified mathematical
model of uncertainty. While earlier chapters examine how to estimate parameters and

make predictions, they do not discuss the level of uncertainty in empirical findings, a

topic that chapter 7 introduces. Probability is important because it lays a foundation

for statistical inference, the goal of which is to quantify inferential uncertainty. We

begin by discussing the question of how to interpret probability from two dominant

perspectives, frequentist and Bayesian. We then provide mathematical definitions of

probability and conditional probability, and introduce several fundamental rules of
probability. One such rule is called Bayes’ rule. We show how to use Bayes’ rule and
accurately predict individual ethnicity using surname and residence location when no
survey data are available.

This chapter also introduces the important concepts of random variables and

probability distributions. We use these tools to add a measure ofuncertainty to election
predictions that we produced in chapter 4 using preelection polls. Another exercise

adds uncertainty to the forecasts of election outcomes based on betting market data.
The chapter concludes by introducing two fundamental theorems of probability: the

law of large numbers and the central limit theorem. These two theorems are widely

applicable and help characterize how our estimates behave over repeated sampling

as sample size increases. The final set of exercises then addresses two problems: the

German cryptography machine from World War II (Enigma), and the detection of
election fraud in Russia.

Chapter 7 discusses how to quantify the uncertainty of our estimates and pre-

dictions. In earlier chapters, we introduced various data analysis methods to find
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patterns in data. Building on the groundwork laid in chapter 6, chapter 7 thoroughly
explains how certain we should be about such patterns. This chapter shows how
to distinguish signals from noise through the computation of standard errors and
confidence intervals as well as the use of hypothesis testing. In other words, the chapter

concerns statistical inference. Our examples come from earlier chapters, and we focus

on measuring the uncertainty of these previously computed estimates. They include
the analysis of preelection polls, randomized experiments concerning the effects of

class size in early education on students’ performance, and an observational study

assessing the effects of a minimum—wage increase on employment. When discussing

statistical hypothesis tests, we also draw attention to the dangers ofmultiple testing and

publication bias. Finally, we discuss how to quantify the level of uncertainty about the

estimates derived from a linear regression model. To do this, we revisit the randomized
natural experiment of female politicians in India and the regression discontinuity

design for estimating the amount of wealth British politicians are able to accumulate

by holding political office.
The final chapter concludes by briefly describing the next steps readers might take

upon completion of this book. The chapter also discusses the role of data analysis in

quantitative social science research.

In this section, we explain how to use this book, which is based on the following

principle:

One can learn data analysis only by doing, not by reading.

This book is not just for reading. The emphasis must be placed on gaining experience

in analyzing data. This is best accomplished by trying out the code in the book on one’s
own, playing with it, and working on various exercises that appear at the end of each
chapter. All code and data sets used in the book are freely available for download via

links from http: / /press . princeton . edu/qss /.

The book is cumulative. Later chapters assume that readers are already familiar with

most of the materials covered in earlier parts. Hence, in general, it is not advisable

to skip chapters. The exception is chapter 5, “Discovery,” the contents of which are

not used in subsequent chapters. Nevertheless, this chapter contains some of the

most interesting data analysis examples of the book and readers are encouraged to
study it.

The book can be used for course instruction in a variety of ways. In a traditional

introductory statistics course, one can assign the book, or parts of it, as supplementary

reading that provides data analysis exercises. The book is best utilized in a data analysis

course where an instructor spends less time on lecturing to students and instead works

interactively with students on data analysis exercises in the classroom. In such a course,

the relevant portion of the book is assigned prior to each class. In the classroom, the

instructor reviews new methodological and programming concepts and then applies
them to one of the exercises from the book or any other similar application of their

choice. Throughout this process, the instructor can discuss the exercises interactively
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with students, perhaps using the Socratic method, until the class collectively arrives
at a solution. After such a classroom discussion, it would be ideal to follow up with a

computer lab session, in which a small number of students, together with an instructor,

work on another exercise.

This teaching format is consistent with the “particular general particular” principle.1

This principle states that an instructor should first introduce a particular example to

illustrate a new concept, then provide a general treatment of it, and finally apply it to

another particular example. Reading assignments introduce a particular example and a

general discussion of new concepts to students. Classroom discussion then allows the
instructor to provide another general treatment of these concepts and then, together

with students, apply them to another example. This is an effective teaching strategy that

engages students with active learning and builds their ability to conduct data analysis
in social science research. Finally, the instructor can assign another application as a

problem set to assess whether students have mastered the materials. To facilitate this,
for each chapter instructors can obtain, upon request, access to a private repository that

contains additional exercises and their solutions.
In terms of the materials to cover, an example of the course outline for a

15-week-long semester is given below. We assume that there are approximately two

hours of lectures and one hour of computer lab sessions each week. Having hands-on

computer lab sessions with a small number of students, in which they learn how to
analyze data, is essential.

 

 

Chapter title Chapter number Weeks

Introduction 1 1

Causality 2 2—3

Measurement 3 4—5

Prediction 4 6-7

Discovery 5 8—9
Probability 6 10— 12

Uncertainty 7 13—15
 

For a shorter course, there are at least two ways to reduce the material. One option is

to focus on aspects of data science and omit statistical inference. Specifically, from the

above outline, we can remove chapter 6, “Probability,” and chapter 7, “Uncertainty.”
An alternative approach is to skip chapter 5, “Discovery,” which covers the analysis
of textual, network, and spatial data, and include the chapters on probability and
uncertainty.

Finally, to ensure mastery of the basic methodological and programming concepts
introduced in each chapter, we recommend that users first read a chapter, practice all

of the code it contains, and upon completion of each chapter, try the online review

questions before attempting to solve the associated exercises. These review questions

1 Frederick Mosteller (1980) “Classroom and platform performance.” American Statistician, vol. 34, no. 1

(February), pp. 11—17.



 

 

1.2 How to Use this Book —

Table1.1. The swirl Review Exercises.
 

 

Chapter swirl lesson Sections covered

1: Introduction INTROI 1'3
_____________IRR9{-___-_____1.3____.

_ CAUSALITYl 2.1-2.4

2: Causality CAUSALITYZ 2.5—2.6

' ' 3' 1:4;as-u1-‘ei;;n; ' ' hfiisfiiEfifiqu """31531' ' ' '
MEASUREMENTZ 3 5—3 7

"""""""pEEnEEmEJnE ' ' ' " " ' ‘43' ' ' ' '
4: Prediction PREDICTION2 4.2

PREDICTION3 4.3

"""""""nEs'caxFE'Rfi' ' ' ' ' ' ' "571- ' ' ' '
5: Discovery DISCOVERYZ 5.2

_____________DEECQ‘LEE‘E _ - _ _ _ .53- _ _ - .
_ , PROBABILITYl 6.1—6.3

6: Pmbab'hty PROBABILITYZ 6.4—6.5
"""""""m'qc'Eirfi'AEN'TH ' ' ' ' ' "771' ' ' ' '

7: Uncertainty UNCERTAINTYZ 7.2
UNCERTAINTY3 7.3
 

Note: The table shows the correspondence between the chapters and sections of
the book and each set ofswirl review exercises.

are available as swirl lessons via links from http: / /press . princeton . edu/
qss/, and can be answered within R. Instructors are strongly encouraged to assign
these swirl exercises prior to each class so that students learn the basics before moving

on to more complicated data analysis exercises. To start the online review questions,

users must first install the swirl package (see section 1.3.7) and then the lessons for this
book using the following three lines ofcommands within R. Note that this installation
needs to be done only once.

 

Table 1.1 lists the available set ofswirl review exercises along with their correspond-
ing chapters and sections. To start a swirl lesson for review questions, we can use the

following command.

 

More information about swirl is available at http: / / swirlstats . coml.
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This section provides a brief, self-contained introduction to R that is a prerequisite

for the remainder of this book. R is an open—source statistical programming environ-
ment, which means that anyone can download it for free, examine source code, and

make their own contributions. R is powerful and flexible, enabling us to handle a variety
of data sets and create appealing graphics. For this reason, it is widely used in academia
and industry. The New York Times described R as

a popular programming language used by a growing number of data analysts

inside corporations and academia. It is becoming their lingua franca. . .whether
being used to set ad prices, find new drugs more quickly or fine-tune financial

models. Companies as diverse as Google, Pfizer, Merck, Bank of America, the
InterContinental Hotels Group and Shell use it. . .. “The great beauty of R is that

you can modify it to do all sorts of things,” said Hal Varian, chief economist at
Google. “And you have a lot of prepackaged stuff that’s already available, so
you’re standing on the shoulders of giants.”2

To obtain R, visit https : // cran . r-proj ect . org/ (The Comprehensive R

Archive Network or CRAN), select the link that matches your operating system, and
then follow the installation instructions.

While a powerful tool for data analysis, R’s main cost from a practical viewpoint
is that it must be learned as a programming language. This means that we must
master various syntaxes and basic rules ofcomputer programming. Learning computer

programming is like becoming proficient in a foreign language. It requires a lot of
practice and patience, and the learning process may be frustrating. Through numerous

data analysis exercises, this book will teach you the basics of statistical programming,
which then will allow you to conduct data analysis on your own. The core principle of
the book is that we can learn data analysis only by analyzing data.

Unless you have prior programming experience (or have a preference for another

text editor such as Emacs), we recommend that you use RStudio. RStudio is an open-

source and free program that greatly facilitates the use of R. In one window, RStudio

gives users a text editor to write programs, a graph viewer that displays the graphics
we create, the R console where programs are executed, a help section, and many

other features. It may look complicated at first, but RStudio can make learning how
to use R much easier. To obtain RStudio, visit http: //www. rstudio . com/ and

follow the download and installation instructions. Figure 1.1 shows a screenshot of

RStudio.

In the remainder of this section, we cover three topics: (1) using R as a calculator,

(2) creating and manipulating various objects in R, and (3) loading data sets into R.

1.3.1 ARITHMETIC OPERATIONS

We begin by using R as a calculator with standard arithmetic operators. In figure 1.1,
the left-hand window of RStudio shows the R console where we can directly enter R

2 Vance, Ashlee. 2009. “Data Analysts Captivated by R’s Power.” New York Times, Ianuary 6.
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Figure1.1. Screenshot of RStudio (version 1.0.44). The upper-Ieft window displays a

script that contains code. The Iower—left window shows the console where R commands

can be directly entered. The upper—right window lists R objects and a history of executed

R commands. Finally, the lower-right window enables us to view plots, data sets, files

and subdirectories in the working directory, R packages, and help pages.

commands. In this R console, we can type in, for example, 5 + 3, then hit Enter on
our keyboard.

R ignores spaces, and so 5+3 will return the same result. However, we added a space

before and after the operator + to make it easier to read. As this example illustrates, this
book displays R commands followed by the outputs they would produce if entered in
the R console. These outputs begin with ## to distinguish them from the R commands
that produced them, though this mark will not appear in the R console. Finally, in this
example, [1] indicates that the output is the first element of a vector of length 1 (we
will discuss vectors in section 1.3.3). It is important for readers to try these examples
on their own. Remember that we can learn programming only by doing! Let’s try other
examples.
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## [1] 125

5 * (10 - 3)

## [1] 35

umr1(4)

## [l] 2

The final expression is an example of a so-called function, which takes an input

(or multiple inputs) and produces an output. Here, the function sqrt () takes a

nonnegative number and returns its square root. As discussed in section 1.3.4, R has
numerous other functions, and users can even make their own functions.

$32 OBJECTS

R can store information as an object with a name ofour choice. Once we have created

an object, we just refer to it by name. That is, we are using objects as “shortcuts” to
some piece of information or data. For this reason, it is important to use an intuitive

and informative name. The name of our object must follow certain restrictions.

For example, it cannot begin with a number (but it can contain numbers). Object
names also should not contain spaces. We must avoid special characters such as %

and s, which have specific meanings in R. In RStudio, in the upper-right window,

called Environment (see figure 1.1), we will see the objects we created. We use the

assignment operator <— to assign some value to an object.
For example, we can store the result of the above calculation as an object named

result, and thereafter we can access the value by referring to the object’s name. By

default, R will print the value ofthe object to the console ifwe just enter the object name

and hit Enter. Alternatively, we can explicitly print it by using the print ( ) function.

result <- 5 + 3

result

## [ll 8

nxint(result)

## [ll 8

Note that if we assign a different value to the same object name, then the value of

the object will be changed. As a result, we must be careful not to overwrite previously

assigned information that we plan to use later.

result <— 5 — 3

result

## [l] 2
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Another thing to be careful about is that object names are case sensitive. For
example, Hello is not the same as either hello or HELLO. As a consequence, we

receive an error in the R console when we type Result rather than result, which is

defined above.

Result

## Error in eval(expr, envir, enclos): object ‘Result’ not found

Encountering programming errors or bugs is part ofthe learning process. The tricky

part is figuring out how to fix them. Here, the error message tells us that the Result

object does not exist. We can see the list of existing objects in the Environment

tab in the upper-right window (see figure 1.1), where we will find that the correct

object is result. It is also possible to obtain the same list by using the ls()

function.
So far, we have assigned only numbers to an object. But R can represent various

other types of values as objects. For example, we can store a string of characters by

using quotation marks.

kosuke <— "instructor“

kosuke

## [1] "instructor"

In character strings, spacing is allowed.

kosuke <- “instructor and author“

kosuke

## [l] "instructor and author"

Notice that R treats numbers like characters when we tell it to do so.

Result <- " 5"

Result

## [1] "5"

However, arithmetic operations like addition and subtraction cannot be used for

character strings. For example, attempting to divide or take a square root of a character

string will result in an error.

Result / 3

## Error in Result/3: non—numeric argument to binary operator
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SQYV(ReSUlt)

## Error in sqrt(Result): non-numeric argument to mathematical function

R recognizes different types of objects by assigning each object to a class. Separating

objects into classes allows R to perform appropriate operations depending on the

objects’ class. For example, a number is stored as a numeric object whereas a character

string is recognized as a character object. In RStudio, the Environment window will

show the class of an object as well as its name. The function (which by the way is

another class) class ( ) tells us to which class an object belongs.

result

## [1] 2

c!axs(result)

## [1] "numeric"

Result

## [1] "5“

class(Result)

## [1] “character"

Flasr(sqrt)

## [1] "function"

There are many other classes in R, some ofwhich will be introduced throughout this
book. In fact, it is even possible to create our own object classes.

T33 VECTORS

We present the simplest (but most inefficient) way of entering data into R. Table 1.2

contains estimates of world population (in thousands) over the past several decades.

We can enter these data into R as a numeric vector object. A vector or a one—

dimensional array simply represents a collection of information stored in a specific

order. We use the function c ( ) , which stands for “concatenate,” to enter a data vector

containing multiple values with commas separating different elements of the vector we
are creating. For example, we can enter the world population estimates as elements of
a single vector.

world.pop <- v(2525779, 3026003, 3691173, 4449049, 5320817, 6127700,

6916183)

world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183
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Tabie 1.2. World Population Estimates,
 

 

Year World population

(thousands)

1950 2,525,779

1960 3,026,003

1970 3,691,173

1980 4,449,049

1990 5,320,817

2000 6,127,700

2010 6,916,183
 

Source: United Nations, Department
of Econonfic and Socml Aflhk& Popu-
lation Division (2013). World Population

Prospects: The 2012 Revision, DVD Edition.

We also note that the c ( ) function can be used to combine multiple vectors.

pop.first <- c:(2525779, 3026003, 3691173)

pop.second <— (:(4449049, 5320817, 6127700, 6916183)

pop.a11 <— c(pop.first, pop.second)

pop.all

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

To access specific elements of a vector, we use square brackets [ ] . This is called

indexing. Multiple elements can be extracted via a vector of indices within square

brackets. Also within square brackets the dash, —, removes the corresponding element

from a vector. Note that none of these operations change the original vector.

world.pop[2]

## [1] 3026003

world.pop[c(2. 4)]

## [1] 3026003 4449049

world.pop[c(4, 2)]

#4) [1] 4449049 3026003

world.pop[-3]

## [1] 2525779 3026003 4449049 5320817 6127700 6916183

Since each element of this vector is a numeric value, we can apply arithmetic

operations to it. The operations will be repeated for each element of the vector. Let’s
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give the population estimates in millions instead ofthousands by dividing each element
of the vector by 1000.

pop.million <— world.pop / 1000

pop.million

## [1] 2525.779 3026.003 3691.173 4449.049 5320.817 6127.700

## [7] 6916.183

We can also express each population estimate as a proportion ofthe 1950 population

estimate. Recall that the 1950 estimate is the first element of the vector world . pop.

pop.rate <— world.pop / world.pop[l]

pop.rate

## [1] 1.000000 1.198047 1.461400 1.761456 2.106604 2.426063

## [7] 2.738238

In addition, arithmetic operations can be done using multiple vectors. For example,

we can calculate the percentage increase in population for each decade, defined as the

increase over the decade divided by its beginning population. For example, suppose
that the population was 100 thousand in one year and increased to 120 thousand in the

following year. In this case, we say, “the population increased by 20%.” To compute the
percentage increase for each decade, we first create two vectors, one without the first
decade and the other without the last decade. We then subtract the second vector from

the first vector. Each element ofthe resulting vector equals the population increase. For

example, the first element is the difference between the 1960 population estimate and

the 1950 estimate.

pop.increase <— world.pop[—1] — world.popI—7]

percent.increase <- (pop.increase / world.pop[—7]) * 100

percent.increase

## [1] 19.80474 21.98180 20.53212 19.59448 15.16464 12.86752

Finally, we can also replace the values associated with particular indices by using

the usual assignment operator (<—). Below, we replace the first two elements of the

percent . increase vector with their rounded values.

percent.increase[c(l, 2)] <— F(ZO, 22)

percent.increase

## [1] 20.00000 22.00000 20.53212 19.59448 15.16464 12.86752

134 FUNCWONS

Functions are important objects in R and perform a wide range of tasks. A function
often takes multiple input objects and returns an output object. We have already seen



##

##

##

##

##
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several functions: sqrt ( ) , print ( ) , class ( ) , and c ( ) . In R, a function generally

runs as funcname (input) where funcname is the function name and input is

the input object. In programming (and in math), we call these inputs arguments. For

example, in the syntax sqrt (4) , sqrt is the function name and 4 is the argument or

the input object.

Some basic functions useful for summarizing data include length() for the

length of a vector or equivalently the number of elements it has, min() for

the minimum value, max() for the maximum value, range() for the range of

data, mean() for the mean, and sum() for the sum of the data. Right now we
are inputting only one object into these functions so we will not use argument

names.

(world.pop)

[1] 7

"(world.pop)

[1] 2525779

,(world.pop)

[1] 6916183

“'(world.pop)

[1] 2525779 6916183

u,(world.pop)

[1] 4579529

(world.pop) / *‘»“(world.pop)

[1] 4579529##

The last expression gives another way of calculating the mean as the sum of all the

elements divided by the number of elements.
When multiple arguments are given, the syntax looks like funcname ( inputl ,

input2 ). The order of inputs matters. That is, funcname ( inputl , input2) is

different from funcname(input2 , inputl ). To avoid confusion and problems

stemming from the order in which we list arguments, it is also a good idea to

specify the name of the argument that each input corresponds to. This looks like

funcname (argl = inputl , arg2 = input2 ).

For example, the seq ( ) function can generate a vector composed of an increasing

or decreasing sequence. The first argument from specifies the number to start from;

the second argument to specifies the number at which to end the sequence; the last
argument by indicates the interval to increase or decrease by. We can create an object

for the year variable from table 1.2 using this function.
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year <- xflq(from = 1950, to = 2010, by = 10)

year

## [l] 1950 1960 1970 1980 1990 2000 2010

Notice how we can switch the order of the arguments without changing the output
because we have named the input objects.

ttq(to = 2010, by = 10, from = 1950)

## [l] 1950 1960 1970 1980 1990 2000 2010

Although not relevant in this particular example, we can also create a decreasing

sequence using the seq( ) function. In addition, the colon operator : creates a simple

sequence, beginning With the first number specified and increasing or decreasing by 1

to the last number specified.

seq(from = 2010, to = 1950, by = —10)

## [l] 2010 2000 1990 1980 1970 1960 1950

2008:2012

## [l] 2008 2009 2010 2011 2012

2012:2008

## [l] 2012 2011 2010 2009 2008

The names () function can access and assign names to elements of a vector.
Element names are not part of the data themselves, but are helpful attributes of the R
object. Below, we see that the object world . pop does not yet have the names attribute,

with names (world.pop) returning the NULL value. However, once we assign the

year as the labels for the object, each element of world.pop is printed with an

informative label.

nqm;u(wor1d.pop)

## NULL

namma(world.p0p) <' Year

(world.pop)

## [1] "1950" "1960" "1970" "1980" "1990" "2000" "2010"

  UEUT‘M /
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In many situations, we want to create our own functions and use them repeatedly.

This allows us to avoid duplicating identical (or nearly identical) sets of code chunks,

making our code more efficient and easily interpretable. The function () function

can create a new function. The syntax takes the following form.

 

In this example code, myfunction is the function name, inputl , input2 ,

. , inputN are the input arguments, and the commands within the braces { }

define the actual function. Finally, the return() function returns the output of the

function. We begin with a simple example, creating a function to compute a summary

of a numeric vector.

 

Note that objects (e.g., x, s . out, 1 . out, m. out, and out in the above example)

can be defined within a function independently of the environment in which the

function is being created. This means that we need not worry about using identical

names for objects inside a function and those outside it.
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1.3.5 DATA FILES

So far, the only data we have used has been manually entered into R. But, most of
the time, we will load data from an external file. In this book, we will use the following
two data file types:

. CSV or comma-separated values files represent tabular data. This is conceptually

similar to a spreadsheet of data values like those generated by Microsoft Excel or
Google Spreadsheet. Each observation is separated by line breaks and each field
within the observation is separated by a comma, a tab, or some other character or
string.

. RData files represent a collection of R objects including data sets. These can
contain multiple R objects of different kinds. They are useful for saving

intermediate results from our R code as well as data files.

Before interacting with data files, we must ensure they reside in the working direc-
tory, which R will by default load data from and save data to. There are different ways to

change the working directory. In RStudio, the default working directory is shown in the

bottom-right window under the Files tab (see figure 1.1). Oftentimes, however, the
default directory is not the directory we want to use. To change the working directory,
click on More > Set As Working Directory after choosing the folder we want
to work from. Alternatively, we can use the RStudio pull-down menu Session >
Set Working Directory > Choose Directory. . . and pick the folder we

want to work from. Then, we will see our files and folders in the bottom-right window.

It is also possible to change the working directory using the setwd( ) function by
specifying the full path to the folder of our choice as a character string. To display the
current working directory, use the function getwd ( ) without providing an input. For
example, the following syntax sets the working directory to qss / INTRO and confirms
the result (we suppress the output here).

 

Suppose that the United Nations population data in table 1.2 are saved as a CSV file

UNpop . csv, which resembles that below:

year, world.pop

1950, 2525779

1960, 3026003

1970, 3691173

1980, 4449049

1990, 5320817

2000, 6127700

2010, 6916183

In RStudio, we can read in or load CSV files by going to the drop-down menu in the

upper-right window (see figure 1.1) and clicking Import Dataset > From Text
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Fi le . . . . Alternatively, we can use the read . csv ( ) function. The following syntax

loads the data as a data frame object (more on this object below).

UNpop <- 31::5HJ . >=' ("UNpop.CSV“)

:1 X1;:r‘.(UNpOp)

## [1] “data.frame"

On the other hand, if the same data set is saved as an object in an RData file named
UNpop . RData, then we can use the load ( ) function, which will load all the R objects

saved in UNpop .RData into our R session. We do not need to use the assignment

operator with the load ( ) function when reading in an RData file because the R objects

stored in the file already have object names.

',qv("UNpop.RData")

Note that R can access any file on our computer if the full location is specified.

For example, we can use syntax such as read. csv( “Documents/qss/INTRO/

UNpop . csv" ) if the data file UNpop . csv is stored in the directory Documents/

qss/ INTRO/ . However, setting the working directory as shown above allows us to

avoid tedious typing.
A data frame object is a collection ofvectors, but we can think of it like a spreadsheet.

It is often useful to visually inspect data. We can view a spreadsheet-like representation
of data frame objects in RStudio by double-clicking on the object name in the

Environment tab in the upper—right window (see figure 1.1). This will open a new

tab displaying the data. Alternatively, we can use the View( ) function, which as its

main argument takes the name of a data frame to be examined. Useful functions for
this object include names ( ) to return a vector ofvariable names, nrow ( ) to return the

number ofrows, ncol ( ) to return the number ofcolumns, dim ( ) to combine the out-

puts ofncol ( ) and nrow ( ) into a vector, and summary ( ) to produce a summary.

‘pWUS(UNp°p)

## [1] "year" "world.pop“

n;ow(UNpop)

## [1] 7

(UNpop)

## [l] 2

J (UNpop)

## [1] 7 2
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summary (UNpop)

##

##

##

##

##

##

##

year world.pop

Min. :1950 Min. :2525779

lst Qu. :1965 lst Qu. :3358588

Median :1980 Median :4449049

Mean :1980 Mean :4579529

3rd Qu.:1995 3rd Qu.:5724258

Max. :2010 Max. :6916183

Notice that the summary() function yields, for each variable in the data frame

object, the minimum value, the first quartile (or 25th percentile), the median (or

50th percentile), the third quartile (or 75th percentile), and the maximum value. See
section 2.6 for more discussion.

The s operator is one way to access an individual variable from within a data frame

object. It returns a vector containing the specified variable.

UNpop$world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

Another way of retrieving individual variables is to use indexing inside square

brackets[ ], as done for a vector. Since a data frame object is a two-dimensional

array, we need two indexes, one for rows and the other for columns. Using brackets

with a comma [rows , columns] allows users to call specific rows and columns by
either row/column numbers or row/column names. If we use row/column numbers,
sequencing functions covered above, i.e., : and c ( ) , will be useful. Ifwe do not specify
a row (column) index, then the syntax will return all rows (columns). Below are some

examples, demonstrating the syntax of indexing.

UNpop[, "world.pop"] # extract the column called "world.pop"

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

UNpop[C(l, 2, 3),] # extract the first three rows (and all columns)

## year world.pop

## 1 1950 2525779

## 2 1960 3026003

## 3 1970 3691173

UNpop[1:3, "year"] # extract the first three rows of the "year" column

## [l] 1950 1960 1970
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When extracting specific observations from a variable in a data frame object, we

provide only one index since the variable is a vector.

## take elements 1, 3, 5, of the "world.pop" variable

UNpop$world.pop[seq(from = 1, to = m‘mfiUNpOp) , by = 2)]

## [1] 2525779 3691173 5320817 6916183

In R, missing values are represented by NA. When applied to an object with missing

values, functions may or may not automatically remove those values before performing

operations. We will discuss the details of handling missing values in section 3.2. Here,

we note that for many functions, like mean ( ) , the argument na. rm = TRUE will
remove missing data before operations occur. In the example below, the eighth element

of the vector is missing, and one cannot calculate the mean until R has been instructed

to remove the missing data.

world.pop <— r;(UNpop$world.pop, NA)

world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

## [8] NA

mean (world . pop)

## [1] NA

mean(wor1d.pop, na.rm = TRUE)

## [1] 4579529

136 SAVHVG OBJECTS

The objects we create in an R session will be temporarily saved in the workspace,

which is the current working environment. As mentioned earlier, the 1s ( ) function

displays the names of all objects currently stored in the workspace. In RStudio, all

objects in the workspace appear in the Environment tab in the upper-right corner.

However, these objects will be lost once we terminate the current session. This can be

avoided ifwe save the workspace at the end of each session as an RData file.

When we quit R, we will be asked whether we would like to save the workspace. We

should answer no to this so that we get into the habit of explicitly saving only what

we need. If we answer yes, then R will save the entire workspace as . RData in the

working directory without an explicit file name and automatically load it next time we

launch R. This is not recommended practice, because the .RData file is invisible to

users of many operating systems and R will not tell us what objects are loaded unless

we explicitly issue the ls ( ) function.
In RStudio, we can save the workspace by clicking the Save icon in the upper—right

Environment window (see figure 1.1). Alternatively, from the navigation bar, click
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on Session > Save Workspace As . . . , and then pick a location to save the file.

Be sure to use the file extension . RData. To load the same workspace the next time we

start RStudio, click the Open Fi 1e icon in the upper-right Environment window,
select Session > Load Workspace . . . , or use the load() function asbefore.

It is also possible to save the workspace using the save . image () function. The
file extension . RData should always be used at the end of the file name. Unless the

full path is specified, objects will be saved to the working directory. For example,
the following syntax saves the workspace as Chapterl . RData in the qss/ INTRO

directory provided that this directory already exists.

Sometimes, we wish to save only a specific object (e.g., a data frame object)
rather than the entire workspace. This can be done with the save() function
as in save(xxx, file = "yyy.RData"), where xxx is the object name and

yyy . RData is the file name. Multiple objects can be listed, and they will be stored
as a single RData file. Here are some examples of syntax, in which we again assume the
existence of the qss / INTRO directory.

 

In other cases, we may want to save a data frame object as a CSV file rather than an
RData file. We can use the write . csv ( ) function by specifying the object name and
the file name, as the following example illustrates.

Finally, to access objects saved in the RData file, simply use the load ( ) function

as before.

1.3.7 PACKAGES

' One of R’s strengths is the existence of a large community of R users who con-
tribute various functionalities as R packages. These packages are available through
the Comprehensive R Archive Network (CRAN; http: / /cran . r-pro j ect . org).

Throughout the book, we will employ various packages. For the purpose ofillustration,
suppose that we wish to load a data file produced by another statistical software package

such as Stata or SPSS. The foreign package is useful when dealing with files from other
statistical software.
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To use the package, we must load it into the workspace using the 1ibrary()
function. In some cases, a package needs to be installed before being loaded. In

RStudio, we can do this by clicking on Packages > Install in the bottom-
right window (see figure 1.1), where all currently installed packages are listed, after

choosing the desired packages to be installed. Alternatively, we can install from the R
console using the instal 1 . packages ( ) function (the output is suppressed below).
Package installation needs only to occur once, though we can update the package

later upon the release of a new version (by clicking Update or reinstalling it via the

install .packages ( ) function).

 

Once the package is loaded, we can use the appropriate functions to load the data file.
For example, the read . dta ( ) and read . spss ( ) functions can read Stata and SPSS

data files, respectively (the following syntax assumes the esttence of the UNpop . dta
and U'Npop . sav files in the working directory).

As before, it is also possible to save a data frame object as a data file that

can be directly loaded into another statistical software package. For example, the

write . dta ( ) function will save a data frame object as a Stata data file.

1.3.8 PROGRAMMING AND LEARNING TIPS

We conclude this brief introduction to R by providing several practical tips for
learning how to program in the R language. First, we should use a text editor like the
one that comes with RStudio to write our program rather than directly typing it into
the R console. Ifwe just want to see what a command does, or quickly calculate some

quantity, we can go ahead and enter it directly into the R console. However, for more
involved programming, it is always better to use the text editor and save our code as a

text file with the . R file extension. This way, we can keep a record ofour program and
run it again whenever necessary.

In RStudio, use the pull—down menu File > New File > R Script or click

the New File icon (a white square with a green circle enclosing a white plus sign)
and choose R Script. Either approach will open a blank document for text editing in
the upper-left window where we can start writing our code (see figure 1.2). To run our

code from the RStudio text editor, simply highlight the code and press the Run icon.
Alternatively, in Windows, Ctrl+Enter works as a shortcut. The equivalent shortcut for
Mac is Command+Enter. Finally, we can also run the entire code in the background
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Figure 1.2. Screenshot of the RStudio Text Editor. Once we open an R script file in

RStudio, the text editor will appear as one of the windows. It can then be used to write

our code.

(so, the code will not appear in the console) by clicking the Source icon or using the
source ( ) function with the code file name (including a full path if it is not placed in
the working directory) as the input.

Second, we can annotate our R code so that it can be easily understandable to
ourselves and others. This is especially important as our code gets more complex. To do
this, we use the comment character #, which tells R to ignore everything that follows it.
It is customary to use a double comment character ## if a comment occupies an entire

line and use a single comment character # if a comment is made within a line after an
R command. An example is given here.
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Third, for further clarity it is important to follow a certain set of coding rules.

For example, we should use informative names for files, variables, and functions.

Systematic spacing and indentation are essential too. In the above examples, we place

spaces around all binary operators such as <-, =, +, and —, and always add a space

after a comma. While comprehensive coverage of coding style is beyond the scope

of this book, we encourage you to follow a useful R style guide published by Google

at https : / /goog1e . github . io/styleguide/Rguide . xml. In addition, it is

possible to check our R code for potential errors and incorrect syntax. In computer

science, this process is called linting. The 1int ( ) function in the lintr package enables

the linting of R code. The following syntax implements the linting ofthe UNpop . R file

shown above, where we replace the assignment operator <— in line 8 with the equality

sign = for the sake of illustration.

 

Finally, R Markdown via the markdown package is useful for quickly writing

documents using R. R Markdown enables us to easily embed R code and its output

within a document using straightforward syntax in a plain-text format. The resulting

documents can be produced in the form of HTML, PDF, or even Microsoft Word.

Because R Markdown embeds R code as well as its output, the results of data analysis

presented in documents are reproducible. R Markdown is also integrated into RStudio,

making it possible to produce documents with a single click. For a quick start, see

http: / /rmarkdown . rstudio . com/.

This chapter began with a discussion of the important role that quantitative
social science research can play in today’s data-rich society. To make contributions
to this society through data-driven discovery, we must learn how to analyze data,
interpret the results, and communicate our findings to others. To start our journey,
we presented a brief introduction to R, which is a powerful programming language for

data analysis. The remaining pages of this chapter are dedicated to exercises, designed

to ensure that you have mastered the contents of this section. Start with the swirl

review questions that are available via links from http: / /press.princeton.

edu/qss/. If you answer these questions incorrectly, be sure to go back

to the relevant sections and review the materials before moving on to the

exercises.
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Table 1.3. US Election Turnout Data.
 

 

Variable Description

year election year

ANES ANES estimated turnout rate

VEP voting eligible population (in thousands)

VAP voting age population (in thousands)

total total ballots cast for highest office (in thousands)

felons total ineligible felons (in thousands)

nonc i t i zens total noncitizens (in thousands)

overseas total eligible overseas voters (in thousands)

osvoters total ballots counted by overseas voters (in thousands)
 

1.5.1 BIAS IN SELF-REPORTED TURNOUT

Surveys are frequently used to measure political behavior such as voter turnout,

but some researchers are concerned about the accuracy of self—reports. In particular,
they worry about possible social desirability bias where, in postelection surveys,

respondents who did not vote in an election lie about not having voted because they
may feel that they should have voted. Is such a bias present in the American National

Election Studies (ANES)? ANES is a nationwide survey that has been conducted for

every election since 1948. ANES is based on face-to-face interviews with a nationally
representative sample of adults. Table 1.3 displays the names and descriptions of
variables in the turnout . csv data file.

1. Load the data into R and check the dimensions of the data. Also, obtain a

summary of the data. How many observations are there? What is the range of

years covered in this data set?

. Calculate the turnout rate based on the voting age population or VAP. Note that

for this data set, we must add the total number of eligible overseas voters since
the VAP variable does not include these individuals in the count. Next, calculate

the turnout rate using the voting eligible population or VEP. What difference do
you observe?

. Compute the differences between the VAP and ANES estimates of turnout rate.
How big is the difference on average? What is the range of the differences?

Conduct the same comparison for the VEP and ANES estimates ofvoter turnout.

Briefly comment on the results.

. Compare the VEP turnout rate with the ANES turnout rate separately for

presidential elections and midterm elections. Note that the data set excludes the

year 2006. Does the bias of the ANES estimates vary across election types?
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Table 1.4. Fertility and Mortality Estimate Data.
 

 

Variable Description

country abbreviated country name

period period during which data are collected

age age group

births number of births (in thousands), i.e., the number of

children born to women of the age group

deaths number of deaths (in thousands)

py . men person-years for men (in thousands)

py . women person-years for women (in thousands)
 

Source: United Nations, Department of Economic and Social Affairs, Population
Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

5. Divide the data into half by election years such that you subset the data into two

periods. Calculate the difference between the VEP turnout rate and the ANES

turnout rate separately for each year within each period. Has the bias of ANES

increased over time?

6. ANES does not interview prisoners and overseas voters. Calculate an adjustment

to the 2008 VAP turnout rate. Begin by subtracting the total number of ineligible

felons and noncitizens from the VAP to calculate an adjusted VAP. Next,
calculate an adjusted VAP turnout rate, taking care to subtract the number of

overseas ballots counted from the total ballots in 2008. Compare the adjusted
VAP turnout with the unadjusted VAP, VEP, and the ANES turnout rate. Briefly

discuss the results.

1.5.2 UNDERSTANDING WORLD POPULATION DYNAMICS

Understanding population dynamics is important for many areas of social science.

We will calculate some basic demographic quantities of births and deaths for the
world’s population from two time periods: 1950 to 1955 and 2005 to 2010. We will

analyze the following CSV data files: Kenya . csv, Sweden. csv, and World. csv.
The files contain population data for Kenya, Sweden, and the world, respectively.

Table 1.4 presents the names and descriptions of the variables in each data set. The

data are collected for a period of 5 years where person-year is a measure of the time

contribution ofeach person during the period. For example, a person who lives through

the entire 5-year period contributes 5 person—years, whereas someone who lives only

through the first half of the period contributes 2.5 person-years. Before you begin this

exercise, it would be a good idea to directly inspect each data set. In R, this can be
done with the View( ) function, which takes as its argument the name of the data
frame to be examined. Alternatively, in RStudio, double-clicking a data frame in the

Environment tab will enable you to view the data in a spreadsheet-like form.
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1. We begin by computing crude birth rate (CBR) for a given period. The CBR is
defined as

number of births
CBR = .

number of person-years lived
 

Compute the CBR for each period, separately for Kenya, Sweden, and the world.

Start by computing the total person-years, recorded as a new variable within each
existing data frame via the $ operator, by summing the person-years for men and

women. Then, store the results as a vector of length 2 (CBRs for two periods) for
each region with appropriate labels. You may wish to create your own function
for the purpose of efficient programming. Briefly describe patterns you observe
in the resulting CBRs.

. The CBR is easy to understand but contains both men and women of all ages in
the denominator. We next calculate the totalfertility rate (TFR). Unlike the CBR,
the TFR adjusts for age compositions in the female population. To do this, we
need to first calculate the age-specific fertility rate (ASFR), which represents the

fertility rate for women of the reproductive age range [15, 50). The ASFR for the
age range [x, x + 8), where x is the starting age and 8 is the width of the age range

(measured in years), is defined as

number of births to women of age [x, x + 8)
 

ASFR”, H5) _ number of person-years lived by women of age [x, x + 6)'

Note that square brackets, [ and ], include the limit whereas parentheses, ( and ),
exclude it. For example, [20, 25) represents the age range that is greater than or

equal to 20 years old and less than 25 years old. In typical demographic data, the
age range 8 is set to 5 years. Compute the ASFR for Sweden and Kenya as well as
the entire world for each of the two periods. Store the resulting ASFRs separately

for each region. What does the pattern of these ASFRs say about reproduction
among women in Sweden and Kenya?

. Using the ASFR, we can define the TFR as the average number of children that
women give birth to if they live through their entire reproductive age:

TFR = ASFR[15,20) X 5 + ASFRDO‘ 25) X 5 + ' ' ' + ASFRMS, 50) X 5.

We multiply each age-specific fertility rate by 5 because the age range is 5 years.

Compute the TFR for Sweden and Kenya as well as the entire world for each

of the two periods. As in the previous question, continue to assume that the

reproductive age range of women is [15, 50). Store the resulting two TFRs for

each country or the world as vectors of length 2. In general, how has the number
ofwomen changed in the world from 1950 to 2000? What about the total number

of births in the world?

. Next, we will examine another important demographic process: death. Compute

the crude death rate (CDR), which is a concept analogous to the CBR, for each
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period and separately for each region. Store the resulting CDRs for each country

and the world as vectors of length 2. The CDR is defined as

number of deaths
CDR = 

number of person-years lived.

Briefly describe the patterns you observe in the resulting CDRs.

. One puzzling finding from the previous question is that the CDR for Kenya

during the period 2005—2010 is about the same level as that for Sweden. We

would expect people in developed countries like Sweden to have a lower death

rate than those in developing countries like Kenya. While it is simple and easy

to understand, the CDR does not take into account the age composition of a

population. We therefore compute the age-specific death rate (ASDR). The ASDR

for age range [x, x + 8) is defined as

number of deaths for people of age [x, x + 8)

number of person-years of people of age [x, x + 8).
 

ASDR[x, x+6) =

Calculate the ASDR for each age group, separately for Kenya and Sweden, during

the period 2005-2010. Briefly describe the pattern you observe.

. One way to understand the difference in the CDR between Kenya and Sweden

is to compute the counterfactual CDR for Kenya using Sweden’s population

distribution (or vice versa). This can be done by applying the following alternative

formula for the CDR:

CDR = ASDRms) X P{0.5) + ASDR[5‘10) X P{5,10) + - - - ,

where P{WH) is the proportion of the population in the age range [x, x + 8).

We compute this as the ratio ofperson-years in that age range relative to the total

person-years across all age ranges. To conduct this counterfactual analysis, we use

ASDR[x‘x+5) from Kenya and P{x'xsfls) from Sweden during the period 2005—2010.

That is, first calculate the age—specific population proportions for Sweden and

then use them to compute the counterfactual CDR for Kenya. How does this

counterfactual CDR compare with the original CDR of Kenya? Briefly interpret

the result.
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Causality

Shallow men believe in luck, believe in circumstances.
Strong men believe in cause and effect.

— Ralph Waldo Emerson, The Conduct of Life

In this chapter, we consider causality, one of the most central concepts of quantitative
social science. Much of social science research is concerned with the causal effects
of various policies and other societal factors. Do small class sizes raise students’
standardized test scores? Would universal health care improve the health and finances
of the poor? What makes voters turn out in elections and determines their choice of
candidates? To answer these causal questions, one must infer a counterfactual outcome
and compare it with what actually happens (Le, a factual outcome). We show how
careful research design and data analysis can shed light on these causal questions
that shape important academic and policy debates. We begin with a study of racial
discrimination in the labor market. We then introduce various research designs useful
for causal inference and apply them to additional studies concerning social pressure
and voter turnout, as well as the impact of minimum-wage increases on employment.

We also learn how to subset data in different ways and compute basic descriptive
statistics in R.

Does racial discrimination exist in the labor market? Or, should racial disparities

in the unemployment rate be attributed to other factors such as racial gaps in
educational attainment? To answer this question, two social scientists conducted

the following experiment.1 In response to newspaper ads, the researchers sent out
résumés of fictitious job candidates to potential employers. They varied only the names

of job applicants, while leaving the other information in the résumés unchanged.

‘ This section is based on Marianne Bertrand and Sendhi] Mullainathan (2004) “Are Emily and Greg more
employable than Lakisha and Jamal? A field experiment on labor market discrimination.” American Economic

Review, vol. 94, no. 4, pp. 991—1013.
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Table 2.1. Résumé Experiment Data.
 

 

Variable Description

firstname first name of the fictitious job applicant

sex sex of applicant (female or male)

race race of applicant (black or white)

call whether a callback was made (1 = yes, 0 = no)
 

For some candidates, stereotypically African-American-sounding names such as

Lakisha Washington or Jamal Iones were used, whereas other résumés contained

stereotypically white-sounding names, such as Emily Walsh or Greg Baker. The

researchers then compared the callback rates between these two groups and examined

whether applicants with stereotypically black names received fewer callbacks than

those with stereotypically white names. The positions to which the applications were

sent were either in sales, administrative support, clerical, or customer services.

Let’s examine the data from this experiment in detail. We begin by loading the CSV

data file, resume . csv, into R as a data frame object called resume using the function

read . csv ( ). Table 2.1 presents the names and descriptions of the variables in this

data set.

Instead ofusing read . csv ( ) , you can also import the data set using the pull—down

menu Tools > Import Dataset > From Text File . . . in RStudio.

This data frame object resume is an example of experimental data. Experimental

data are collected from an experimental research design, in which a treatment variable,

or a causal variable of interest, is manipulated in order to examine its causal effects on

an outcome variable. In this application, the treatment refers to the race of a fictitious

applicant, implied by the name given on the résumé. The outcome variable is whether

the applicant receives a callback. We are interested in examining whether or not the

résumés with different names yield varying callback rates.

 

Experimental research examines how a treatment causally affects an outcome by

assigning varying values of the treatment variable to different observations, and

measuring their corresponding values ofthe outcome variable.
 

Using the dim() function, we can see that resume consists of 4870 observations

and 4 variables. Each observation represents a fictitious job applicant. The outcome

variable is whether the fictitious applicant received a callback from a prospective

employer. The treatment variable is the race and gender of each applicant, though
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more precisely the researchers were manipulating how potential employers perceive
the gender and race of applicants, rather than directly manipulating those attributes.

Once imported, the data set is displayed in a spreadsheet-like format in an RStudio
window. Alternatively, we can look at the first several observations of the data set using
the head () function.

ud(resume)

firstname s

Carri

O
N
U
'
I
I
B
L
A
J
N
H Allison

Kristen

Lakisha

Latonya fema

e female white

Jay ma

female white

female white

female black

ex race call

1e black

O
O
O
O
O
O

1e white

For example, the second observation contains a résumé for Kristen, identified as a
white female who did not receive a callback. In addition, we can also create a summary
of the data frame via the summary( ) function.

'“nm,vv(resume)

firstname

Tamika : 256

Anne . 242

Allison: 232

Latonya: 230

Emily 227

Latoya : 226

(Other):3457

call

Min. :0.00000

lst Qu.:0.00000

Median :0.00000

Mean :0.08049

3rd Qu.:0.00000

Max. :l.00000##

##

sex race

femalez3746 black:2435

male :1124 white:2435

The summary indicates the number of résumés for each name, gender, and race as

well as the overall proportion of résumés that received a callback. For example, there

were 230 résumés whose applicants had the first name of “Latonya.” The summary also

shows that the data set contains the same number ofblack and white names, while there
are more female than male résume’s.

We can now begin to answer whether or not the résumés with African-American-

sounding names are less likely to receive callbacks. To do this, we first create a
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contingency table (also called a cross tabulation) summarizing the relationship between

the race of each fictitious job applicant and whether a callback was received. A two-way

contingency table contains the number of observations that fall within each category,

defined by its corresponding row (race variable) and column (call variable). Recall
that a variable in a data frame can be accessed using the $ operator (see section 1.3.5).

For example, the syntax resume$race will extract the race variable in the resume

data frame.

race.call.tab <— tdn1u(race = resume$race, call = resumescall)

race.call.tab

## call

## race 0 1

## black 2278 157

## white 2200 235

The table shows, for example, that among 2435 (= 2278 + 157) résumés with

stereotypically black names, only 157 received a callback. It is convenient to add totals

for each row and column by applying the addmargins ( ) function to the output of

the table () function.

:jr»(race.call.tab)

 

## call

## race 0 1 Sum

## black 2278 157 2435

## white 2200 235 2435

## Sum 4478 392 4870

Using this table, we can compute the callback rate, or the proportion of those who

received a callback, for the entire sample and then separately for black and white

applicants.

## overall callback rate: total callbacks divided by the sample size

s':;.t;:a(race.call.tab[, 2]) / n:»:>~.a.‘(resume)

## [1] 0.08049281

## callback rates for each race

race.call.tab[l, 2] / wum(race.call.tab[l, ]) # black

## [l] 0.06447639

race.call.tab[2, 2] / sum(race.call.tab[2, ]) # white

## [1] 0.09650924
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Recall that the syntax race . call . tab [1 , ] , which does not specify the column
number, extracts all the elements of the first row of this matrix. Note that in the square
brackets, the number before the comma identifies the row of the matrix whereas the

number after the comma identifies the column (see section 1.3.5). This can be seen by

simply typing the syntax into R.

 

From this analysis, we observe that the callback rate for the résumés with African-

American-sounding names is 0.032, or 3.2 percentage points, lower than those with
white-sounding names. While we do not know whether this is the result of intentional
discrimination, the lower callback rate for black applicants suggests the existence of
racial discrimination in the labor market. Specifically, our analysis shows that the same
résumé with a black-sounding name is substantially less likely to receive a callback than

an identical résumé with a white-sounding name.
An easier way to compute callback rates is to exploit the fact that call is a binary

variable, or dummy variable, that takes the value 1 if a potential employer makes a
callback and 0 otherwise. In general, the sample mean of a binary variable equals

the sample proportion of ls. This means that the callback rate can be conveniently
calculated as the sample mean, or sample average, of this variable using the mean ()
function rather than dividing the counts of Is by the total number of observations.
For example, instead of the slightly more complex syntax we used above, the overall
callback rate can be calculated as follows.

 

What about the callback rate for each race? To compute this using the mean ()
function, we need to first subset the data for each race and then compute the mean of
the call variable within this subset. The next section shows how to subset data in R.

In this section, we learn how to subset a data set in various ways. We first introduce
logical values and operators, which enable us to specify which observations and

variables of a data set should be extracted. We also learn about factor variables, which

represent categorical variables in R.
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2.2.1 LOGICAL VALUES AND OPERATORS

To understand subsetting, we first note that R has a special representation of the

two logical values, TRUE and FALSE, which belong to the object class logical (see

section 1.3.2).

These logical values can be converted to a binary variable in the integer class using

the function as . integer ( ) , where TRUE is recoded as 1 and FALSE becomes 0.

In many cases, R will coerce logical values into a binary variable so that performing

numerical operations is straightforward. For example, in order to compute the propor-

tion of TRUEs in a vector, one can simply use the mean () function to compute the

sample mean of a logical vector. Similarly, we can use the sum( ) function to sum the

elements of this vector in order to compute the total number ofTRUEs.

 

The logical values are often produced with the logical operators & and | corre-

sponding to logical conjunction (“AND”) and logical disjunction (“OR”), respectively.
The value of “AND” (8:) is TRUE only when both of the objects have a value of

TRUE.
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Table 2.2. Logical Conjunction "AND” and Disjunction "OR”.

Statement a Statement b a AND b a OR 12
 

 

 

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

The table shows the value ofa AND b and that of1: OR b when statements
a and b are either TRUE or FALSE.

“OR” (I) is used in a similar way. However, unlike “AND”, “OR” is true when at
least one of the objects has the value TRUE.

 

We summarize these relationships in table 2.2. For example, if one statement is
FALSE and the other is TRUE, then the logical conjunction of the two statements
is FALSE but their logical disjunction is TRUE (the second and third rows of the
table).

With the same principle in mind, we can also chain multiple comparisons together
where all elements must be TRUE in order for the syntax to return TRUE.

 

Furthermore, “AND” and “OR” can be used simultaneously, but parentheses should
be used to avoid confusion.

 

We can perform the logical operations “AND” and “OR” on the entire vector all

at once. In the following syntax example, each element of the TF1 logical vector is
compared against the corresponding element of the logical TF2 vector.
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2.2.2 RELATIONAL OPERATORS

Relational operators evaluate the relationships between two values. They include

“greater than” (>), “greater than or equal to” (>=), “less than” (<), “less than or equal

to” (<=), “equal to” (==, which is different from =), and “not equal to” (!=). These

operators return logical values.

Like the logical operators, the relational operators may be applied to vectors all at

once. When applied to a vector, the operators evaluate each element ofthe vector.

 

Since the relational operators produce logical values, we can combine their outputs

with “AND” (8:) and “OR” (|). When there are multiple instances of evaluation, it is

good practice to put each evaluation within parentheses for ease of interpretation.
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## logical disjunction of two vectors with logical values

(x > 2) I (x <= —1)

## [l] TRUE FALSE FALSE TRUE TRUE

As we saw earlier, the logical values, TRUE and FALSE, can be coerced into integers
(l and 0 representing TRUE and FALSE, respectively). We can therefore compute the
number and proportion ofTRUE elements in a vector very easily.

x.int <— (x > 0) & (x <= 2) # logical vector

x.int

## [1] FALSE TRUE TRUE FALSE FALSE

mean(x.int) # proportion of TRUEs

## [1] 0.4

,«:nm(x.int) # number of TRUEs

## [l] 2

223 SUBSETTHVG

In sections 1.3.3 and 1.3.5, we learned how to subset vectors and data frames using

indexing. Here, we show how to subset them using logical values, introduced above.

At the end of section 2.1, we saw how to calculate the callback rate for the entire

sample by applying the mean ( ) function to the binary call variable. To compute

the callback rate among the résumés with black-sounding names, we use the following
syntax.

## callback rate for black—sounding names

meafi(resume$call[resume$race == "black"])

## [l] 0.06447639

This command syntax subsets the call variable in the resume data frame for

the observations whose values for the race variable are equal to black. That is, we

can utilize square brackets [ ] to index the values in a vector by placing the logical

value of each element into a vector of the same length within the square brackets. The

elements whose indexing value is TRUE are extracted. The syntax then calculates the
sample mean of this subsetted vector using the mean( ) function, which is equal to

the proportion of subsetted observations whose values for the call variable are equal

to 1. It is instructive to print out the logical vector used inside the square brackets for
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subsetting. We observe that ifthe value ofthe race variable equals black (whi te) for

an observation then its corresponding element of the resulting logical vector is TRUE

(FALSE).

## race of first 5 observations

resumesrace [1 : 5]

## [1] white white black black white

## Levels: black white

## comparison of first 5 observations

(resumeSrace == "black") [1:5]

## [l] FALSE FALSE TRUE TRUE FALSE

Note that Levels in the above output represent the values of afactor or categorical

variable, which will later be explained in detail (see section 2.2.5). The calculation of

callback rate for black-sounding names can also be done in two steps. We first subset a
data frame object so that it contains only the résumés with black-sounding names and

then compute the callback rate.

(resume) # dimension of original data frame

## [1] 4870 4

## subset blacks only

resumeB <— resume[resume$race == "black", ]

'=u(resumeB) # this data.frame has fewer rows than the original data.frame

## [1] 2435 4

*t"(resumeB$0all) # callback rate for blacks

## [1] 0.06447639

Here, the data frame resumeB contains only the information about the résumés

with black-sounding names. Notice that we used square brackets [ , ] to index the rows

of this original data frame. Unlike in the case of indexing vectors, we use a comma to

separate row and column indexes. This comma is important and forgetting to include

it will lead to an error.
Instead of indexing through the square brackets, we can alternatively use the

subset ( ) function to construct a data frame that contains just some of the original

observations and just some of the original variables. The function’s two primary

arguments, other than the original data frame object, are the subset and select
arguments. The subset argument takes a logical vector that indicates whether each

individual row should be kept for the new data frame. The select argument takes
a character vector that specifies the names of variables to be retained. For example,
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the following syntax will extract the call and firstname variables for the résumés
which contain female black-sounding names.

## keep "call" and "firstname" variables

## also keep observations with female black—sounding names

resumer <— uubset(resume, select = r(“call“, "firstname"),

subset = (race == "black" & sex == "female"))

head(resumer)

## call firstname

## 3 O Lakisha

## 4 O Latonya

## 8 0 Kenya

## 9 0 Latonya

## ll 0 Aisha

## 13 0 Aisha

When using the subset ( ) function, we can eliminate the subset argu-

ment label. For example, subset (resume, subset = (race == "black"

& sex == " female")) shortens to subset (resume, race == "black“ &

sex == " female" ). Note that one could specify the data frame name to which
the race and sex variables belong, i.e., subset (resume, (resume$race ==

"black" & resumessex == " female" ) ), but this is unnecessary. By default,

the variable names in this argument are assumed to come from the data frame
specified in the first argument (resume in this case). So we can use simpler syntax:

subset (resume, (race == "black" & sex == “ female") ). It is impor-

tant to pay close attention to parentheses so that each logical statement is contained
within a pair of parentheses.

An identical subsetting result can be obtained using [ , ] rather than the subset ( )
function, where the first element ofthe square brackets specifies the rows to be retained

(using a logical vector) and the second element specifies the columns to be kept (using

a character or integer vector).

## alternative syntax with the same results

resumer <— resume[resume$race == "black" & resumessex == "female",

c("call", "firstname")1

We can now separately compute the racial gap in callback rate among female and

male job applicants. Notice that we do not include a selec t argument to specify which
variables to keep. Consequently, all variables will be retained.

## black male

resumeBm <- sunaer(resume, subset = (race == "black") & (sex == "male"))
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## white female

resumewf <- subget(resume, subset = (race == "white") & (sex == “female“))

## white male

resumewm <— subset(resume, subset = (race == “white") & (sex == "male"))

## racial gaps

mean(resumewf$ca11) - mean(resumer$call) # among females

## [1] 0.03264689

moan(resumeWm$ca11) — mean(resumeBm$call) # among miles

## [1] 0.03040786

It appears that the racial gap exists but does not vary across gender groups. For both

female and male job applicants, the callback rate is higher for whites than blacks by

roughly 3 percentage points.

224 SHWPLECONDHTONALSTATEMENTS

In many situations, we would like to perform different actions depending on

whether a statement is true or false. These “actions” can be as complex or as simple

as you need them to be. For example, we may wish to create a new variable based

on the values of other variables in a data set. In chapter 4, we will learn more about

conditional statements, but here we cover simple conditional statements that involve

the ifelse () function.

The function ifelse (X, Y, Z) contains three elements. For each element in X

that is TRUE, the corresponding element in Y is returned. In contrast, for each element

in X that is FALSE, the corresponding element in Z is returned. For example, suppose

that we want to create a new binary variable called BlackFemale in the resume

data frame that equals 1 if the job applicant’s name sounds black and female, and 0

otherwise. The following syntax achieves this goal.

resumeSBlackFemale <— ifelse(resume$race == "black“ &

resumessex == "female", 1, 0)

We then use a three-way contingency table obtained by the table ( ) function to

confirm the result. As expected, the BlackFemale variable equals 1 only when a

résumé belongs to a female African—American.

table(race = resumeSrace, sex = resumessex,

BlackFemale = resumesBlackFemale)

## , , BlackFemale = 0

##

## sex

## race female male

## black 0 549

## white 1860 575
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##

## , , BlackFemale = 1

##

## sex

## race female male

## black 1886 O

## white 0 O

In the above output, the , , BlackFemale = 0 and , , BlackFemale = l
headers indicate that the first two dimensions ofthe three-dimensional table are shown
with the third variable, BlackFemale, equal to 0 and l for the first and second tables,
respectively.

225 FACTOR\#VNABLES

Next we show how to create a factor variable (or factorial variable) in R. A factor

variable is another name for a categorical variable that takes a finite number of distinct
values or levels. Here, we wish to create a factor variable that takes one of the four

values, i.e., BlackFemale, BlackMale, WhiteFemale, and WhiteMale. To do

this, we first create a new variable, type, which is filled with missing values NA. We

then specify each type using the characteristics of the applicants.

resumestype <- NA

resume$type[resume$race == "black" & resume$sex == "female"] <— "BlackFemale"

resume$type[resume$race == "black" & resume$sex == "male"] <— "BlackMale"

resume$typelresume$race == “white" & resume$sex == “female“] <— "WhiteFemale"

resume$type[resume$race == "white" & resumeSsex == "male“] <— "whiteMale"

It turns out that this new variable is a character vector, and so we use the

as . factor () function to turn this vector into a factor variable. While a factor

variable looks like a character variable, the former actually has numeric values called
levels, each of which has a character label. By default, the levels are sorted into
alphabetical order based on their character labels. The levels of a factor variable can

be obtained using the levels ( ) function. Moreover, the table ( ) function can be
applied to obtain the number of observations that fall into each level.

## check object class

Class(resume$type)

## [1] "character“

## coerce new character variable into a factor variable

resume$type <- an_tocial(resume$type)

## list all levels of a factor variable

levels(resume$type)

## [l] "BlackFemale" "BlackMale" “WhiteFemale” "WhiteMale"
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## obtain the number of observations for each level

iablc(resume$type)

##

## BlackFemale BlackMale WhiteFemale WhiteMale

## 1886 549 1860 575

The main advantage of factor objects is that R has a number of useful functionalities

for them. One such example is the tapp1y ( ) function, which applies a function

repeatedly within each level of the factor variable. Suppose, for example, we want to

calculate the callback rate for each of the four categories we just created. Ifwe use the

tapply( ) function this can be done in one line, rather than computing them one by

one. Specifically, we use the function as in tapply (x, INDEX, FUN ) , which applies

the function indicated by argument FUN to the object X for each of the groups defined

by unique values of the vector INDEX. Here, we apply the mean ( ) function to the

call variable separately for each category of the type variable using the resume

data frame.

tawpiw(resume$call, resumestype, mean)

## BlackFemale BlackMale WhiteFemale WhiteMale

## 0.06627784 0.05828780 0.09892473 0.08869565

Recall that the order of arguments in a function matters unless the name of the

argument is explicitly specified. The result indicates that black males have the lowest

callback rate followed by black females, white males, and white females. We can even go
one step further and compute the callback rate for each first name. Using the sort ( )

function, we can sort the result into increasing order for ease of presentation.

## turn first name into a factor variable

resume$firstname <— as.£aoLor(resume$firstname)

## compute callback rate for each first name

callback.name <— :apply(resume$call, resume$firstname, mean)

## sort the result into increasing order

eott(callback.name)

## Aisha Rasheed Keisha Tremayne Kareem

## 0.02222222 0.02985075 0.03825137 0.04347826 0.04687500

## Darnell Tyrone Hakim Tamika Lakisha

## 0.04761905 0.05333333 0.05454545 0.05468750 0.05500000

## Tanisha Todd Jamal Neil Brett

## 0.05797101 0.05882353 0.06557377 0.06578947 0.06779661

## Geoffrey Brendan Greg Emily Anne

## 0.06779661 0.07692308 0.07843137 0.07929515 0.08264463
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As expected from the above aggregate result, we find that many typical names for
black males and females have low callback rates.

In the résumé experiment, we are trying to quantify the causal ejects of applicants’
names on their likelihood of receiving a callback from a potential employer. What do
we exactly mean by causal effects? How should we think about causality in general? In
this section, we discuss a commonly used framework for causal inference in quantitative
social science research.

The key to understanding causality is to think about the counterfactual. Causal
inference is a comparison between the factual (i.e., what actually happened) and the
counterfactual (i.e., what would have happened if a key condition were different). The
very first observation of the résumé experiment data shows that a potential employer
received a résumé with a stereotypically white female first name Al 1 ison but decided
not to call back (the value of the call variable is 0 for this observation).

 

The key causal question here is whether the same employer would have called back
if the applicant’s name were instead a stereotypically African-American name such
as Lakisha. Unfortunately, we would never observe this counterfactual outcome,

because the researchers who conducted this experiment did not send out the same
résumé to the same employer using Lakisha as the first name (perhaps out of fear
that sending two identical résumés with different names would raise suspicion among
potential employers).

Consider another example where researchers are interested in figuring out whether

raising the minimum wage increases the unemployment rate. Some argue that increas-

ing the minimum wage may not be helpful for the poor, because employers would hire
fewer workers if they have to pay higher wages (or hire higher-skilled instead of low-

skilled workers). Suppose that one state in a country decided to raise the minimum

wage and in this state the unemployment rate increased afterwards. This does not

 

 



2.3 Causal Effects and the Counterfactual

Table 2.3. Potential Outcome Framework of Causal lnference.
 

 

Résume' Black-sounding Callback A Ed t'
i name Ti —_—Y}(1) Y1" (0) ge uca Ian

1 1 l ? 20 college

2 0 ? 0 55 high school

3 0 ? l 40 graduate school

n 1 0 ? 62 college
 

Note: The table illustrates the potential outcome framework of causal inference using the example of the
résumé experiment. For each resume of fictitious job applicant 1' , either the black-sounding, T1 = l, or white-

sounding, 7} = 0, name is used. The résumé contains other characteristics such as age and education, which

are neither subject to nor affected by the manipulation. For a résumé with a black—sounding name, we can

observe whether or not it receives a callback from the potential employer who received it, Y} (1), but will not

be able to know the callback outcome if a white-sounding name was used, Y,~(0). For every résumé, only one

of the two potential outcomes is observed and the other is missing (indicated by “?”).

necessarily imply that a higher minimum wage led to the increase in the unemployment

rate. In order to know the causal effect of increasing the minimum wage, we would

need to observe the unemployment rate that would have resulted if this state had not

raised the minimum wage. Clearly, we would never be able to directly survey this

counterfactual unemployment rate. Another example concerns the question ofwhether

a job training program increases one’s prospect of employment. Even if someone who

actually had received job training secured a job afterwards, it does not necessarily

follow that it was the job training program which led to the employment. The person

may have become employed even in the absence of such a training program.

These examples illustrate thefundamental problem ofcausal inference, which arises

because we cannot observe the counterfactual outcomes. We refer to a key causal

variable of interest as a treatment variable, even though the variable may have nothing

to do with a medical treatment. To determine whether a treatment variable of interest

T, causes a change in an outcome variable Y, we must consider two potential outcomes,

i.e., the potential values of Y that would be realized in the presence and absence of

the treatment, denoted by Y(1) and Y(0), respectively. In the résumé experiment, T

may represent the race of a fictitious applicant (T = 1 is a black—sounding name and

T = 0 is a white-sounding name) while Y denotes whether a potential employer who

received the résumé called back. Then, Y(1) and Y(0) represent whether a potential

employer calls back when receiving a résumé with stereotypically black and white
names, respectively.

All of these variables can be defined for each observation and marked by a

corresponding subscript. For example, Yi(1) represents the potential outcome under

the treatment condition for the ith observation, and T,- is the treatment variable for

the same observation. Table 2.3 illustrates the potential outcome framework in the

context of the résumé experiment. Each row represents an observation for which

only one of the two potential outcomes is observed (the missing potential outcome

is indicated by “?”). The treatment status Ti determines which potential outcome is
observed. Variables such as age and education are neither subject to nor affected by the

manipulation of treatment.
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We can now define, for each observation, the causal effect of T,~ on Y,- as the
difference between these two potential outcomes, Yi(l) — Yi(0). The race of the
applicant has a causal effect if a potential employer’s decision to callback depends on it.
As stated earlier, the fundamental problem of causal inference is that we are only able
to observe one of the two potential outcomes even though causal inference requires
comparison of both. An important implication is that for estimation of causal effects,
we must find a credible way to infer these unobserved counterfactual outcomes. This
requires making certain assumptions. The credibility ofany causal inference, therefore,
rests upon the plausibility of these identification assumptions.

 

For each observation i , we can define the causal effect of a binary treatment
T,- as the difference between two potential outcomes, Y,-(1) — Y,~(0), where Y,~(1)

represents the outcome that would be realized under the treatment condition

(Ti = l) and Yi(0) denotes the outcome that would be realized under the control

condition (T,- = O).

The fundamental problem of causal inference is that we observe only one of the
two potential outcomes, and which potential outcome is observed depends on the

treatment status. Formally, the observed outcome Y,- is equal to Y,-(T,-).   
 

This simple framework of causal inference also clarifies what is and is not an

appropriate causal question. For example, consider a question of whether one’s race

causally affects one’s employment prospects. In order to answer this question directly,

it would be necessary to consider the counterfactual employment status ifthe applicant

were to belong to a different racial group. However, this is a difficult proposition to

address because one’s race is not something that can be manipulated. Characteristics

like gender and race are called immutable characteristics, and many scholars believe
that causal questions about these characteristics are not answerable. In fact, there exists

a mantra which states, “No causation without manipulation.” It may be difficult to

think about causality if the treatment variable of interest cannot be easily manipulated.
The résumé experiment, however, provides a clever way of addressing an important

social science question about racial discrimination. Instead of tackling the difficult
task of directly estimating the causal effect of race, the researchers of this study
manipulated potential employers’ perception of job applicants’ race by changing the
names on identical résumés. This research design strategy enables one to study racial
discrimination in the causal inference framework by circumventing the difficulty
of manipulating one’s race itself. Many social scientists use similar research design
strategies to study discrimination due to factors such as race, gender, and religion in
various environments.

Now that we have provided the general definition of causal effects, how should we

go about estimating them? We first consider randomized experiments, also referred
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to as randomized controlled trials (RCTs), in which researchers randomly assign the
receipt of treatment. An RCT is often regarded as the gold standard for establishing

causality in many scientific disciplines because it enables researchers to isolate the

effects of a treatment variable and quantify uncertainty. In this section, we discuss how
randomization identifies the average causal effects. A discussion of how to quantify
uncertainty will be given in chapter 7.

2.4.1 THE ROLE OF RANDOMIZATION

As explained in the previous section, the fundamental problem of causal inference

states that for the estimation of causal effects, we must infer counterfactual outcomes.

This problem prevents us from obtaining a valid estimate of the causal effect of treat-

ment for each individual. However, it turns out that the randomization of treatment

assignment enables the estimation of average treatment effect, which averages the

treatment effect over a group of individuals.

Suppose that we are interested in estimating the sample average treatment effect

(SATE), which is defined as the average of individual-level treatment effects in the
sample.

 

The sample average treatment effect (SATE) is defined as the sample average of

individual-level causal effects (i.e., Y,-(1) —- 16(0)):

1 n

SATE = ;2mm — 14(0)}, (2.1)

where n is the sample size, and 21:1 denotes the summation operator from the

first observation,i = 1, to the last, i = n.  
 

The SATE is not directly observable. For the treatment group that received the

treatment, we observe the average outcome under the treatment but do not know what

their average outcome would have been in the absence of the treatment. The same

problem exists for the control group because this group does not receive the treatment

and as a result we do not observe the average outcome that would occur under the

treatment condition.
In order to estimate the average counterfactual outcome for the treatment group,

we may use the observed average outcome of the control group. Similarly, we can use

the observed average outcome of the treatment group as an estimate of the average

counterfactual outcome for the control group. This suggests that the SATE can be

estimated by calculating the difference in the average outcome between the treatment

and control groups or the difi‘erence-in-means estimator. The critical question is

whether we can interpret this difference as a valid estimate of the average causal effect.

In the résumé experiment, the treatment group consists of the potential employers

who were sent résumés with black-sounding names. In contrast, the control group

comprises other potential employers who received the résumés with stereotypically

white names. Does the difference in callback rate between these two groups represent

the average causal effect of the applicant’s race?
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Randomization of treatment assignment plays an essential role in enabling the
interpretation of this association as a causal relationship. By randomly assigning each
subject to either the treatment or control group, we ensure that these two groups are
similar to each other in every aspect. In fact, even though they consist of different
individuals, the treatment and control groups are on average identical to each other
in terms of all pretreatment characteristics, both observed and unobserved. Since the
only systematic difference between the two groups is the receipt of treatment, we can
interpret the difference in the outcome variable as the estimated average causal effect
of the treatment. In this way, the randomization of treatment assignment separates the

causal effect of treatment from other possible factors that may influence the outcome.

As we will see in section 2.5, we cannot guarantee that the treatment and control

groups are comparable across all unobserved characteristics in the absence of random
assignment.

 

In a randomized controlled trial (RCT), each unit is randomly assigned either

to the treatment or control group. The randomization of treatment assignment

guarantees that the average difference in outcome between the treatment and

control groups can be attributed solely to the treatment, because the two groups
are on average identical to each other in all pretreatment characteristics.   
 

RCTs, when successfully implemented, can yield valid estimates of causal effects.

For this reason, RCTs are said to have a significant advantage for internal validity,

which refers to whether the causal assumptions are satisfied in the study. However,
RCTs are not without weaknesses. In particular, their strong internal validity often
comes with a compromise in external validity. External validity is defined as the extent
to which the conclusions can be generalized beyond a particular study. One common

reason for a lack of external validity is that the study sample may not be representative

of a population of interest. For ethical and logistical reasons, RCTs are often done
using a convenient sample of subjects who are willing to be study subjects. This is an
example of sample selection bias, making the experimental sample nonrepresentative

of a target population. Another potential problem of external validity is that RCTs are

often conducted in an environment (e.g., laboratory) quite different from real-world

situations. In addition, RCTs may use interventions that are unrealistic in nature. As we

saw in the résumé experiment, however, researchers have attempted to overcome these

problems by conducting RCTs in the field and making their interventions as realistic
as possible.

 

The main advantage of randomized controlled trials (RCTs) is their improved

internal validity—the extent to which causal assumptions are satisfied in the

study. One weakness ofRCTs, however, is the potential lack ofexternal validity—
the extent to which the conclusions can be generalized beyond a particular study.   
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Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We’ve been talking about the problem for years, but

it only seems to get worse. This year, we’re taking a new approach.
We’re sending this mailing to you and your neighbors to publicize who does and does not

vote.

The chart shows the names of some of your neighbors, showing which have voted in the
past. After the August 8 election, we intend to mail an updated chart. You and your
neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

MAPLE DR Aug 04 Nov 04 Aug 06

9995 JOSEPH JAMES SMITH Voted Voted
995 JENNIFER KAY SMITH Voted
9997 RICHARD B JACKSON Voted
9999 KATHY MARIE JACKSON Voted

Figure 2.1. Naming-and-Shaming Get-out-the-Vote Message. Reprinted from Gerber,

Green, and Larimer (2008).

2.4.2 SOCIAL PRESSURE AND VOTER TURNOUT

We consider a study of peer pressure and voter turnout,2 another example of an

RCT. Three social scientists conducted an RCT in which they investigated whether
social pressure within neighborhoods increases participation. Specifically, during a

primary election in the state of Michigan, they randomly assigned registered voters

to receive different get-out-the—vote (GOTV) messages and examined whether sending

postcards with these messages increased turnout. The researchers exploited the fact

that the turnout of individual voters is public information in the United States.

The GOTV message of particular interest was designed to induce social pressure by

telling voters that after the election their neighbors would be informed about whether

they voted in the election or not. The researchers hypothesized that such a naming-

and-shaming GOTV strategy would increase participation. An example of the actual

naming-and-shaming message is shown in figure 2.1. In addition to the control group,

which did not receive any mailing, the study also included other GOTV messages.
For example, a standard “civic duty” message began with the same first two sentences

of the naming-and—shaming message, but did not contain the additional information
about neighbors learning about a person’s electoral participation. Instead, the message

continued to read as follows:

The whole point of democracy is that citizens are active participants in

government; that we have a voice in government. Your voice starts with your

vote. On August 8, remember your rights and responsibilities as a citizen.

Remember to vote. DO YOUR CIVIC DUTY — VOTE!

2 This section is based on Alan S. Gerber, Donald P. Green, and Christopher W. Larimer (2008) “Social

pressure and voter turnout: Evidence from a large—scale field experiment.” American Political Science Review,

vol. 102, no. 1, pp. 33—48.
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Another important feature of this RCT is that the researchers attempted to separate
the effect of naming-and-shaming from that of being observed. In many RCTs, there
is a concern that study subjects may behave differently if they are aware of being
observed by researchers. This phenomenon is called the Hawthorne effect, named after

the factory where researchers observed an increase in workers’ productivity simply
because they knew that they were being monitored as part of a study. To address this

issue, the study included another GOTV message, which starts with “YOU ARE BEING
STUDIED!” followed by the same first two sentences as the naming-and-shaming
message. The rest of the message reads,

This year, we’re trying to figure out why people do or do not vote. We’ll be

studying voter turnout in the August 8 primary election. Our analysis will be
based on public records, so you will not be contacted again or disturbed in any

way. Anything we learn about your voting or not voting will remain confidential
and will not be disclosed to anyone else. DO YOUR CIVIC DUTY — VOTE!

The Hawthorne effect refers to the phenomenon where study subjects behave

differently because they know they are being observed by researchers.

In this experiment, therefore, there are three treatment groups: voters who receive
either the social pressure message, the civic duty message, or the Hawthorne effect

message. The experiment also has a control group which consists of those voters

receiving no message. The researchers randomly assigned each voter to one of the four
groups and examined whether the voter turnout was different across the groups.
Now that we understand the design of this experiment, let us analyze the data. The

data file, which is in CSV format, is named social . csv and can be loaded into R
via the read. csv( ) function. Table 2.4 displays the names and descriptions of the

variables in the social pressure experiment data.

social <- read.csv("social.csv") # load the data

summary(social) # summarize the data

##

##

##

##

##

##

##

##

##

##

##

##

##

##

sex yearofbirth primary2004

female:152702 Min. :1900 Min. :0.0000

male :153164 lst Qu.:l947 lst Qu.:0.0000

Median :1956 Median :0.0000

Mean :1956 Mean :0.4014

3rd Qu.:1965 3rd Qu.:l.0000

Max. :1986 Max. :1.0000

messages primary2006 hhsize

Civic Duty: 38218 Min. :0.0000 Min. :1.000

Control :191243 lst Qu.:0.0000 lst Qu.:2.000

Hawthorne : 38204 Median :0.0000 Median :2.000

Neighbors : 38201 Mean :0.3122 Mean :2.184

3rd Qu.:l.0000 3rd Qu.:2.000

Max. :1.0000 Max. :8.000
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Table 2.4. Social Pressure Experiment Data.
 

 

Variable Description

hhsize household size of the voter

messages GOTV messages the voter received (Civic Duty,

Control, Neighbors, Hawthorne)

sex sex of the voter (female or male)

yearofbirth year of birth ofthe voter

primaryz 0 04 whether the voter voted in the 2004 primary election

(1=voted, 0=abstained)

primaryz 00 6 whether the voter turned out in the 2006 primary election

(l=voted, 0=abstained)
 

As shown in section 2.2.5, we can use the tapply ( ) function to compute the

turnout for each treatment group. Subtracting the baseline turnout from the control

group gives the average causal effect ofeach message. Note that the outcome variable of

interest is the turnout in the 2006 primary election, which is coded as a binary variable

primary2 0 0 6 where 1 represents turnout and 0 is abstention.

 

We find that the naming-and-shaming GOTV message substantially increases
turnout. Compared to the control group turnout, the naming-and-shaming message

increases turnout by 8.1 percentage points, whereas the civic duty message has a much

smaller effect of 1.8 percentage points. It is interesting to see that the Hawthorne eflect
ofbeing observed is somewhat greater than the effect ofthe civic duty message, though
it is far smaller than the effect ofthe naming-and-shaming message.

Finally, if the randomization of treatment assignment is successful, we should not
observe large differences across groups in the pretreatment variables such as age (indi-
cated by yearofbirth), turnout in the previous primary election (primaryz 0 04),

and household size (hhsi ze). We examine these using the same syntax.
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We see that the differences in these pretreatment variables are negligible across
groups, confirming that the randomization of treatment assignment makes the four
groups essentially identical to one another on average.

Although RCTs can provide an internally valid estimate of causal effects, in many
cases social scientists are unable to randomize treatment assignment in the real

world for ethical and logistical reasons. We next consider observational studies in
which researchers do not conduct an intervention. Instead, in observational studies,
researchers simply observe naturally occurring events and collect and analyze the
data. In such studies, internal validity is likely to be compromised because of possible
selection bias, but external validity is often stronger than that of RCTs. The findings
from observational studies are typically more generalizable because researchers can
examine the treatments that are implemented among a relevant population in a real-

world environment.

2.5.1 MINIMUM WAGE AND UNEMPLOYMENT

Our discussion of observational studies is based on the aforementioned minimum-
wage debate. Two social science researchers examined the impact of raising the
minimum wage on employment in the fast-food industry.3 In 1992, the state of
New Iersey (NI) in the United States raised the minimum wage from $4.25 to $5.05
per hour. Did such an increase in the minimum wage reduce employment as economic

theory predicts? As discussed above, answering this question requires inference about
the NI employment rate in the absence ofsuch a raise in the minimum wage. Since this

3 This section is based on David Card and Alan Krueger (1994) “Minimum wages and employment: A case
study of the fast-food industry in New Jersey and Pennsylvania.” American Economic Review, vol. 84, no. 4,
pp. 772-793.
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Table 2.5. Minimum-Wage Study Data.
 

 

Variable Description

chain name of the fast-food restaurant chain

location location of the restaurants (centralNJ, northNJ, PA,

shoreNJ, southNJ)

wageBefore wage before the minimum-wage increase

wageAfter wage after the minimum-wage increase

fullBefore number of full-time employees before the

minimum-wage increase

fullAfter number of full-time employees after the minimum-wage

increase

partBefore number ofpart-time employees before the

minimum-wage increase

partAfter number ofpart-time employees after the minimum-wage

increase
 

counterfactual outcome is not observable, we must somehow estimate it using observed

data.
One possible strategy is to look at another state in which the minimum wage did

not increase. For example, the researchers of this study chose the neighboring state,

Pennsylvania (PA), on the grounds that NI’s economy resembles that of Pennsylvania,

and hence the fast-food restaurants in the two states are comparable. Under this

cross-section comparison design, therefore, the fast-food restaurants in NI serve as the

treatment group receiving the treatment (i.e., the increase in the minimum wage),

whereas those in PA represent the control group, which did not receive such a
treatment. To collect pretreatment and outcome measures, the researchers surveyed
the fast-food restaurants before and after the minimum wage increase. Specifically,

they gathered information about the number of full-time employees, the number of

part-time employees, and their hourly wages, for each restaurant.

The CSV file minwage . csv contains this data set. As usual, the read. csv()

function loads the data set, the dim() function gives the number of observations
and the number of variables, and the summary” function provides a summary of

each variable. Table 2.5 displays the names and descriptions of the variables in the

minimum-wage study data.
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To make sure that the restaurants followed the law, we first examine whether the

minimum-wage actually increased in NI after the law was enacted. We first subset the
data based on location and then calculate the proportion of restaurants in each state
with hourly wages less than the new minimum wage in NI, i.e., $5.05. This analysis can
be done using the wageBefore and wageAfter variables, which represent the wage
before and after the NI law went into effect. The subset () function can be used to

conduct this analysis.
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We observe that more than 91% of NI restaurants were paying less than $5.05
before the minimum wage was raised and yet afterwards the proportion of such
restaurants dramatically declined to less than 1%. In contrast, this proportion is

essentially unchanged in PA, suggesting that the NI law had minimal impact on the
wages in PA restaurants. The analysis shows that the NI restaurants followed the law
by increasing their wage above the new minimum wage $5.05 while the PA restaurants
did not have to make a similar change.
We now use the PA restaurants as the control group and estimate the average causal

effect of increasing the minimum wage on employment among the NI restaurants.

An economic theory would predict that raising the minimum wage will encourage
employers to replace full-time employees with part-time ones to recoup the increased

cost in wages. To test this theory, we examine the proportion of full-time employees

as a key outcome variable by simply comparing the sample mean of this variable
between the N] and PA restaurants after the NI law went into effect. Let’s compute

this difference-in-means estimator.

 

The result of this analysis suggests that the increase in the minimum wage had no
negative impact on employment. If anything, it appears to have slightly increased the

proportion of full-time employment in N] fast-food restaurants.

2.5.2 CONFOUNDING BIAS

The important assumption ofobservational studies is that the treatment and control
groups must be comparable with respect to everything related to the outcome other
than the treatment. In the current example, we cannot attribute the above difference in
the full-time employment rate between N] and PA restaurants to the minimum-wage

increase in NI if, for example, there is a competing industry for low-skilled workers in
NI but such an industry does not exist in PA. If that is the case, then the restaurants in
the two states are not comparable and PA restaurants cannot serve as a valid control

group for NI restaurants. Indeed, NI restaurants may have had a relatively high full-
time employment rate, even in the absence of the increased minimum wage, in order

to attract low-skilled workers. More generally, any other differences that exist between
the fast-food restaurants in the two states before the administration ofthe NI law would

bias our inference if they are also related to outcomes.
The pretreatment variables that are associated with both the treatment and outcome

variables are known as confounders. They are the variables that are realized prior to
the administration of treatment and hence are not causally affected by the treatment.
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However, they may determine who is likely to receive the treatment and influence the
outcome. The existence of such variables is said to confound the causal relationship
between the treatment and outcome, making it impossible to draw causal inferences

from observational data. Confounding bias of this type is often a serious concern for
social science research because in many cases human beings self-select into treatments.
The aforementioned possibility that there exists a competing industry in N] but not in

PA is an example of confounding.

 

A pretreatment variable that is associated with both the treatment and the

outcome variables is called a confounder and is a source of confounding bias

in the estimation of the treatment effect.
 

Confounding bias due to self-selection into the treatment group is called selection

bias. Selection bias often arises in observational studies because researchers have no
control over who receives the treatment. In the minimum-wage study, N] politicians

decided to increase the minimum wage at this particular moment in time whereas
politicians in PA did not. One might suspect that there were reasons, related to the

economy and employment in particular, why the minimum wage was raised in NI

but not in PA. If that is the case, then the cross-sectional comparison of N] and

PA after the minimum-wage increase in N] is likely to yield selection bias. The lack

of control over treatment assignment means that those who self-select themselves

into the treatment group may differ significantly from those who do not in terms of

observed and unobserved characteristics. This makes it difficult to determine whether

the observed difference in outcome between the treatment and control groups is due

to the difference in the treatment condition or the differences in confounders. The
possible existence ofconfounding bias is the reason behind the existence ofthe popular

mantra, “Association does not necessarily imply causation.”
In observational studies, the possibility of confounding bias can never be ruled out.

However, researchers can try to address it by means of statistical control, whereby the
researcher adjusts for confounders using statistical procedures. We describe some basic
strategies in this section. One simple way is the statistical method called subclassifica-
tion. The idea is to make the treatment and control groups as similar to each other as
possible by comparing them within a subset of observations defined by shared values

in pretreatment variables or a subclass. For example, we notice that the PA sample

has a larger proportion of Burger Kings than the N] sample. This difference between

the two states could confound the relationship between minimum-wage increase and
employment if, for example, Burger King has an employment policy that is different
from that of other fast-food chains. To address this possibility, we could conduct a

comparison only among Burger King restaurants. This analysis enables us to eliminate

the confounding bias due to different fast—food chains through statistical control.

To begin our analysis, we first check the proportions ofdifferent fast-food chains for
each of the two samples. We use the prop . table ( ) function, which takes as its main

input the output from the table ( ) function, i.e., a table of counts, and converts it to
proportions.
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nxop,tgbiG(gabic(minwageNJ$chain))

##

## burgerking kfc roys wendys

## 0.4054983 0.2233677 0.2508591 0.1202749

pron.tab?c(tabie(minwagePA$Chain))

##

## burgerking kfc roys wendys

## 0.4626866 0.1492537 0.2238806 0.1641791

The result shows that PA has a higher proportion of Burger King restaurants
than N]. We compare the full—time employment rate between N] and PA Burger
King restaurants after the increase in the minimum wage. Though not shown

here, a similar analysis can be conducted for other fast-food chain restaurants

as well.

## subset Burger King only

minwageNJ.bk <— cnflsct(minwageNJ, subset = (chain == "burgerking"))

minwagePA.bk <— wuhmot(minwagePA, subset = (chain 2: "burgerking“))

## comparison of full—time employment rates

mcan(minwageNJ.kafullPropAfter) — wean(minwagePA.bksfullPropAfter)

## [1] 0.03643934

This finding is quite similar to the overall result presented earlier, suggesting that

the fast-food chain may not be a confounding factor.
Another possible confounder is the location of restaurants. In particular, it may

be the case that the N] Burger King restaurants closer to PA yield a more credible

comparison to those in PA, perhaps because their local economies share similar

characteristics. To address this possible confounding bias, we may further subclassify

the data on the basis of restaurant location. Specifically, we focus on the Burger King

restaurants located in northern and southern N] that are near PA, while excluding

those in the Jersey shore and central New Jersey, and repeat the analysis. This

analysis adjusts for both the type of restaurants and their locations through statistical

control.

minwageNJ.bk.subset <—

san5¢e(minwageNJ.bk, subset = ((location != "shoreNJ") &

(location != "centralNJ")))

mean(minwageNJ.bk.subsetsfullPropAfter) — mrav(minwagePA.kafullPropAfter)

## [1] 0.03149853
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The result shows that even within this smaller subset of the original data, the esti-

mated impact of the minimum-wage increase remains similar to the overall estimate.
This finding further improves our confidence in the claim that the increase in the
minimum wage had little effect on full-time employment.

 

Confounding bias can be reduced through statistical control. For example, we
can use the method of subclassification by comparing treated and control units
which have an identical value of a confounding variable.
 

2.5.3 BEFORE-AND-AFTER AND DIFFERENCE-IN-DIFFERENCES DESIGNS

In observational studies, the data collected over time are a valuable source of
information. Multiple measurements taken over time on the same units are called
longitudinal data or panel data. Longitudinal data often yield a more credible com-
parison of the treatment and control groups than cross-section data because the

former contain additional information about changes over time. In the minimum-
wage study, the researchers had collected the employment and wage information

from the same set of restaurants before the minimum wage was increased in N].

This pretreatment information allows several alternative designs for estimating causal
effects in observational studies.

The first possibility is comparison between pre- and posttreatment measure-
ments, which is called the before-and-after design. Instead of comparing the fast-
food restaurants in NJ with those in PA after the increase in the NJ minimum

wage, this design compares the same set of fast-food restaurants in NI before and

after the minimum wage was raised. We compute the estimate under this design as
follows.

 

The before-and-after analysis gives an estimate that is similar to those obtained
earlier. The advantage of this design is that any confounding factor that is specific to

each state is held constant because the comparison is done within N]. The disadvantage

of the before-and-after design, however, is that time-varying confounding factors
can bias the resulting inference. For example, suppose that there is an upwards time
trend in the local economy and wages and employment are improving. If this trend

is not caused by the minimum-wage increase, then we may incorrectly attribute
the outcome difference between the two time periods to the raise in the minimum
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Figure 2.2. The Difference-in-Differences Design in the Minimum-Wage Study. The

observed outcomes, i.e., the average proportion of full-time employees, are shown

before and after the increase in the minimum wage for both the treatment group (fast-

food restaurants in New Jersey; solid black circles) and the control group (restaurants

in Pennsylvania; open black circles). Under the difference-in—differences design, the

counterfactual outcome for the treatment group (solid blue triangle) is estimated by

assuming that the time trend for the treatment group is parallel to the observed trend

for the control group. The estimated average causal effect for New Jersey restaurants is

indicated by the curly brace.

wage. The before—and-after design critically rests upon the nonexistence of such time

trends.

 

The before-and-after design examines how the outcome variable changed from
the pretreatment period to the posttreatment period for the same set of units. The

design is able to adjust for any confounding factor that is specific to each unit but

does not change over time. However, the design does not address possible bias due

to time-varying confounders.  
 

The difierence—in-difierences (DiD) design extends the before-and-after design to
address the confounding bias due to time trends. The key assumption behind the DiD

design is that the outcome variable follows a parallel trend in the absence of treatment.

Figure 2.2 graphically illustrates this assumption using the minimum-wage study data.

The figure shows the outcome of interest, i.e., the average proportion of full-time

employees, before and after the increase in the minimum wage for both the treatment

group (fast-food restaurants in N], indicated by the solid black circles) and the control
group (restaurants in PA, represented by the open black circles). In this setting, we can

estimate the counterfactual outcome for the treatment group by assuming that the time
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trend for the treatment group is parallel to the observed trend for the control group.

This estimate is indicated by the solid blue triangle.

Here, the counterfactual outcome of interest is the average proportion of full-time

employees that we would have observed if N] did not raise the minimum wage. We
estimate this counterfactual outcome by supposing that N] would have experienced

the same economic trend as PA in the absence of the minimum-wage increase. In

the figure, the blue dashed line is drawn to obtain the estimate of this counterfactual
outcome and runs parallel to the observed time trend for the control group (indicated

by the black solid line).

Under the DiD design, the sample average causal effect estimate for the N] restau-

rants is the difference between the observed outcome after the minimum-wage increase
and the counterfactual outcome derived under the parallel time trend assumption. The

quantity of interest under the DiD design is called the sample average treatment eflect
for the treated (SATT). SATT differs from SATE, which is defined in equation (2.1),

because it applies only to the treatment group, which consists of NI restaurants in
the current example.4 In the figure, this estimate is indicated by the curly brace.
To compute this estimate, we first calculate the difference in the outcome for the

restaurants in PA after and before the minimum wage was raised in NI. We then
subtract this difference from the estimate obtained under the before-and-after design,

which equals the difference in N] after and before the minimum-wage increase. The

average causal effect estimate is, therefore, given by the difference in the before-and-
after differences between the treatment and control groups.

In this way, the DiD design uses the pretreatment and posttreatment measurements

obtained for both the treatment and control groups. In contrast, the cross-section
comparison requires only the posttreatment measurements from the two groups, and

the before-and-after design utilizes the pretreatment and posttreatment measurements

for the treatment group alone.

 

The difference-in-differences (DiD) design uses the following estimate of the

sample average treatment effect for the treated (SATT):

. . —after —before —after —before
DID estimate = (Y Y ) — (Ycontrol — Ycomml)treated _ treated

J
 

V V

difference for the treatment group difference for the control group

The assumption is that the counterfactual outcome for the treatment group has a
time trend parallel to that of the control group.   
 

In the case of the minimum-wage study, we can compute the DiD estimate as

follows.

4 Formally, the sample average treatment effect for the treated (SATT) is the sample average of individual-
level causal effect among the treated units, SATT = "ll 22;, T1{Y.'(l) — 16(0)}, where T.- is the binary treatment

indicator variable and m = 2:; T,- is the size of the treatment group.
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The result is inconsistent with the prediction of some economists that raising the
minimum wage has a negative impact on employment. To the contrary, our DiD

analysis suggests that, if anything, the increase in the minimum wage may have led
to a small rise in the proportion of full-time employees in NI fast-food restaurants. The

DiD estimate is greater than the before-and-after estimate, which reflected a negative
trend in PA. .
When does the DiD design fail? The DiD design yields an invalid estimate of causal

effect ifthe time trend ofthe counterfactual outcome for the treatment group is not par-
allel to the observed time trend for the control group. We cannot verify this assumption
because the counterfactual time trend for the treatment group is unobserved. However,
in some cases, we can increase the credibility of this assumption. For example, if
researchers had collected employment information from the restaurants in earlier time

periods, then they could have examined whether the proportion of full-time employees

in NI restaurants had changed parallel to that of PA restaurants when the minimum

wage had not been raised.

So far, we have been examining the average outcome as the quantity of interest, but
it is also possible to consider some other statistics ofoutcome. As the final topic of this

chapter, we discuss how to numerically summarize the distribution of a single variable
using descriptive statistics. We have already seen some examples ofdescriptive statistics,

including the range (i.e., minimum and maximum values), median, and mean. In
this section, we introduce other commonly used univariate statistics to describe the
distribution ofa single variable.

2.6.1 QUANTILES

We begin by introducing quantiles, which divide a set of observations into groups
based on the magnitude of the variable. An example of quantiles is the median, which
divides the data into two groups, one with lower data values and the other with higher
values. That is, the median of a variable equals the middle value if the total number of

observations is odd, whereas the median is the average oftwo middle values ifthe total
number of observations is even (because there is no single middle value in this case).
For example, the median of {1, 3, 4, 10} is 3.5, which is the average ofthe middle values

3 and 4, because this example has an even number of values. Meanwhile, the mean of

this vector is 4.5.
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While both the mean and median measure the center of the distribution, the mean
is more sensitive to outliers. For example, a single observation of extreme value can

dramatically change the mean but it will not affect the median as much. The median of
{1, 3, 4, 10, 82} is 4, but the mean now increases to 20. In the minimum-wage data,

the mean and median wages are similar. For example, the median wage before the
minimum-wage increase is $4.50, which is close to its mean of $4.62.

The median of a variable x is defined as:

X((n+1)/2) if n iS Odd,

median = 1 (2.2)

E (X(n/z) + x(n/2+1)) if n is even,

where x(,-) denotes the value of the i th smallest observation for variable x and n is

the sample size. The median is less sensitive to outliers than the mean and hence
is a more robust measure of the center of a distribution.

To examine the robustness of previous findings, we examine how the increase in

the minimum wage influenced the proportion of full-time employees in terms of the
median rather than the mean. The median of a variable can be computed by using the

median() function.

## cross—section comparison between NU and PA

med an(minwageNJ$fullPropAfter) — mafi3nu(minwagePA$fullPropAfter)

## [l] 0.07291667

## before and after comparison

NJdiff.med <— medLax(minwageNJsfullPropAfter) -

med i o c. (minwageNJSfullPropBefore)

NJdiff.med

## [1] 0.025

## median difference-in-differences

PAdiff.med <— medimi(minwagePAsfullPropAfter) —

mecii an (minwagePA$ fullPropBefore)

NJdiff.med — PAdiff.med

## [1] 0.03701923

These results are largely consistent with those of the previous analysis, though the

DiD estimate is smaller than before. Again, there is little evidence for the hypothesis
that increasing the minimum wage decreases full-time employment. Ifanything, it may
have instead slightly increased full-time employment.

To obtain a more complete description of the distribution, we can use quartiles,

which divide the data into four groups. The first quartile (or lower quartile) is the
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value under which 25% of the observations fall, while the proportion of observations

below the third quartile (or upper quartile) is 75%. The second quartile is equal to the

median. The quartiles are a part of the output from the summary ( ) function along
with the minimum, mean, and maximum values. In addition, the difference between
the upper and lower quartiles (i.e., 75th percentile and the 25th percentile) is called the

interquartile range or IQR. That is, the IQR represents the range that contains 50% of

the data, thereby measuring the spread of a distribution. This statistic can be computed

by the IQR ( ) function.

## summary shows quartiles as well as minimum, maximum, and mean

(minwageNszageBefore)

## Min. lst Qu. Median Mean 3rd Qu. Max.

## 4.25 4.25 4.50 4.61 4.87 5.75

(minwageNszageAfter)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.000 5.050 5.050 5.081 5.050 5.750

## interquartile range

.j‘(minwageNJSwageBefore)

## [1] 0.62

.‘.(minwageNJ$wageAfter)

## [1] 0

This analysis shows that before the minimum-wage increase, the distribution of

wages ranged from $4.25 to $5.75 with 75% of the fast—food restaurants in N] having
wages of $4.87 per hour or less. However, after the minimum wage was raised to $5.05,

many restaurants raised their wages just to the new minimum wage but not any higher.

As a result, both the lower and upper quartiles are equal to $5.05, reducing the IQR

from $0.62 to $0.
Finally, quartiles belong to a class of general statistics called quantiles, which divide

the observations into a certain number of equally sized groups. Other quantiles include

terciles (which divide the data into 3 groups), quintiles (5 groups), deciles (10 groups),

and percentiles (100 groups). The quantile ( ) function can generate any quantiles

by specifying the probs argument. This argument takes a sequence of probabilities,

indicating how the data should be divided up. For example, the deciles of the wage

variable are obtained using the seq( ) function to create a sequence of numbers 0,

0.1,”.,0.9,l.

## deciles (10 groups)

ya.‘.:(minwageNJ$wageBefore, probs = -e<(from = 0, to = 1, by = 0.1))

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

## 4.25 4.25 4.25 4.25 4.50 4.50 4.65 4.75 5.00 5.00 5.75
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We find that at least 90% of the fast-food restaurants in NI set their wages to $5.05
or higher after the law was enacted. In contrast, before the increase in the minimum
wage, there were few restaurants that offered wages of $5.05 or higher. Thus, the law
had a dramatic effect on raising the wage to the new minimum wage, but no higher
than that. In fact, the highest wage stayed unchanged at $5.75 even after the minimum
wage was increased.

 

Quantiles represent a set of data values that divide observations into a certain
number ofequally sized groups. They include quartiles (dividing the observations

into 4 groups) and percentiles (100 groups):

. 25th percentile = lower quartile;
- 50th percentile = median;

. 75th percentile = upper quartile.

The difference between the upper and lower quartiles is called the interquartile
range and measures the spread of a distribution.   
 

2.6.2 STANDARD DEVIATION

We have used the range and quantiles (including the IQR) to describe the spread

of a distribution. Another commonly used measure is standard deviation. Before
introducing standard deviation, we first describe a statistic called the root mean square
or RMS. The RMS describes the magnitude of a variable and is defined as

RMS = «/ mean of squared entries

entry12 + entry22 + - --
number of entries

(2.3)

 

Equation (2.3) gives the formal mathematical definition. The equation exactly follows
its name—square each entry, compute the mean, and then take the square root.
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While the mean describes the center of the distribution, the RMS represents the

average absolute magnitude of each data entry, ignoring the sign of the entry (e.g., the
absolute magnitude or absolute value of —2 is 2 and is written as |—2|). For example,

the mean of {—2, —l, 0, 1, 2} is 0 but its RMS is J5. In the minimum-wage data,

we can compute the RMS of the change in the proportion of full-time employees

before and after the increase in the minimum wage, which is quite different from
its mean.

 

Thus, on average, the absolute magnitude of change in the proportion of full-time

employees, after the minimum wage was raised, is about 0.3. This represents a relatively

large change even though the average difference is close to zero.
Using the RMS, we can define the sample standard deviation as the average deviation

ofeach data entryfrom its mean. Therefore, the standard deviation measures the spread

of a distribution by quantifying how far away data points are, on average, from their

mean. Specifically, the standard deviation is defined as the RMS of deviation from the

average:

standard deviation = RMS of deviation from average

 

 

\/(entry1 — mean)2 + (entry2 - mean)2 + ---

number of entries

(2.4)

 

In some cases, one uses n — 1 instead of n in the denominator of equation (2.4)

for a reason that will become clear in chapter 7, but this results in only a minor
difference so long as one has enough data. We note that few data points are more
than 2 or 3 standard deviations away from the mean. Hence, knowing the standard
deviation helps researchers understand the approximate range of the data as well.

Finally, the square of the standard deviation is called the variance and represents the
average squared deviation from the mean. We will study variance more closely in later

chapters. Variance is more difficult to interpret than standard deviation, but it has

useful analytical properties, as shown in chapter 6.
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The sample standard deviation measures the average deviation from the mean
and is defined as

 

7|

$20G — 5C)2 01' \ n11 ZUQ— 55):,
i=1 i=1

 standard deviation =

 

 

where it represents the sample mean, i.e., 5: = % 2L1 x,- and n is the sample size.
Few data points lie outside 2 or 3 standard deviations away from the mean. The
square ofthe standard deviation is called the variance.   
In R, we can easily compute the standard deviation using the sd() function (this

function uses n — 1 in its denominator). The var () function returns the sample

variance. The examples from the minimum-wage data are given here.

 

The results indicate that, on average, the proportion of full-time employees for a
N] fast-food restaurant is approximately 0.2 away from its mean. We find that for this

variable the standard deviation did not change much after the minimum wage had been
increased.

We began this chapter with the analysis of an experimental study concerning racial

discrimination in the labor market. The fundamental problem of causal inference is

the fact that we observe only one of two potential outcomes and yet the estimation

of causal effect involves comparison between counterfactual and factual outcomes.
This chapter also introduced various research design strategies to infer counterfactual
outcomes from observed data. It is important to understand the assumptions that

underlie each research design as well as their strengths and weaknesses.
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In randomized controlled experiments (RCTs), a simple comparison of the treat-

ment and control groups enables researchers to estimate the causal effects oftreatment.

By randomizing the treatment assignment, we can ensure that the treatment and
control groups are, on average, identical to each other in all observed and unobserved

characteristics except for the receipt oftreatment. Consequently, any average difference

between the treatment and control groups can be attributed to the treatment. While
RCTs tend to yield internally valid estimates of causal effects, they often suffer from a
lack of external validity, which makes it difficult to generalize empirical conclusions to
a relevant population in real-world settings.

In observational studies, researchers do not directly conduct interventions. Since

some subjects may self-select into the treatment group, the difference in outcome

between the treatment and control groups can be attributed to factors other than the

receipt of treatment. Thus, while observational studies often have stronger external

validity, this advantage typically comes with compromises in internal validity. When

the treatment assignment is not randomized, we must confront the possibility of

confounding bias in observational studies using statistical control. The existence of
confounders that are associated with both the treatment and outcome means that

a simple comparison of the two groups yields misleading inference. We introduced

various research design strategies to reduce such bias, including subclassification,

before-and-after design, and difference—in-differences design.
Finally, we learned how to subset data in various ways using R. Subsetting can

be done using logical values, relational operators, and conditional statements. We

also introduced a number of descriptive statistics that are useful for summarizing

each variable in a data set. They include the mean, median, quantiles, and standard

deviation. R provides a set of functions that enable researchers to compute these and

other descriptive statistics from their data sets.

2.8.1 EFFICACY OF SMALL CLASS SIZE IN EARLY EDUCATION

The STAR (Student—Teacher Achievement Ratio) Project is a four-year longitudinal

study examining the effect of class size in early grade levels on educational performance

and personal development.5 A longitudinal study is one in which the same participants
are followed over time. This particular study lasted from 1985 to 1989 and involved
11,601 students. During the four years of the study, students were randomly assigned

to small classes, regular-sized classes, or regular-sized classes with an aid. In all, the
experiment cost around $12 million. Even though the program stopped in 1989 after

the first kindergarten class in the program finished third grade, the collection ofvarious
measurements (e.g., performance on tests in eighth grade, overall high-school GPA)
continued through to the end of participants’ high—school attendance.
We will analyze just a portion of this data to investigate whether the small class sizes

improved educational performance or not. The data file name is STAR. csv, which is

5 This exercise is in part based on Frederick Mosteller (1995) “The Tennessee study of class size in the early

school grades.” The Future ofChildren, vol. 5, no. 2, pp. 113—127.
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Table 2.6. STAR Project Data.
 

 

Variable Description

race student’s race (white = 1, black = 2, Asian = 3,

Hispanic = 4, Native American = 5, others = 6)

classtype type of kindergarten class (small = 1, regular = 2,

regular with aid = 3)

g4math total scaled score for the math portion ofthe fourth—grade

standardized test

g4reading total scaled score for the reading portion of the

fourth-grade standardized test

yearssmal 1 number of years in small classes

hsgrad high-school graduation (did graduate = 1,

did not graduate = O)
 

in CSV format. The names and descriptions of variables in this data set are displayed

in table 2.6. Note that there are a fair amount of missing values in this data set, which
arise, for example, because some students left a STAR school before third grade, or did

not enter a STAR school until first grade.

1. Create a new factor variable called kinder in the data frame. This variable
should recode classtype by changing integer values to their corresponding
informative labels (e.g., change 1 to small etc.). Similarly, recode the race

variable into a factor variable with four levels (white, black, hispanic,

others) by combining the Asian and Native American categories with the
others category. For the race variable, overwrite the original variable in the data

frame rather than creating a new one. Recall that na . rm = TRUE can be added

to functions in order to remove missing data (see section 1.3.5).

2. How does performance on fourth-grade reading and math tests for those students
assigned to a small class in kindergarten compare with those assigned to a regular-

sized class? Do students in the smaller classes perform better? Use means to

make this comparison while removing missing values. Give a brief substantive

interpretation of the results. To understand the size of the estimated effects,
compare them with the standard deviation of the test scores.

3. Instead ofjust comparing average scores of reading and math tests between those
students assigned to small classes and those assigned to regular-sized classes, look

at the entire range of possible scores. To do so, compare a high score, defined
as the 66th percentile, and a low score (the 33rd percentile) for small classes

with the corresponding score for regular classes. These are examples of quantile
treatment efi‘ects. Does this analysis add anything to the analysis based on mean
in the previous question?

4. Some students were in small classes for all four years that the STAR program ran.
Others were assigned to small classes for only one year and had either regular-

sized classes or regular-sized classes with an aid for the rest. How many students
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Table 2.7. Gay Marriage Data.
 

 

Variable Description

study source of the data (1 = study 1, 2 = study 2)

treatment five possible treatment assignment options

wave survey wave (a total of seven waves)

ssm five-point scale on same—sex marriage, higher scores

indicate support.
 

of each type are in the data set? Create a contingency table of proportions using
the kinder and yearssmall variables. Does participation in more years of

small classes make a greater difference in test scores? Compare the average and

median reading and math test scores across students who spent different numbers

of years in small classes.

5. Examine whether the STAR program reduced achievement gaps across different

racial groups. Begin by comparing the average reading and math test scores

between white and minority students (i.e., blacks and Hispanics) among those

students who were assigned to regular—sized classes with no aid. Conduct the

same comparison among those students who were assigned to small classes. Give

a brief substantive interpretation of the results ofyour analysis.

6. Consider the long—term effects of kindergarten class size. Compare high-school

graduation rates across students assigned to different class types. Also, examine

whether graduation rates differ depending on the number of years spent in
small classes. Finally, as in the previous question, investigate whether the STAR
program has reduced the racial gap between white and minority students’

graduation rates. Briefly discuss the results.

2.8.2 CHANGING M|NDS ON GAY MARRIAGE

In this exercise, we analyze the data from two experiments in which households were

canvassed for support on gay marriage.6 Note that the original study was later retracted

due to allegations offabricated data; we will revisit this issue in a follow-up exercise (see

section 3.9.1). In this exercise, however, we analyze the original data while ignoring the
allegations.

Canvassers were given a script leading to conversations that averaged about twenty

minutes. A distinctive feature of this study is that gay and straight canvassers were
randomly assigned to households, and canvassers revealed whether they were straight

or gay in the course of the conversation. The experiment aims to test the “contact

hypothesis,” which contends that out-group hostility (towards gay people in this case)

diminishes when people from different groups interact with one another. The data

file is gay . csv, which is a CSV file. Table 2.7 presents the names and descriptions

5 This exercise is based on the following article: Michael I. LaCour and Donald P. Green (2015) “When contact

changes minds: An experiment on transmission ofsupport for gay equality." Science, vol. 346, no. 6215, pp. 1366—

1369.
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of the variables in this data set. Each observation of this data set is a respondent
giving a response to a four-point survey item on same-sex marriage. There are two

different studies in this data set, involving interviews during seven different time
periods (i.e., seven waves). In both studies, the first wave consists ofthe interview before

the canvassing treatment occurs.

1.

6.

Using the baseline interview wave before the treatment is administered, examine
whether randomization was properly conducted. Base your analysis on the

three groups of study 1: “same-sex marriage script by gay canvasser,” “same—sex
marriage script by straight canvasser” and “no contact.” Briefly comment on the
results.

. The second wave of the survey was implemented two months after canvassing.

Using study 1, estimate the average treatment effects of gay and straight can-

vassers on support for same-sex marriage, separately. Give a brief interpretation
of the results.

. The study contained another treatment that involves contact, but does not
involve using the gay marriage script. Specifically, the authors used a script

to encourage people to recycle. What is the purpose of this treatment? Using

study 1 and wave 2, compare outcomes from the treatment “same-sex marriage
script by gay canvasser” to “recycling script by gay canvasser.” Repeat the same

for straight canvassers, comparing the treatment “same-sex marriage script by
straight canvasser” to “recycling script by straight canvasser.” What do these

comparisons reveal? Give a substantive interpretation of the results.

. In study 1, the authors reinterviewed the respondents six different times (in

waves 2 to 7) after treatment, at two-month intervals. The last interview, in

wave 7, occurs one year after treatment. Do the effects of canvassing last? If

so, under what conditions? Answer these questions by separately computing the
average effects of straight and gay canvassers with the same-sex marriage script

for each of the subsequent waves (relative to the control condition).

. The researchers conducted a second study to replicate the core results of the first
study. In this study, same-sex marriage scripts are given only by gay canvassers.
For study 2, use the treatments “same-sex marriage script by gay canvasser” and
“no contact” to examine whether randomization was appropriately conducted.

Use the baseline support from wave 1 for this analysis.

For study 2, estimate the treatment effects of gay canvassing using data from

wave 2. Are the results consistent with those of study 1?

. Using study 2, estimate the average effect of gay canvassing at each subsequent
wave and observe how it changes over time. Note that study 2 did not have a

fifth or sixth wave, but the seventh wave occurred one year after treatment, as in

study 1. Draw an overall conclusion from both study 1 and study 2.
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Table 2.8. Leader Assassination Data.
 

 

Variable Description

country country

year year

leadername name of the leader who was targeted

age age of the targeted leader

poli tybefore average polity score of the country during the three-year

period prior to the attempt

polityafter average polity score of the country during the three-year

period after the attempt

civilwarbefore 1 if the country was in civil war during the three-year

period prior to the attempt, 0 otherwise

civilwarafter 1 if the country was in civil war during the

three—year period after the attempt, 0 otherwise

interwarbefore 1 if the country was in international war during the

three-year period prior to the attempt, 0 otherwise

interwarafter 1 if the country was in international war during the

three-year period after the attempt, 0 otherwise

result result of the assassination attempt
 

2.8.3 SUCCESS OF LEADER ASSASSINATION AS A NATURAL EXPERIMENT

One longstanding debate in the study of international relations concerns the
question ofwhether individual political leaders can make a difference. Some emphasize

that leaders with different ideologies and personalities can significantly affect the
course of a nation. Others argue that political leaders are severely constrained by

historical and institutional forces. Did individuals like Hitler, Mao, Roosevelt, and

Churchill make a big difference? The difficulty of empirically testing these arguments

stems from the fact that the change of leadership is not random and there are many

confounding factors to be adjusted for.
In this exercise, we consider a natural experiment in which the success or failure

of assassination attempts is assumed to be essentially random.7 Each observation of

the CSV data set leaders . csv contains information about an assassination attempt.

Table 2.8 presents the names and descriptions of variables in this leader assassination

data set. The polity variable represents the so-called polity score from the Polity

Project. The Polity Project systematically documents and quantifies the regime types of

all countries in the world from 1800. The polity score is a 21-point scale ranging from

—10 (hereditary monarchy) to 10 (consolidated democracy). The result variable is a

10—category factor variable describing the result of each assassination attempt.

1. How many assassination attempts are recorded in the data? How many countries

experience at least one leader assassination attempt? (The unique () function,

7 This exercise is based on the following article: Benjamin F. Jones and Benjamin A. Olken (2009) “Hit or miss?
The effect of assassinations on institutions and war.” American Economic lournal: Macroeconomics, vol. 1, no. 2,

pp. 55—87.
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which returns a set of unique values from the input vector, may be useful here.)
What is the average number of such attempts (per year) among these countries?

. Create a new binary variable named success that is equal to 1 if a leader dies

from the attack and 0 if the leader survives. Store this new variable as part of the

original data frame. What is the overall success rate of leader assassination? Does

the result speak to the validity of the assumption that the success of assassination
attempts is randomly determined?

. Investigate whether the average polity score over three years prior to an assassi-

nation attempt differs on average between successful and failed attempts. Also,
examine whether there is any difference in the age of targeted leaders between

successful and failed attempts. Briefly interpret the results in light of the validity

of the aforementioned assumption.

. Repeat the same analysis as in the previous question, but this time using the
country’s experience of civil and international war. Create a new binary variable
in the data frame called warbefore. Code the variable such that it is equal to 1

if a country is in either civil or international war during the three years prior to

an assassination attempt. Provide a brief interpretation of the result.

. Does successful leader assassination cause democratization? Does successful

leader assassination lead countries to war? When analyzing these data, be sure

to state your assumptions and provide a brief interpretation of the results.



Chapter 3
 

Measurement

Not everything that can be counted counts, and not

everything that counts can be counted.

—Wi|liam Bruce Cameron, Informal Sociology

Measurement plays a central role in social science research. In this chapter, we

first discuss survey methodology, which is perhaps the most common mode of data

collection. For example, the minimum—wage study discussed in chapter 2 used a survey

to measure information about employment at each fast-food restaurant. Surveys are

also effective tools for making inferences about a large target population of interest

from a relatively small sample of randomly selected units. In addition to surveys,

we also discuss the use of latent concepts, such as ideology, that are essential for

social science research. These concepts are fundamentally unobservable and must be

measured using a theoretical model. Thus, issues of measurement often occupy the

intersection of theoretical and empirical analyses in the study of human behavior.

Finally, we introduce a basic clustering method, which enables researchers to conduct

an exploratory analysis of data by discovering interesting patterns. We also learn how

to plot data in various ways and compute relevant descriptive statistics in R.

After the September 11 attacks, the United States and its allies invaded Afghanistan
with the goal of dismantling al-Qaeda, which had been operating there under the

protection ofthe Taliban government. In 2003, the North Atlantic Treaty Organization

(NATO) became involved in the conflict, sending in a coalition of international troops

organized under the name of the International Security Assistance Force (ISAF). To

wage this war against the Taliban insurgency, the ISAF engaged in 3 “hearts and

minds” campaign, combining economic assistance, service delivery, and protection in

order to win the support of civilians. To evaluate the success of such a campaign, it

is essential to measure and understand civilians’ experiences and sentiments during

the war. However, measuring the experiences and opinions of civilians during wartime

is a challenging task because of harsh security conditions, posing potential threats to
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Table 3.1. Afghanistan Survey Data.

 

 

Variable Description

province province where the respondent lives

di 5trict district where the respondent lives

vi 1 lage . id ID of the village where the respondent lives

age age of the respondent

educ . years years ofeducation of the respondent

employed whether the respondent is employed

income monthly income of the respondent (five levels)

violent . exp . ISAF whether the respondent experienced violence by ISAF

violent . exp . taliban whether the respondent experienced violence by the

Taliban

1 i s t . group randomly assigned group for the list experiment

(control, ISAF, taliban)

list . response response to the list experiment question (0—4)

 

interviewers and respondents. This means that respondents may inaccurately answer
survey questions in order to avoid giving socially undesirable responses.

A group of social scientists conducted a public opinion survey in southern
Afghanistan, the heartland ofthe insurgency.1 The surveywas administered to a sample
of 2754 respondents between January and February 2011. The researchers note that
the participation rate was 89%. That is, they originally contacted 3097 males and 343

of them refused to take the survey. Because local culture prohibited interviewers from

talking to female citizens, the respondents were all males.
We begin by summarizing the characteristics ofrespondents in terms ofage, years of

education, employment, and monthly income in Afghani (the local currency). The CSV
file afghan . csv contains the survey data and can be loaded via the read. csv ()
function. The names and descriptions ofthe variables are given in table 3.1. We use the
summary ( ) function to provide numerical summaries of several variables.

 

1 This section is based on the following two articles: Jason Lyall, Graeme Blair. and Kosuke Imai (2013)
“Explaining support for combatants during wartime: A survey experiment in Afghanistan.” American Political

Science Review, vol. 107, no. 4 (November), pp. 679—705 and Graeme Blair, Kosuke Imai, and Jason Lyall (2014)

“Comparing and combining list and endorsement experiments: Evidence from Afghanistan." American Journal of
Political Science, vol. 58, no. 4 (October), pp. 1043—1063.  
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3.1 Measuring Civilian Victimization during Wartime

(afghan$educ.years)

Min. lst Qu. Median Mean 3rd Qu. Max.

0.000 0.000 1.000 4.002 8.000 18.000

(afghan$employed)

Min. lst Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.5828 1.0000 1.0000

(afghan$income)

10,001-20,000 2,001—10,000 20,001—30,000

616 1420 93

less than 2,000 over 30,000 NA’s

457 14 154

We observe that the average age of the respondents is 32, a large fraction of them

have very little education, and approximately 60% of the respondents are employed.

Most respondents have a monthly income of less than 10,000 Afghani, which is about

200 dollars.

While civilians are often victimized during war, it is difficult to systematically

measure the extent to which attacks against civilians occur. A survey measure, though

it is based on self-reporting, is one possible way to quantify civilian victimization. In

this survey, the interviewers asked the following question: “Over the past year, have

you or anyone in your family suffered harm due to the actions of the Foreign Forces /

the Taliban?” They explained to the respondents that the phrase “harm” refers to

physical injury, as well as property damage. We analyze the violent . exp . ISAF and

violent . exp . taliban variables, which represent whether the respondents were

harmed by the ISAF and the Taliban, respectively.

(‘_\'L(ISAF = afghan$violent.exp.ISAF,

Taliban = afghansviolent.exp.ta1iban))

Taliban

ISAF O 1

0 0.4953445 0.1318436

1 0.1769088 0.1959032

Using the table ( ) and prop . table ( ) functions, which were introduced in

chapter 2, the analysis shows that over the past year, 37%(= 17.7% + 19.6%) and 33%

(= 13.2% + 19.6%) of the respondents were victimized by the ISAF (second row)

and the Taliban (second column), respectively. Approximately 20% of the respondents

suffered from physical or property damage caused by both parties. This finding

suggests that Afghan civilians were victimized (or at least they perceived that they were

being victimized) by both the ISAF and the Taliban to a similar extent, rather than one

warring party disproportionately harming civilians.
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3.2 Handling Missing Data in R

In many surveys, researchers may encounter nonresponse because either respon-
dents refuse to answer some questions or they simply do not know the answer. Such

missing values are also common in other types of data. For example, many developing

countries lack certain official statistics such as the gross domestic product (GDP)

or unemployment rate. In R, missing data are coded as NA. For example, in the
Afghanistan survey, we saw in the above analysis that 154 respondents did not provide

their income. Since NA is a special value reserved for missing data, we can count the

number of missing observations using the is .na ( ) function. This function returns a

logical value ofTRUE if its argument is NA and yields FALSE otherwise.

## print income data for first 10 respondents

head(afghan$income, n = 10)

## [l] 2,001—10,000 2,001-10,000 2,001~10,000 2,001—10,000

## [5] 2,001—10,000 <NA> 10,001-20,000 2,001-101000

## [9] 2,001-10,000 <NA>

## 5 Levels: 10,001-20,000 2,001-10,000 ... over 30,000

## indicate whether respondents' income is missing

head(is.na(afghan$income), n = 10)

## [l] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

## [10] TRUE

Here, we see that the sixth and tenth respondents are not reporting their monthly
income and hence are coded as NA. The syntax is . na (afghansincome) returns

a vector of logical values, each indicating whether the corresponding respondent

provided an answer to the income question. Thus, the sixth and tenth elements of the

output from this syntax are TRUE. Given this function, it is now straightforward to

count the total number and proportion of missing data for this variable.

sum(is.na(afghan$income)) # count of missing values

## [1] 154

mean(is.na(afghan$income)) # proportion missing

## [1] 0.05591866

Some R functions treat missing data differently from other data. For example, the

mean() function returns NA when a variable contains at least one missing value.

Fortunately, the mean ( ) function takes an additional argument na. rm, which can
be set to TRUE so that missing data are removed before the function is applied.

Many other functions, including max ( ), min( ), and median ( ), take this argument

as well.
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(l. 2, 3, NA)

=‘(X)

[1] NA

h(x, na.rm = TRUE)

## [l] 2

##

In our data, the application of the table ( ) function above ignored missing data,

as if observations with missing values were not part of the data set. We can tell

these functions to explicitly account for missing data. This can be done by setting the

additional argument exclude to NULL so that no data including a missing value is

excluded.

(‘, (ISAF = afghan$violent.exp.ISAF,

Taliban = afghan$violent.exp.Caliban, exclude = NULL))

Taliban

## ISAF 0 l <NA>

##

##

##

0 0.482933914 0.128540305 0.007988381

1 0.172476398 0.190994916 0.007988381

<NA> 0.002541757 0.002904866 0.003631082

We find that almost all respondents answered the victimization questions. Indeed,

the nonresponse rates for these questions are less than 2%. The nonresponse rates

for the Taliban and ISAF victimization questions can be obtained by adding the

entries of the final column and those of the final row of the above generated table,

respectively. It appears that the Afghan civilians are willing to answer questions about

their experiences of violence.

Finally, the na.omit () function provides a straightforward way to remove all

observations with at least one missing value from a data frame. The function then

returns another data frame without these observations. However, we should note that

this operation will result in listwise deletion, which eliminates an entire observation if

at least one of its variables has a missing value. For example, if a respondent answers

every question asked of him except for the question about income, listwise deletion

would completely remove all of his information from the data, including the responses

to the questions that he did answer. In our Afghanistan survey data, other variables

that we have not yet discussed also have missing data. As a result, applying the

na . omit ( ) function to the afghan data frame returns a subset of the data with far

fewer observations than applying the same function to the income variable alone.

afghan.sub <— , .'~? (afghan) # listwise deletion

i'wm(afghan.sub)

## [1] 2554
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length<na.omit(afghansincome))

##

##

[1] 2600

We find that the procedure of listwise deletion yields a data set of2554 observations,
whereas a total of 2600 respondents answered the income question. The difference
represents the number ofrespondents who did answer the income question but refused
to answer at least one other question in the survey.

'33" Visualizing the Univariate Distribution

Up until now, we have been summarizing the distribution of each variable in a data
set using descriptive statistics such as the mean, median, and quantiles. However, it
is often helpful to visualize the distribution itself. In this section, we introduce several
ways to visualize the distribution of a single variable in R. When making a figure in
RStudio, you may occasionally encounter the error message “figure margins too large.”
We can solve this problem by increasing the size of the plots pane.

33J BAR PLOT

To summarize the distribution of a factor variable orfactorial variable with several
categories (see section 2.2.5), a simple table with counts or proportions, as produced
above using the table ( ) and prop . table ( ) functions, is often sufficient. However,
it is also possible to use a bar plot to visualize the distribution. In R, the barplot ( )
function takes a vector ofheight and displays a bar plot in a separate graphical window.
In this example, the vector of height represents the proportion of respondents in each
response category.

a vector of proportions to plot

ISAF.ptable <- prop.table(table(ISAF = afghan$violent.exp.ISAF,

exclude = NULL))

ISAF.ptab1e

## ISAF

## 0 1 <NA>

## 0.619462600 0.371459695 0.009077705

## make bar plots by specifying a certain range for y-axis

barplot(ISAF.ptable,

names.arg = c(“No harm“, "Harm", "Nonresponse"),

main = "Civilian victimization by the ISAF",

xlab = "Response category“,

ylab = "Proportion of the respondents", ylim = c(0, 0.7))

## repeat the same for victimization by the Taliban

Taliban.ptable <— prop.table(table(Taliban = afghansviolent.exp.taliban,

exclude = NULL))
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The plots in this book, including these below, may appear different from those

produced by running the corresponding code in R.

Civilian victimization by the ISAF Civilian victimization by the Taliban

 
 

 

 

 

“E 0.7

.001 0.6
c
8 0.5
K}
5 0.4
5
“5 0.3

c
.9 0.2

E
6 0.1

0.0 . °' 0.0
No harm Harm Non—response No harm Harm Non—response

Response category Response category

We immediately see that the distributions for civilian victimization by the ISAF and

the Taliban are quite similar. In addition, the nonresponse rate is equally low for both

variables. Note that names . arg is an optional argument unique to the barplot ()

function and takes a vector of characters specifying the label for each bar. The above

syntax also illustrates the use of several arguments that are common to other plot

functions and are summarized here:

. main: a character string, i.e., a series of characters in double quotes, for the main

title ofthe plot
. ylab, xlab: character strings for labeling the vertical axis (i.e., y—axis) and the

horizontal axis (i.e., x-axis), respectively (R will automatically set these arguments

to the default labels if left unspecified)

. yl im, x1 im: numeric vectors oflength 2 specifying the interval for the y-axis and

x-axis, respectively (R will automatically set these arguments if left unspecified)

3.3.2 HISTOGRAM

The histogram is a common method for visualizing the distribution of a numeric

variable rather than a factor variable. Suppose that we would like to plot the histogram

for the age variable in our Afghanistan survey data. To do this, we first discretize

the variable by creating bins or intervals along the variable of interest. For example,

we may use 5 years as the size of each bin for the age variable, which results in the

intervals [15, 20), [20, 25), [25, 30), and so on. Recall from an exercise ofchapter 1 (see

section 1.5.2) that in mathematics square brackets, [ and ], include the limit, whereas
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parentheses, ( and ), exclude it. For example, [20, 25) represents the age range that is
greater than or equal to 20 years old and less than 25 years old. We then count the
number of observations that fall within each bin. Finally, we compute the density for
each bin, which is the height of the bin and is defined as

proportion of observations in the bin

width of the bin
 density =

We often care about not the exact value of each density, but rather the vatiable’s
distribution as shown by the relationship of the different bins’ densities to one
another within a histogram. We can therefore think of histograms as rectangular
approximations of the distribution.

To create histograms in R, we use the hist () function and set the argument
freq to FALSE. The default for this argument is TRUE, which plots the frequency,
i.e., counts, instead of using density as the height of each bin. Using density rather
than frequency is useful for comparing two distributions, because the density scale
is comparable across distributions even when the number of observations is dif-
ferent. Below, we create histograms for the age variable from the Afghanistan
survey data.

 

Distribution of respondent's age
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Importantly, the area of each bin in a histogram equals the proportion of observa-
tions that fall in that bin. Therefore, in general, we interpret the density scale, the unit

of the vertical axis, as percentage per horizontal unit. In the age example, the density
is measured as percentage per year. This implies that density is not a proportion and
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3.3 Visualizing the Univariate Distribution -

hence the height of each bin can exceed 1. On the other hand, the area of each bin
represents the percentage of observations it contains, so the areas of all bins sum to 1.

In this way, histograms visualize how observations are distributed across the different

values of the variable of interest. The age distribution for the survey respondents is

right-skewed, suggesting that a larger number ofyoung males were interviewed.

 

A histogram divides the data into bins where the area of each bin represents

the proportion of observations that fall within the bin. The height of each bin

represents density, which is equal to the proportion of observations within each

bin divided by the width of the bin. A histogram approximates the distribution of
a variable.  
 

Our next histogram features the years of education variable, educ . years.

Instead of letting R automatically choose the width of bins, as we did for

the age variable, we now specify exactly how the bins are created using

[—0.5, 0.5), [0.5, 1.5), [1.5, 2.5), . .., to center each bin around each of the integer

values, i.e., 0, 1,2, . . . , corresponding to the observed values. The height of each bin

then represents the proportion ofobservations that received the corresponding number

of years of education. We implement this by specifying a vector of the breakpoints

between histogram bins with the breaks argument. In this case, the default specifica-

tion, which we will get by leaving the argument unspecified, is [0, 1), [1, 2), [2, 3), . . .

where it is centered around 0.5, 1.5, 2.5, . . . , failing to correspond to the observed

values. Note that the breaks argument can take other forms of input to manipulate

the histogram. For example, it also accepts a single integer specifying the number of

bins for the histogram.

 

The histogram for the years of education variable clearly shows that the education

level of these respondents is extremely low. Indeed, almost half of them have never

attended school. We also add a vertical line and a text label indicating the median value,

using the abline ( ) and text ( ) functions, respectively; Both of these functions add

a layer to any existing plot, and this is why they are used after the hist () function

in the above example. The text (x, y, 2) function adds character text 2 centered at
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Distribution of respondent's education
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the points specified by the coordinate vectors, (X, y). The abline ( ) function can add

a straight line to an existing plot in the following three ways:

- abline (h = x) to place a horizontal line at height x
. abline (v = x) to place a vertical line at point x

. abline (a = y, b = s) to place a line with intercept y and slope s

A more general function to plot a line is lines ( ). This function takes two
arguments, x and y. These two arguments must be vectors with the same number
of x-coordinates and y-coordinates respectively. The function will then draw line
segments connecting the point denoted by the first coordinate in argument x and
the first coordinate in argument y, to the point denoted by the second coordinates
in each argument, to the point denoted by the third coordinates in each argument, and
so on. For example, we can draw the median line as done above using this function
instead.

 

In this example, we want to create a vertical line at the x value for the median of

afghan$educ . years. We use y values, 0 and 0.5, so that the line will extend between

the bottom and top limits of the histogram respectively. We then need x-coordinates
equal to the median ofafghanseduc . years to correspond with each y-coordinate.

To do this easily, we can use the rep ( ) function, whose first argument takes the value
we want to repeat and whose second argument takes the number of repetitions, which is
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the length of the resulting vector. The above rep() function creates a vector of

length 2 with the median of afghanseduc .years as each element in that vector.

Thus, a line goes from point (x, y) = (1, 0) to point (x, y) = (l, 0.5), since the median

year of education is 1.
It is also possible to add points to any existing plot using the points ( ) function.

Specifically, in points (x, y) , two vectors—x and y—specify the coordinates of

points to be plotted. Finally, R has various functionalities that enable users to choose

different colors, line types, and other aesthetic choices. Some commonly used argu-

ments are given below, but the details about each function can be obtained on their

manual pages:

- col specifies the color to use, such as " blue " and " red". This argument
can be used in many functions including text ( ) , abline ( ) , lines ( ) ,

and points ( ) . Type colors ( ) to see all the built-in color names R has

(see section 5.3.3 for more details).

- lty specifies the type of line to be drawn, using either a character or a

numeric value, including " solid" or 1 (default) for solid lines, " dashed"

or 2 for dashed lines, "dotted" or 3 for dotted lines, "dotdash" or 4 for

dotted and dashed lines, and " longdash" or 5 for long dashed lines. This

argument can be used in many functions that produce lines, including

abline () and 1ines().

- lwd specifies the thickness of lines where lwd = 1 is the default value. This

argument can be used in many functions that produce lines, including

abline () and 1ines().

3.3.3 BOX PLOT

‘ The box plot represents another way to visualize the distributions of a numeric

\ variable. It is particularly usefulwhen comparing the distribution ofseveral variables by

placing them side by side. A box plot visualizes the median, the quartiles, and the IQR

all together as a single object. To make box plots in R, we use the boxplot ( ) function

by simply giving a variable of interest as an input. Again, we use the age variable as an

example.

 

As illustrated below, the box contains 50% of the data ranging from the lower

quartile (25th percentile) to the upper quartile (75th percentile) with the solid hori-

zontal line indicating the median value (50th percentile). Then, dotted vertical lines,

1 each of which has its end indicated by a short horizontal line called a “whisker,”

‘g extend below and above the box. These two dotted lines represent the data that are

; contained within 1.5 IQR below the lower quartile and above the upper quartile,

respectively. Furthermore, the observations that fall outside 1.5 IQR from the upper
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and lower quartiles are indicated by open circles. In this plot, the section of the dotted

line extending from the top of the box to the horizontal line represents 1.5 IQR. If

the minimum (maximum) value is contained within 1.5 IQR below the lower quartile

(above the upper quartile), the dotted line will end at the minimum (maximum) value.

The absence of open circles below the horizontal line implies that the minimum value
of this variable is indeed within the 1.5 IQR of the lower quantile.

If we wish to visualize the distribution of a single variable, then a histogram is
often more informative than a box plot because the former shows the full shape of
the distribution. One of the main advantages of a box plot is that it allows us to

compare multiple distributions in a more compact manner than histograms, as the

next example shows. Using the boxplot () function, we can create a box plot for

a different group of observations where the groups are defined by a factor variable.

This is done by using the formula in R, which takes the form y ” x. In the current

context,boxplot (y ” x, data = (1) creates box plots for variableyfor different

groups defined by a factor x where the variables, x and y, are taken from the data
frame d. As an illustration, we plot the distribution ofthe years ofeducation variable by
provmce.

We find that the education level in Helmand and Uruzgan provinces is much lower
than that of the other three provinces. It also turns out that civilians in these two
provinces report harm inflicted by both parties more than those who live in the other

provinces. This is shown below by computing the proportion of affirmative answers to

the corresponding question, for each province.
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Note that the syntax, na . rm = TRUE, is passed to the mean () function within

the tapp1y() function so that missing observations are deleted when computing

the mean for each province (see section 3.2).

 

  

 

  

 

W

A box plot visualizes the distribution of a variable by indicating its median,

lower and upper quartiles, and the points outside the 1.5 interquartile range from

the lower and upper quartiles. It enables the comparison of distributions across

multiple variables in a compact manner. 
 

3.3.4 PRINTING AND SAVING GRAPHS

There are a few ways to print and save the graphs you create in R. The easiest way

is to use the menus in RStudio. In RStudio, each time you create a graph using any

of the R plotting functions, a new tab will open in the bottom-right window. To save

an image of the plot, click Export and then either Save Plot as Image or Save

Plot as PDF.
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You can also save or print a graph with a command by using the pdf ( ) function
to open the PDF device before your plotting commands and then the dev. off ( )
function afterwards to close the device. For example, the following syntax saves the
box plots we just created above as a PDF file educ . pdf in the working directory. The
pdf ( ) function can specify the height and width of the graphics region in inches.

pdf(file = "educ.pdf", height = 5, width = 5)

boxplot(educ.years ~ province, data = afghan,

main = "Education by province", ylab = “Years of education")

dev.off()

In many cases, we want to compare multiple plots by printing them next to each
other in a single figure file. To do this, we use the function par ( ) as par (mfrow =
c (X, Y) ) before we start making plots. This will create an X by Y grid of “subplots”
(mfrow stands for multiple figures in rows). Our multiple plots will fill in this grid, row
by row. To fill the grid column by column, you can, instead, use the syntax par (mfcol
= c (X, Y) ) . Note that the par ( ) function also takes many other arguments that
allow users to control graphics in R. For example, the cex argument changes the size
of a character or symbol, with cex = 1 as the default value. We can set the cex
argument to a value greater than 1 (e.g., par (cex = l .2) ) in order to enlarge the

fonts in displayed graphics. Note that it is also possible to separately specify the size

for different parts of a plot using cex.main (main plot title), cex. lab (axis title

labels), and cex . axis (axis value labels). Executing the following code chunk all at
once creates the two histograms we made earlier in this chapter and saves them side by

side in a single PDF file.

pdf(file = "hist.pdf", height = 4, width = 8)

## one row with 2 plots with font size 0.8

par(mfrow = c(l, 2), cex = 0.8)

## for simplicity omit the text and lines from the earlier example

hist(afghan$age, freq = FALSE,

xlab = “Age", ylim = c(O, 0.04),

main = "Distribution of respondent’s age")

hist(afghan$educ.years, freq = FALSE,

breaks = seq(from = -0.5, to = 18.5, by = 1),

xlab = "Years of education", xlim = c(O, 20),

main = "Distribution of respondent’s education")

dev.off()

3:123:45" Survey‘safiifiiihg- - -.~
Survey sampling is one of the main data collection methods in quantitative social

science research. It is often used to study public opinion and behavior when such
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information is not available from other sources such as administrative records. Survey

sampling is a process in which researchers select a subset of the population, called a

sample, to understand the features of a target population. It should be distinguished

from a census, for which the goal is to enumerate all members of the population.

What makes survey sampling remarkable is that one can learn about a fairly large

population by interviewing a small fraction of it. In the Afghanistan data, a sample

of 2754 respondents was used to infer the experiences and attitudes of approximately

15 million civilians. In the United States, a sample of just about 1000 respondents is

typically used to infer the public opinion of more than 200 million adult citizens. In

this section, we explain What makes this seemingly impossible task possible and discuss

important methodological issues when collecting and analyzing survey data.

3.4.1 THE ROLE OF RANDOMIZATION

As in the randomized control trials (RCTs) discussed in chapter 2, randomization

plays an essential role in survey sampling. We focus on a class of sampling procedures

called probability sampling in which every unit of a target population has a known

nonzero probability of being selected. Consider the most basic probability sampling

procedure, called simple random sampling (SRS), which selects the predetermined

number of respondents to be interviewed from a target population, with each potential

respondent having an equal chance of being selected. The sampling is done without

replacement rather than with replacement so that once individuals are selected for

interview they are taken out of the samplingframe, which represents the complete list

ofpotential respondents. Therefore, sampling without replacement assigns at most one

interview per individual.

SRS produces a sample of respondents that are representative of the population. By

“representative,” we mean that if we repeat the procedure many times, the features of

each resulting sample would not be exactly the same as those of the population, but on

average (across all the samples) would be identical. For example, while one may happen

to obtain, due to random chance, a sample of individuals who are slightly older than

those of the population, the age distribution over repeated samples would resemble

that of the population. Moreover, as in RCTs, probability sampling guarantees that the

characteristics of the sample, whether observed or unobserved, are on average identical

to the corresponding characteristics of the population. For this reason, we can infer

population characteristics using those of a representative sample obtained through

probability sampling procedures (see chapter 7 for more details).

Before probability sampling was invented, researchers often used a procedure called

quota sampling. Under this alternative sampling strategy, we specify fixed quotas of

certain respondents to be interviewed such that the resulting sample characteristics

resemble those of the population. For example, if 20% of the population has a college

degree, then researchers will set the maximum number of college graduates who will

be selected for interview to be 20% of the sample size. They will stop interviewing

those with college degrees once they reach that quota. The quota can be defined using

multiple variables. Often, the basic demographics such as age, gender, education, and

race are used to construct the categories for which the quota is specified. For example,

we may interview black females with a college degree and between 30 and 40 years old,

up to 5% of the sample size.
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The problem of quota sampling is similar to that of the observational studies
discussed in chapter 2. Even if a sample is representative of the population in terms of
some observed characteristics, which are used to define quotas, its unobserved features
may be quite different from those of the population. Just as individuals may self-
select to receive a treatment in an observational study, researchers may inadvertently
interview individuals who have characteristics systematically different from those who
are not interviewed. Probability sampling eliminates this potential sample selection bias
by making sure that the resulting sample is representative of the target population.

 

Simple random sampling (SRS) is the most basic form of probability sampling,
which avoids sample selection bias by randomly choosing units from a popula-

tion. Under SRS, the predetermined number of units is randomly selected from a
target population without replacement, where each unit has an equal probability

ofbeing selected. The resulting sample is representative ofthe population in terms

of any observed and unobserved characteristics.   
Quota sampling is believed to have caused one of the most well-known errors in the

history of newspapers. In the 1948 US presidential election, most major preelection

polls, including those conducted by Gallup and Roper, used quota sampling and

predicted that Thomas Dewey, then the governor of New York, would decisively

defeat Harry Truman, the incumbent, on Election Day. On election night, the Chicago
Tribune went ahead and sent the next morning’s newspaper to press, with the

erroneous headline “Dewey defeats Truman,” even before many East Coast states

reported their polling results. The election result, however, was the exact opposite.

Truman won by a margin of 5 percentage points in the national vote. Figure 3.1 shows

a well-known picture of Truman happily holding a copy of the Chicago Tribune with
the erroneous headline.

In order to apply SRS, we need a list of all individuals in the population to sample

from. As noted earlier, such a list is called a samplingframe. In practice, given a target

population, obtaining a sampling frame that enumerates all members of the population

is not necessarily straightforward. Lists of phone numbers, residential addresses, and

email addresses are often incomplete, missing a certain subset of the population who
have different characteristics. Random digit dialing is a popular technique for phone

surveys. However, the procedure may suffer from sample selection bias since some
people may not have a phone number and others may have multiple phone numbers.

Most in-person surveys employ a complex sampling procedure due to logistical

challenges. While an in-depth study of various survey sampling strategies is beyond
the scope of this book, we briefly discuss how the Afghanistan survey was conducted

in order to illustrate how survey sampling is done in practice. For the Afghanistan

survey, the researchers used a multistage cluster sampling procedure. In countries like

Afghanistan, it is difficult to obtain a sampling frame that contains most, let alone all,

of their citizens. However, comprehensive lists of administrative units such as districts
and villages are often readily available. In addition, since sending interviewers across

a large number of distant areas may be too costly, it is often necessary to sample
respondents within a reasonable number of subregions.
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Figure 3.1. Harry Truman, the Winner of the 1948 US Presidential Election, Holding a

Copy of the Chicago Tribune with the Erroneous Headline. Source: Copyright unknown,

Courtesy of Harry S. Truman Library.

Table 3.2. Afghanistan Village Data.
 

Variable Description
 

vi llage . surveyed whether a village is sampled for survey

al t i tude altitude of the village

populat ion population of the village
 

The multistage cluster sampling method proceeds in multiple stages by sampling

larger units first and then randomly selecting smaller units within each of the selected

larger units. In the Afghanistan survey, within each of the five provinces of interest,

the researchers sampled districts and then villages within each selected district. Within

each sampled village, interviewers selected a household in an approximately random

manner based on their location within the village, and finally administered a survey to

a male respondent aged 16 years or older, who was sampled using the Kish grid method.

While the probability of selecting each individual in the population is known only

approximately, the method in theory should provide a roughly representative sample

of the target population.

We examine the representativeness of the randomly sampled villages in the

Afghanistan data. The data file afghan—village . csv contains the altitude and

population ofeach village (see table 3.2 for the names and descriptions ofthe variables).

For the population variable, it is customary to take the logarithmic transformation so

that the distribution does not look too skewed with a small number of extremely large

or small values. The logarithm of a positive number x is defined as the exponent of a

base value 17, Le, y = 10gb x 4:) x = by. For example, if the base value is 10, then the
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Figure 3.2. The Natural Logarithm. The left plot shows the natural logarithm loge x
where x is a positive number and e = 2.7182... is Euler’s number. The remaining plots
display the histograms for the population of Afghan villages on the original scale (in
thousands) and the natural logarithmic scale. The population distribution is skewed
without the logarithmic transformation.

logarithm of 1000 is 3 = log10 1000. Similarly, the logarithm of0.01 is —2 = log10 0.01.
The natural logarithm uses as its base value an important mathematical constant
e = 2.7182 . . . , which is defined as the limit of (l + 1/ n)" as n approaches infinity
and is sometimes called Euler’s number, so that y = loge x 4:) x = e’. The left-
hand plot of figure 3.2 depicts the natural logarithm function graphically. The figure
also shows that in the Afghanistan data, without the logarithmic transformation, the
distribution of the population is quite skewed because there exist a large number of
small villages and a small number of large villages.

 

The natural logarithmic transformation is often used to correct the skewness of
variables such as income and population that have a small number ofobservations

With extremely large or small positive values. The natural logarithm is the
logarithm with base e, which is a mathematical constant approximately equal to

2.7182, and defined as y = loge x. It is the inverse function of the exponential
function, so x = e7.   
We use box plots to compare the distribution of these variables across sampled

and nonsampled villages. The variable village . surveyed indicates whether each

village in the data is (randomly) sampled and surveyed; 1 indicates yes and 0 no. As

explained above, we take the natural logarithmic transformation for the population
variable using the log() function. By default R uses e as its base, though it is
possible to specify a different base using the base argument in this function. Note
that the exponential function in R is given by exp ( ). In the boxplot ( ) function,
we can use the names argument to specify a character vector of labels for each
group.
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The result shows that although there are some outliers, the distribution ofthese two

variables is largely similar between the sampled and nonsampled villages. So, at least

for these variables the sample appears to be representative ofthe population.

3.4.2 NONRESPONSE AND OTHER SOURCES OF BIAS

While probability sampling has attractive theoretical properties, in practice con-

ducting a survey faces many obstacles. As mentioned earlier, a samplingframe, which

enumerates all members of a target population, is difficult to obtain. In many cases, we

end up sampling from a list that may systematically diverge from the target population
in terms of some important characteristics. Even if a representative sampling frame

is available, interviewing randomly selected individuals may not be straightforward.

Failure to reach selected units is called unit nonresponse. For example, many individuals

refuse to participate in phone surveys. In the Afghanistan survey, the authors report
that 2754 out of 3097 potential respondents agreed to participate in the survey,

resulting in an 11% refusal rate. If those to whom researchers fail to administer the

survey are systematically different from those who participate in the survey, then bias

due to unit nonresponse arises.
In addition to unit nonresponse, most surveys also encounter the item nonresponse

problem when respondents refuse to answer certain survey questions. For example,

we saw in section 3.2 that in the Afghanistan survey, the income variable had a
nonresponse rate ofapproximately 5%. Ifthose who refuse to answer are systematically

different from those who answer, then the resulting inference based only on the



Chapter 3: Measurement

observed responses may be biased. In the Afghanistan data, for example, the item
nonresponse rates for the questions about civilian victimization by the Taliban and
the ISAF appear to vary across provinces.

 

We observe that in Helmand and Uruzgan, which are known to be the most

violent provinces (see section 3.3.3), the item nonresponse rates are the highest. These

differences are especially large for the question about civilian victimization by the
Taliban. The evidence presented here suggests that although the item nonresponse rate
in this survey is relatively low, certain systematic factors appear to affect its magnitude.
While they are beyond the scope of this book, there exist many statistical methods of
reducing the bias due to unit and item nonresponse.

 

There are two types of nonresponse in survey research. Unit nonresponse refers
to a case in which a potential respondent refuses to participate in a survey. Item

nonresponse occurs when a respondent who agreed to participate refuses to

answer a particular question. Both nonresponses can result in biased inferences

if those who respond to a question are systematically different from those who
do not.   
 

Beyond item and unit nonresponse, another potential source of bias is misreport-
ing. Respondents may simply lie because they may not want interviewers to find

out their true answers. In particular, social desirability bias refers to the problem
where respondents choose an answer that is seen as socially desirable regardless

of what their truthful answer is. For example, it is well known that in advanced

democracies voters tend to report they participated in an election even when they
actually did not, because abstention is socially undesirable. Similarly, social desirability
bias makes it difficult to accurately measure sensitive behavior and opinions such
as corruption, illegal behavior, racial prejudice, and sexual activity. For this reason,

some scholars remain skeptical of self-reports as measurement for social science
research.

One main goal of the Afghanistan study was to measure the extent to which

Afghan citizens support foreign forces. To defeat local insurgent forces and win the
wars in Afghanistan and Iraq, many Western policy makers believed that “winning

the hearts and minds” of a civilian population was essential. Unfortunately, directly

asking whether citizens are supportive of foreign forces and insurgents in rural Afghan
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villages can put interviewers and respondents at risk because interviews are often

conducted in public. The Institutional Review Board, which evaluates the ethical issues

and potential risks of research projects involving human subjects, may not approve

direct questioning of sensitive questions in a civil war setting. Even if possible, direct

questioning may lead to nonresponse and misreporting.

To address this problem, the authors of the original study implemented a survey

methodology called item count technique or list experiment. The idea is to use aggrega-

tion to provide a certain level ofanonymity to respondents. The method first randomly

divides the sample into two comparable groups. In the “control” group, the following

question was asked.

I’m going to read you a list with the names of different groups and individuals

on it. After I read the entire list, I’d like you to tell me how many of these groups

and individuals you broadly support, meaning that you generally agree with the

goals and policies of the group or individual. Please don’t tell me which ones you

generally agree with; only tell me how many groups or individuals you broadly

support.

Karzai Government; National Solidarity Program; Local Farmers

The “treatment” group received the same question except with an additional sensitive

item:

Karzai Government; National Solidarity Program; Local Farmers; Foreign

' Forces

Here, the last item, Foreign Forces, which refers to the ISAF, is the sensitive item. The

item count technique does not require respondents to answer each item separately.

Instead, they give an aggregate count of items. Since the two conditions are comparable

apart from the sensitive item, the difference in the average number of items a

respondent reports will be an estimate of the proportion of those who support the

ISAF. The list . group variable indicates which group each respondent is randomly

assigned to, where for the two relevant groups the variable equals ISAF and control.

The outcome variable is list . response, which represents the item count reported

by each respondent.

 

The item count technique estimates that approximately 5% of Afghan citizens

support the ISAF, implying that the ISAF is unpopular among Afghans.

The weakness ofthe item count technique, however, is that in the “treatment” group,

answering either “0” or “4” in this case reveals one’s honest answer. These potential

problems are calledfloor effects and ceiling efl’ects, respectively. In the Afghan data, we

see clear evidence of this problem when the Taliban, instead of the ISAF, is added to

the list as the sensitive item.



Chapter 3: Measurement

 

Remarkably, no respondents in the taliban group answered either “0” or “4,”
perhaps because they do not want to be identified as either supportive or critical of
the Taliban.

As we can see, measuring the truthful responses to sensitive questions is a challeng-
ing task In addition to the item count technique, social scientists have used a variety
of survey methodologies in an effort to overcome this problem. Another popular
methodology is called the randomized response technique in which researchers use
randomization to provide anonymity to respondents. For example, respondents are
asked to roll a six-sided die in private without revealing the outcome. They are then
asked to answer yes if the outcome of rolling the die was 1, no if 6, and give an honest
answer ifthe outcome was between 2 and 5. Therefore, unlike the item count technique,
the secrecy of individual responses is completely protected. Since the probability of
each outcome is known, the researchers can estimate the aggregate proportion of
honest responses out of those who responded with a yes answer even though they have
no way ofknowing the truthfulness of individual answers with certainty.

Social scientists often devise measurement models to summarize and understand the
behaviors, attitudes, and unobservable characteristics of human beings. A prominent
example is the question of how to quantitatively characterize the ideology of political
actors such as legislators and judges from their behavior. Of course, we do not directly
observe the extent to which an individual is liberal or conservative. While ideology is
perhaps a purely artificial concept, it is nonetheless a useful way to describe the political
orientation of various individuals. Over the past several decades, social scientists have
attempted to infer the ideology of politicians from their roll call votes. In each year,
for example, legislators in the US Congress vote on hundreds of bills. Using this voting
record, which is publicly available, researchers have tried to characterize the political
ideology of each member of Congress and how the overall ideological orientation in
the US Congress has changed over time.2
A simple measurement model of spatial voting can relate a legislator’s ideology

to their votes. Figure 3.3 illustrates this model, which characterizes the ideology

2 This section is based on Nolan McCarty, Keith T. Poole, and Howard Rosenthal (2006) Polarized America:
The Dance ofIdeology and Unequal Riches. MIT Press.
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Figure 3.3. An Illustration for the Spatial Voting Model of Legislative Ideology.

or “ideal point” of legislators by two dimensions—economic and racial liberalism/

conservatism—identified by researchers as the main ideological characteristics of

postwar congressional politics. Researchers have found that much of congressional roll

call voting can be explained by the economic liberalism/conservatism dimension while

the racial liberalism/conservatism dimension is less pronounced. Under this model,

the legislator, whose ideal point is indicated by a cross mark in the figure, is more likely

to vote against the proposal (solid triangle) whenever their ideal point is closer to the

status quo (solid circle) than to the proposal location. The outcomes of congressional

votes on controversial proposals reveal much about legislators’ ideologies. On the other

hand, a unanimously accepted or rejected proposal provides no information about

legislators’ ideological orientations.

A similar model is used in educational testing literature. Scholars have developed

a class of statistical methods called item response theory for standardized tests such

as the SAT and Graduate Record Examination (GRE). In this context, legislators and

legislative proposals are replaced with student examinees and exam questions. Instead

of ideal points, the goal is to measure students’ abilities. The model also estimates the

difficulty of each question. This helps the researchers choose good exam questions,

which are neither too difficult nor too easy, so that only competent students will be

able to provide a correct answer. These examples illustrate the importance of latent

(i.e., unobserved) measurements in social science research.

In this section, we introduce several ways to summarize the relationship between

two variables. We analyze the estimates of legislators’ ideal points, known as DW-

NOMINATE scores, where more negative (positive) scores are increasingly liberal
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Table 3.3. Legislative Ideal Points Data.
 

Variable Description
 

name name ofthe congressional representative

state state ofthe congressional representative
district district number of the congressional representative

party party ofthe congressional representative

congress congressional session number

dwnoml DW-NOMINATE score (first dimension)

dwnomz DW-NOMINATE score (second dimension)
 

(conservative). The CSV file congress . csv contains the estimated ideal points of
all legislators who served in the House of Representatives from the 80th (1947—1948)
to the 112th (2011—2012) Congresses. Table 3.3 presents the names and descriptions of
the variables in the data set.

3.6.1 SCATTER PLOT

Using the plot () function, we create a scatter plot, which plots one variable
against another in order to visualize their relationship. The syntax for this function
is plot (x, y) , where x and y are vectors of horizontal and vertical coordinates,
respectively. Here, we plot the DW-NOMINATE first dimension score (dwnoml
variable) on the horizontal axis, which represents economic liberalism/conservatism,
against its second dimension score on the vertical axis (dwnom2 variable), which
represents racial liberalism/conservatism. We will start by creating scatter plots for the
80th and 112th Congresses. We begin by subsetting the relevant part of the data.

 

We will be creating multiple scatter plots with the same set of axis labels and axis
limits. To avoid repetition, we store them as objects for later use.

 

 
fl
u
/

,.
,.
,V
.,



3.6 Summarizing Bivariate Relationships

Finally, using this axis information, we create scatter plots of ideal points for

the 80th and 112th Congresses. Note that the pch argument in the plot () and

points () functions can be used to specify different plotting symbols for the two

parties. In the current example, pch = 1 6 graphs solid triangles for Republicans while

pch = 17 graphs solid circles for Democrats. More options are available and can be

viewed by typing example (points) into R console.

 

The plots below use solid gray triangles instead of red triangles for Republicans. See

page Cl for the full-color version.
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The plots show that in the 112th Congress (as opposed to the 80th Congress),

the racial liberalism/conservatism dimension is no longer important in explaining

the ideological difference between Democrats and Republicans. Instead, the economic

dimension appears to be a dominant explanation for the partisan difference, and the

difference between Democrats and Republicans in the racial dimension is much less

pronounced.
Next, we compute the median legislator, based on the DW-NOMINATE first

dimension score, separately for the Democratic and Republican Parties and for each

Congress. These party median ideal points represent the center of each party in the
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economic liberalism/conservatism dimension. We can do this easily by using the
tapp1y() function.

 

Finally, using the plot () function, we create a time-series plot where each party
median is displayed for each Congress. We set the type argument to " 1 " in order to
draw a line connecting the median points over time. This plot enables us to visualize
how the party medians have changed over time. We will use the term ofCongress as the
horizontal axis. This information is available as the name ofthe dem .median vector.

 

The plot below uses a gray line instead ofa red line for Republicans. See page C1 for
the full-color version.
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Note that the syntax \n used in the text () function indicates a change to a new
line. The plot clearly shows that the ideological centers of the two parties diverge over
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Figure 3.4. Gini Coefficient and Lorenz Curve.

time. The Democratic Party has become more liberal while the Republican Party has

increasingly moved in a conservative direction in recent years. Many scholars refer to

this phenomenon as political polarization.

 

A scatter plot graphically compares two variables measured on the same set of

units by plotting the value of one variable against that of the other for each unit.

 

3.6.2 CORRELATION

What is the cause of political polarization? This is a difficult question to answer,

and is the subject of much scholarly debate. However, it has been pointed out

that rising income inequality may be responsible for the widening partisan gap. To

measure income inequality, we use the Gini coeflicient (Gini index), which is best

understood graphically. Figure 3.4 illustrates the idea. The horizontal axis represents

the cumulative share of people sorted from the lowest to highest income. The vertical

axis, on the other hand, plots the cumulative share of income held by those whose

income is equal to or less than that of a person at a given income percentile. The Lorenz

curve connects these two statistics. If everyone earns exactly the same income, then the

Lorenz curve will be the same as the 45-degree line because x% of the population will

hold exactly x% of national income regardless of the value of x. Let’s call this the line

of equality. However, iflow income people earn a lot less than high income people, the

Lorenz curve will become flatter at the beginning and then sharply increase at the end.
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Table 3.4. US Gini Coefficient Data.

 

Variable Description
 

year year

gini US Gini coefficient
 

Now, we can define the Gini coefficient as the area between the line of equality and

the Lorenz curve divided by the area under the line of equality. In terms of figure 3.4,

area between the line of equality and the Lorenz curve
Gini coefficient = _ _

area under the line of equality

area A in figure 3.4

area A + area B in figure 3.4.

The formula implies that the larger (smaller) area A is, the higher (lower) the Gini

coefficient, meaning more (less) inequality. In a perfectly equal society, the Gini
coefficient is 0. In contrast, a society where one person possesses all the wealth has
a Gini coefficient of l.

 

The Gini coefficient (Gini index) measures the degree of income equality and

inequality in a given society. It ranges from 0 (everyone has the same amount of
wealth) to 1 (one person possesses all the wealth).

To examine the relationship between political polarization and income inequality,

we create two time-series plots side by side. The first plot shows the partisan gap,
i.e., the difference between the two party medians, over time. The second time-
series plot displays the Gini coefficient during the same time period. The CSV data
file, USGini . csv, contains the Gini coefficient from 1947 to 2013 (see table 3.4).

We notice that both political polarization and income inequality have been steadily
increasing in the United States.
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However, in chapter 2, we learned that association does not necessarily imply

causation and hence we should not necessarily interpret this upwards trend as evidence

for income inequality causing polarization. For example, life expectancy has also

constantly increased during this time period, and yet this does not imply that longer

life expectancy caused political polarization or vice versa.

Correlation (also referred to as a correlation coefificient) is one ofthe most frequently

used statistics to summarize bivariate relationships. The measure represents how, on

average, two variables move together relative to their respective means. Before defining

correlation, we need to introduce the z-score, which represents the number of standard

deviations an observation is above or below the mean. Specifically, the z-score of the

1'th observation of variable x is defined as

xi — mean ofx
(3.1)z-score of x,- = ————_——_——

standard deVIation of x

For example, if the z-score of a particular observation equals 1.5, the observation is 1.5

standard deviations above the mean. The z-score standardizes a variable so its unit of

measurement no longer matters. More formally, the z—score of ax,- + b, where a and b

are constants (a is non-zero), is identical to the z-score of xi. Simple algebra can show

this property:

(ax,- + b) — mean of (ax + b)
z-score of mo 17 =

( I + ) standard deviation of (ax + b)
 

a x (x,- — mean of x)

a x standard deviation of x

= z-score of xi,
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where the first equality follows from the definition of z-score in equation (3.1) and
the second equality is based on the definitions of mean and standard deviation (see
equation (2.4)). The constant 17 can be dropped in the above equations because its mean
equals b itself.

 

The z-score ofthe ith observation ofa variable x measures the number ofstandard
deviations an observation is above or below the mean. It is defined as

x,- — x
z—score of x; = ,

x

 

where 5c and 8,, are the mean and standard deviation of x, respectively. The
z-score, as a measure of deviation from the mean, is not sensitive to how the
variable is scaled and/or shifted.   
 

Now, we can define the correlation between two variables x and y, measured
for the same set of n observations, as the average products of z—scores for the two
variables:

1 n

correlation(x, y) = —Z (z-score of xi x z—score of yi) . (3.2)
n

i=1

As in the case of standard deviation (see section 2.6.2), the denominator of the
correlation is often n — 1 rather than n. However, this difference should not affect
one’s conclusion so long as the sample size is sufficiently large. Within the summation,
each z-score measures the deviation of the corresponding observation from its mean
in terms of standard deviation. Suppose that when one variable is above its mean, the
other variable is also likely to be greater than its own mean. Then, the correlation
is likely to be positive because the signs of the standardized units tend to agree with
each other. On the other hand, suppose that when one variable is above its mean, the
other variable is likely to be less than its own mean. Then, the correlation is likely to
be negative. In the current example, a positive correlation means that in years when
income inequality is above its over-time mean, political polarization is also likely to be
higher than its over-time mean.

Recall that z-scores are not sensitive to what units are used to measure a variable.
Because it is based on z-scores, correlation also remains identical even if different units
are used for measurement. For example, the correlation does not change even if one
measures income in thousands of dollars instead of dollars. Indeed, one can even use
a different currency. This is convenient because, for example, the relationship between
income and education should not change depending on what scales we use to measure

income. As another consequence of standardization, correlation varies only between
—1 and 1. This allows us to compare the strengths and weaknesses of association
between different pairs of variables.
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Correlation (correlation coefficient) measures the degree to which two variables

are associated with each other. It is defined as

_ l n xi — 56 y: — 5’
correlation of x and y = Z§< 3:: x 8—, 

l " xi—a‘c y--5I

or n-1>:(s, x s, ),
i=1

  

where 5c and 5' are the means and S, and S, are the standard deviations for

variables x and y, respectively. Correlation ranges from —1 to 1 and is not

sensitive to how a variable is scaled and/or shifted.  
 

In R, the correlation can be calculated using the cor () function. For example,

we can now calculate the correlation between the Gini coefficient and the measure of

political polarization. To do this, since each US congressional session lasts two years,

we take the Gini coefficient for the second year of each session.

 

We find that the correlation is positive and quite high, indicating that political

polarization and income inequality move in a similar direction. As we have already

emphasized, this correlation alone does not imply causality. Many van'ables have an

upwards trend during this time, leading to a high positive correlation among them.

3.6.3 QUANTILE-OUANTILE PLOT

Finally, in some cases, we are interested in comparing the entire distributions

of two variables rather than just the mean or median. One way to conduct such a

comparison is to simply plot two histograms side-by-side. As an example, we compare

the distribution of ideal points on the racial liberalism/conservatism dimension in the

112th Congress. When comparing across multiple plots, it is important to use the same

scales for the horizontal and vertical axes for all plots to facilitate the comparison.
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We observe that the two distributions are similar, though the distribution for
Democrats appears to have a longer upper tail (i.e., the distribution extends further
to the right) than that for Republicans. In addition, the Republicans’ ideological
positions seem to have a greathr concentration towards the center than those of the
Democrats.

A more direct way of comparing two distributions is a quantile-quantile plot or
Q—Q plot. The Q—Q plot is based on quantiles, defined in section 2.6.1. It is a scatter
plot of quantiles where each point represents the same quantile. For example, the
median, upper quartile, and lower quartile of one sample will be plotted against the
corresponding quantiles of the other sample. Iftwo distributions are identical, then all
quantiles have the same values. In this case, the Q—Q plot will result in the 45-degree
line. Points above the 45-degree line indicate that a variable plotted on the vertical
axis has a greater value at the corresponding quantile than a variable on the horizontal
axis. In contrast, points below a 45-degree line imply the opposite relationship. This
implies, for example, that if all points are above the 45-degree line, the variable
on the vertical axis takes a greater value in every quantile than the variable on the
horizontal axis.

Another useful feature of the Q—Q plot is that we can check the relative disper-
sion of two distributions. If the points in a Q—Q plot form a flatter line than the
45-degree line, they indicate that the distribution plotted on the horizontal axis is
more dispersed than that on the vertical axis. In contrast, if the line has a steeper
slope than 45 degrees, then the distribution plotted on the vertical line has a greater
spread. The qqplot () function generates this plot by specifying the arguments
x and y.

 



3.6 Summarizing Bivariate Relationships

Racial liberalism/conservatism dimension

 

1.5

1.0—

0.5 —

0.0 —

R
e
p
u
b
l
i
c
a
n
s

—0.5 —

—1.0—

O   —1.5 —
 

| l | l I l l

—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5

Democrats

In this Q—Q plot, the horizontal and vertical axes represent the racial dimension

for Democrats and Republicans, respectively. The fact that the points representing

lower quantiles appear above the 45-degree line indicate that liberal Republicans

are more conservative than liberal Democrats. This is because these quantiles have

greater values (i.e., more conservative) for Republicans than the corresponding

quantiles for Democrats. In contrast, the points representing upper quantiles are

located below the 45—degree line. That is, at the highest quantiles, i.e., the con—

servative ones, the Democrats score higher and so more conservatively than the

Republicans. Thus, conservative Democrats are more conservative than conservative

Republicans. Conservative Republicans would be more conservative than conservative

Democrats if all the points for the upper quantiles were above the 4S-degree line.

Finally, the line connecting the points is flatter than the 45-degree line, indicating

that the distribution of ideological positions is more dispersed for Democrats than

for Republicans.

 

The quantile-quantile plot or Q—Q plot is a scatter plot of quantiles. It plots

the value of each quantile for one variable against the value of the corresponding

quantile for another variable. If the distributions ofthe two variables are identical,

all points of the Q—Q plot lie on the 45-degree line. If the points form a line whose

slope is steeper than 45 degrees, the distribution plotted on the vertical axis is
more dispersed than the distribution on the horizontal axis. Ifthe slope is less than  45 degrees, then the distribution on the vertical axis has less dispersion. 
 



Chapter 3: Measurement

In the previous analysis, the scatter plot made it visually clear that the 112th
Congress had two ideologically distinct groups, Democrats and Republicans. But, are
there any clusters of ideologically similar legislators within each party? Is there a well-
defined procedure that can uncover groups of similar observations? We consider one
ofthe most basic clustering algorithms, called k-means. Before we describe the k-means
algorithm, we briefly introduce two new important R objects: matrix and list. These
objects will be used when we implement the k-means algorithm in R.

3.7.1 MATRIX IN R

Although both the matrix and data frame objects are rectangular arrays and have
many similarities, there are critical differences. Most importantly, a data frame can
take different types of variables (e.g., numeric, factor, character) whereas a matrix in
principle takes only numeric values (though it also can accommodate logical and other
special values under certain circumstances). While one can extract variables from a

data frame object using the $ operator, in general the entries of a matrix need to be
extracted by using square brackets [ , ] whose first and second elements, separated by
a comma, indicate the rows and columns of interest, respectively. Although we do not

exploit it in this book, a matrix is useful for linear algebra operations and is generally
more computationally efficient than a data frame.

To create a matrix object, we can use the matrix () function by specifying
the size of the matrix via the nrow (number of rows) and ncol (number of

columns) arguments and indicating whether the matrix should be filled with the input
data by row (byrow = TRUE) or column (byrow = FALSE). Moreover, adding

labels to rows and columns can be done by the rownames () and colnames ()
functions.

 
Ifone coerces a data frame object into a matrix using the as . matrix ( ) function,

some features of the data frame object, such as variable types, will get lost. In
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the following example, we illustrate the fact that a data frame can take different
data types such as character and numeric, but a matrix cannot accommodate them.

Instead, the as .matrix ( ) function converts variables of different types to a single

type, character in this case.

## data frame can take different data types

y <— 4, x.‘ an(yl = ~~,: «:.”( (“a", "b", "c")), y2 = (0.1, 0.2, 0.3))

. 'fi :r;(y$yl)

## [1] “factor"

“ 7 (y$y2)

## [l] “numeric“

## as.matrix() converts both variables to character

z<-'r~' (y)

z

## yl yZ

## [1,] "a" “0.1"

## [2,] "b" "0.2"

## [3,] “c" "0.3"

Finally, some useful operations on a matrix include col Sums ( ) and colMeans ( ) ,

which calculate the column sums and means, respectively. The same operations can be

applied to rows via the rowSums ( ) and rowMeans ( ) functions.

## column sums

(X)

##defg
## 15 18 21 24

## row means

(2:)

## a b c

## 2.5 6.5 10.5

More generally, we can use the apply ( ) function to apply any function to a margin,

meaning a row or a column, of a matrix. This function takes three main arguments: the

first or x argument is a matrix, the second or MARGIN argument specifies a dimension

over which we wish to apply a function (1 represents rows while 2 represents columns),

and the third or FUN argument names a function. We provide three examples. The first

two examples are equivalent to the colSums ( ) and rowMeans ( ) shown above. The

last example computes the standard deviation of each row.

 



 

##

Chapter 3: Measurement

column sums

apply(x, 2, sum)

##

##

##

d e f g

15 18 21 24

row means

appiy(x, 1, mean)

##

##

##

a b c

2.5 6.5 10.5

standard deviation for each row

apply(x, 1, sd)

##

##

37

a b c

1.290994 1.290994 1.290994

.2 LJST"IN R

We now turn to another important object class in R, called a list. The list object is

useful because it can store different types of objects as its elements. For example, a list
can take numeric and character vectors of different lengths. In contrast, a data frame

assumes those vectors to be of the same length. In fact, a list can even contain multiple

data frames of different sizes as its elements. Therefore, a list is a very general class of
objects.

Each element of a list comes with a name and can be extracted using the $ operator

(just like a variable in a data frame). It is also possible to extract an element using

double square brackets, [ [ ] ], with an integer or its element name indicating the

element to be extracted. Below is a simple illustrative example of a list, which contains

an integer vector of length 10 (yl), a character vector of length 3 (3/2), and a data

frame with two variables and three observations (y3). To create a list, we use the

list ( ) function and specify its elements by using their names as arguments.

## create a list

x <— iist(yl = 1:10, y2 = c("hi", "hello", “hey"),

y3 = dat3.iiame(z1 = 1:3, 22 = c("good", "bad", "ugly")))

## three ways of extracting elements from a list

x$y1 # first element

##

XE

##

[l] l 2 3 4 5 6 7 8 9 10

[2]] # second element

[1] "hi" "hello" “hey"



3.7 Clustering _

 

Some of the functions we introduced can be applied to the list object. They include

the names ( ) (to extract the names ofelements) and length ( ) (to obtain the number

of elements) functions.

 

3.7.3 THE k-MEANS ALGORITHM

Now that we are familiar with matrices and lists, we can use them to apply the

k-means algorithm. The k-means algorithm is an iterative algorithm in which a set

of operations are repeatedly performed until a noticeable difference in results is no

longer produced. The goal of the algorithm is to split the data into k similar groups

where each group is associated with its centroid, which is equal to the within-group

mean. This is done by first assigning each observation to its closest cluster and then

computing the centroid of each cluster based on this new cluster assignment. These

two steps are iterated until the cluster assignment no longer changes. The algorithm is

defined as follows.

F a

The k-means algorithm produces the prespecified number of clusters k and

consists of the following steps:

 

Step 1: Choose the initial centroids ofk clusters.

Step 2: Given the centroids, assign each observation to a cluster whose
centroid is the closest (in terms of Euclidean distance) to that

observation.

Step 3: Choose the new centroid of each cluster whose coordinate equals

the within-cluster mean ofthe corresponding variable.

Step 4: Repeat Step 2 and 3 until cluster assignments no longer change.   
 

Note that the researchers must choose the number of clusters k and the initial

centroid of each cluster. In R, the initial locations of centroids are randomly selected,

unless otherwise specified.
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It is typically a good idea to standardize the inputs before applying the k-means
algorithm. Doing so brings all variables to the same scale so that the clustering result
does not depend on how each variable is measured. This is done by computing the
z—score introduced earlier (see equation (3.1)). Recall that we compute the z-score of
a variable by subtracting the mean from it (called centering) and then dividing it by
the standard deviation (called scaling). In R, we can standardize a variable or a set of

variables using the scale ( ) function, which takes either a vector of a single variable
or a matrix of multiple variables.

Going back to our study of partisanship, we apply the k-means clustering algo-
rithm separately to the DW-NOMINATE scores for the 80th and 112th Congresses.
We choose k =2 and k =4, producing 2 and 4 clusters, respectively. The function
kmeans ( ) implements the k-means algorithm in R. The function has various argu-
ments, but the first argument x takes a matrix of observations to which one applies
the k-means algorithm. For our application, this matrix has two columns, representing
the first and second dimensions ofDW-NOMINATE scores, and the number of rows
equals the number of legislators in each Congress. We use the cbind ( ) (or “column
bind”) function to combine two variables by columns in order to create this matrix. As
a side note, the rbind ( ) (or “row bind”) function allows one to bind two vectors or
matrices by rows. We do not standardize the input variables in this application since
the DW-NOMINATE scores are already scaled in a substantively meaningful manner.

 

The main arguments of the kmeans ( ) function include centers (the number of

clusters), iter . max (the maximum number of iterations), and nstart (the number

of randomly chosen initial centroids). It is recommended that the nstart argument

is specified so that the algorithm is run several times with different starting values
(the kmeans () function reports the best results). We begin by fitting the k-means
algorithm with two clusters and five randomly selected starting values.

 

The output objects, k8Otwo . out and k1 12two . out, are lists, which contain var-

ious elements regarding the results of the application of the k-means algorithm. They
include iter (an integer representing the number of iterations until convergence,
which is achieved when the cluster assignments no longer change), cluster (a vector

ofthe resulting cluster membership), and centers (a matrix of cluster centroids).
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## [4] "withinss" "tot.withinss" "betweenss"

## [7] "size" "iter" "ifault"

As explained in section 3.7.2, the elements within each list can be accessed using S

like we access a variable in a data frame object. In both cases, the algorithm converged

in just 1 iteration, which can be checked by examining the iter element of the output

list object. The default maximum number of iterations is 10. If convergence is not

achieved, the iter . max argument needs to be specified as a number greater than 10.
We now examine the final centroids ofthe resulting clusters using a 2-c1uster model.

Each output row shows a cluster with the horizontal and vertical coordinates of its

centroid in the first and second columns, respectively.

## final centroids

k80two.out$centers

## [,1] [.2]

## l 0.14681029 -0.3389293

## 2 -0.04843704 0.7827259

k112two.out$centers

## [.1] [,2]

## 1 -0.3912687 0.03260696

## 2 0.6776736 0.09061157

We next compute the numbers of Democratic and Republican legislators who

belong to each cluster by creating a cross tabulation of party and cluster label variables.

## number of observations for each cluster by party

“(party = congresssparty[congressscongress == 80],

cluster = k80two.out$cluster)

## cluster

## party 1 2

## Democrat 62 132

## Other 2 0

## Republican 247 3

guie(party = congress$party[congress$congress == 112],

cluster = k112two.out$cluster)

## cluster

## party 1 2

## Democrat 200 0

## Other 0 0

## Republican 1 242
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We find that for the 112th Congress, the k-means algorithm with 2 clusters produces
one cluster containing all Democrats except one and the other consisting only of
Republicans. While we chose the number of clusters to be 2 in this case, the algorithm
discovers that these 2 clusters perfectly align on partisanship. In contrast, for the 80th
Congress, one of the clusters contains a significant number of Democrats as well as
Republicans. This is consistent with the fact that political polarization has worsened
over time.

Next, we apply the k-means algorithm with 4 clusters and visualize the results. We
begin by fitting the 4-cluster model to the 80th and 112th Congresses.

 

To visualize the results, we use the plot () function to create a scatter plot.
The following syntax assigns different colors to observations that belong to different
clusters. The centroid of each cluster is indicated by an asterisk
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The cex argument given in the points () function controls the font size so that

the centroid of each cluster is clearly visible. In addition, the pch argument specifies
a certain symbol for plotting. Finally, we specify a vector of integer values, rather than

actual color names, for the col argument so that each integer value is used for the
corresponding cluster. We add 1 to the cluster labels so that we do not use black, the

color of the cluster centroids, for the observations belonging to one of the clusters.
The palette ( ) function displays the exact correspondence between the color names
and integer values (see section 5.3.3 for more details on the use of color in R).

 

The results show that the 4-cluster model splits the Democrats into 2 clusters and

the Republicans into 2 clusters. Within each party, the division between the 2 clusters is

clearest among the Democrats in the 80th Congress. For both parties, the within-party

division is along the racial dimension. In contrast, the economic dimension dominates

the difference between the two parties.
Clustering algorithms such as the k-rneans algorithm represent examples of unsu-

pervised learning methods. Unlike in supervised learning, there is no outcome variable.

Instead, the goal of unsupervised learning is to discover the hidden structures in data.

The difficulty of unsupervised learning is that there is no clear measure of success and

failure. In the absence of outcome data, it is difficult to know whether these clustering

algorithms are producing the “correct” results. For this reason, human judgment is

often required to make sure that the findings produced by clustering algorithms are

reasonable.

This chapter focused on the issue of measurement. We discussed survey sampling

as a principled and efficient way to infer the characteristics of a potentially large

population from a small number of randomly sampled units without enumerating all

units in the population. In chapter 2, we learned about the randomization of treatment

assignment, which ensures that the treatment and control groups are equal on average

in all aspects but the receipt of treatment. In survey sampling, we used the random

sampling ofunits to make the sample representative of a target population. This allows

researchers to infer population characteristics from the sample obtained from random

sampling.
While random sampling is an effective technique, there are several complications

in practice. First, while random sampling requires a complete list of potential units

to be sampled, it is often difficult to obtain such a sampling frame. Second, due to

cost and logistical constraints, researchers are forced to use complex random sampling

techniques. Third, surveys typically lead to both unit and item nonresponses, which,

if occurring nonrandomly, threaten the validity of inference. In recent years, the
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nonresponse rate of phone surveys has dramatically increased. As a result, many
polling firms are starting to use cheap Internet surveys through platforms like
Qualtrics, even though many such surveys are not based on probability sampling.
Beyond nonresponse problems, sensitive questions in surveys often result in social
desirability bias in which respondents may falsify their answers and provide socially
acceptable answers.

Furthermore, social scientists often face the question of how to measure latent
concepts such as ideology and ability. We discussed an application of item response
theory to political polarization in the US Congress. The idea is to infer legislators’
ideological positions from their roll call votes. The same method was also applied to
measure students’ abilities from standardized tests. Using the estimated ideal points
as an example, we also learned how to apply a basic clustering algorithm called the
k-means algorithm in order to discover latent groups of observations with similar
characteristics in data.

In addition to these concepts and methods, the chapter also introduced various
numerical and visual summaries of data. While a bar plot summarizes the distribution
of a factor variable, box plots and histograms are useful tools for depicting the distri-
bution of continuous variables. The correlation coefficient numerically characterizes
the association between two variables, whereas a scatter plot plots one variable against
the other. Finally, unlike scatter plots, quantile-quantile plots (Q—Q plots) enable
comparison of the distributions of two variables even when they are not measured in
the same units.

3.9.1 CHANGING MINDS ON GAY MARRIAGE: REVISITED

In this exercise, we revisit the gay marriage study we analyzed in section 2.8.2. It
is important to work on that exercise before answering the following questions. In
May 2015, three scholars reported several irregularities in the data set used to produce

the results in the study.3 They found that the gay marriage experimental data were
statistically indistinguishable from data in the Cooperative Campaign Analysis Project
(CCAP), which interviewed voters throughout the 2012 US presidential campaign. The
scholars suggested that the CCAP survey data—and not the original data alleged to
have been collected in the experiment—were used to produce the results reported in

the gay marriage study. The release of a report on these irregularities ultimately led to

the retraction of the original article. In this exercise, we will use several measurement

strategies to reproduce the irregularities observed in the gay marriage data set.

To do so, we will use two CSV data files: a reshaped version of the original data set

in which every observation corresponds to a unique respondent, gayreshaped . csv

(see table 3.5), and the 2012 CCAP data set alleged to have been used as the basis for

the gay marriage study results, ccap2 012 . csv (see table 3.6). Note that the feeling

3 This exercise is based on the unpublished report “Irregularities in LaCour (2014)” by David Broockman,
Joshua Kalla, and Peter Aronow.
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Table 3.5. Gay Marriage Reshaped Data.
 

 

Variable Description

study which study the data set is from (1 = study 1, 2 = study 2)

treatment five possible treatment assignment options

therml survey thermometer rating of feeling towards gay couples in wave 1 (0-1 0 0)

thermz survey thermometer rating of feeling towards gay couples in wave 2 (0—1 0 0)

therm3 survey thermometer rating of feeling towards gay couples in wave 3 (0—10 0)

therm4 survey thermometer rating of feeling towards gay couples in wave 4 (0—1 0 0)
 

Note: See table 2.7 for the original data.

Table 3.6. 2012 Cooperative Campaign Analysis Project (CCAP) Survey Data.
 

Variable Description
 

caseid unique respondent ID

gaytherm survey thermometer rating of feeling towards gay couples (0—10 0)
 

thermometer measures how warmly respondents feel towards gay couples on a 0—100

scale.

1. In the gay marriage study, researchers used seven waves of a survey to assess

how lasting the persuasion effects were over time. One irregularity the scholars

found is that responses across survey waves in the control group (where no

canvassing occurred) had unusually high correlation over time. What is the

correlation between respondents’ feeling thermometer ratings in waves 1 and 2

for the control group in study 1? To handle missing data, we should set the use

argument of the cor ( ) function to " complete . obs " so that the correlation

is computed using only observations that have no missing data. Provide a brief

substantive interpretation of the results.

2. Repeat the previous question using study 2 and comparing all waves within

the control group. Note that the cor () function can take a single data frame

with multiple variables. To handle missing data in this case, we can set the
use argument to "pairwise . complete . obs ". This means that the cor ()

function uses all observations that have no missing values for a given pair ofwaves

even if some of them have missing values in other waves. Briefly interpret the
results.

3. Most surveys find at least some outliers or individuals whose responses are

substantially different from the rest of the data. In addition, some respondents
may change their responses erratically over time. Create a scatter plot to visualize

the relationships between wave 1 and each of the subsequent waves in study 2.

Use only the control group. Interpret the results.
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4. The researchers found that the data of the gay marriage study appeared un-
usually similar to the 2012 CCAP data set even though they were supposed
to be samples of completely different respondents. We use the data contained
in ccap2012 .csv and gayreshaped.csv to compare the two samples.

Create a histogram of the 2012 CCAP feeling thermometer, the wave-l feeling
thermometer from study 1, and the wave-l feeling thermometer from study 2.

There are a large number of missing values in the CCAP data. Consider how the
missing data might have been recoded in the gay marriage study. To facilitate
the comparison across histograms, use the breaks argument in the hist ()
function to keep the bin sizes equal across histograms. Briefly comment on the
results.

5. A more direct way to compare the distributions of two samples is through
a quantile—quantile plot. Use this visualization method to conduct the same
comparison as in the previous question. Briefly interpret the plots.

3.9.2 POLITICAL EFFICACY IN CHINA AND MEXICO

In 2002, the World Health Organization conducted a survey of two provinces in
China and three provinces in Mexico.4 One issue of interest, which we analyze in this

exercise, concerns political efficacy. First, the following self-assessment question was
asked.

How much say do you have in getting the government to address issues that
interest you?

(5) Unlimited say, (4) A lot of say, (3) Some say, (2) Little say, (1) No say at all.

After the self-assessment question, three vignette questions were asked.

[Alison] lacks clean drinking water. She and her neighbors are supporting an
opposition candidate in the forthcoming elections that has promised to address

the issue. It appears that so many people in her area feel the same way that the

opposition candidate will defeat the incumbent representative.

[Jane] lacks clean drinking water because the government is pursuing an
industrial development plan. In the campaign for an upcoming election, an

opposition party has promised to address the issue, but she feels it would be

futile to vote for the opposition since the government is certain to win.

[Moses] lacks clean drinking water. He would like to change this, but he can’t
vote, and feels that no one in the government cares about this issue. So he suffers
in silence, hoping something will be done in the future.

The respondent was asked to assess each vignette in the same manner as the self-
assessment question.

4 This exercise is based on Gary King, Christopher LL. Murray, Joshua A. Salomon, and Ajay Tandon (2004)
“Enhancing the validity and cross-cultural comparability of measurement in survey research.” American Political
Science Review, vol. 98, no. 1 (February), pp. 191—207.
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Table 3.7. Vignette Survey Data.
 

Variable Description
 

sel f self-assessment response

a1 ison response to the Alison vignette

jane response to the lane vignette

moses response to the Moses vignette

china 1 for China and 0 for Mexico

age age of respondent in years
 

How much say does [“name”] have in getting the government to address issues

that interest [him/her]?

(5) Unlimited say, (4) A lot of say, (3) Some say, (2) Little say, (I) No say at all.

[“name”] is replaced by either Alison, Iane, or Moses.

The data set we analyze vignettes . csv contains the variables whose names and

descriptions are given in table 3.7. In the analysis that follows, we assume that these

survey responses can be treated as numerical values. For example, “Unlimited say” = 5,

and “Little say” = 2. This approach is not appropriate if, for example, the difference

between “Unlimited say” and “A lot of say” is not the same as the difference between

“Little say” and “No say at all.” However, relaxing this assumption is beyond the scope

of this chapter.

1. We begin by analyzing the self-assessment question. Plot the distribution of

responses separately for China and Mexico using bar plots, where the vertical

axis is the proportion ofrespondents. In addition, compute the mean response for

each country. According to this analysis, which country appears to have a higher

degree of political efficacy? How does this evidence match with the fact that in

the 2000 election, Mexican citizens voted out of office the ruling Institutional

Revolutionary Party (PRI) who had governed the country for more than 80 years,

while Chinese citizens have not been able to vote in a fair election to date?

. We examine the possibility that any difference in the levels of efficacy between

Mexican and Chinese respondents is due to the difference in their age distribu-

tions. Create histograms for the age variable separately for Mexican and Chinese
respondents. Add a vertical line representing the median age of the respondents

for each country. In addition, use a quantile-quantile plot to compare the two

age distributions. What differences in age distribution do you observe between

the two countries? Answer this question by interpreting each plot.

. One problem with the self-assessment question is that survey respondents may

interpret the question differently. For example, two respondents who choose the

same answer may be facing quite different political situations and hence may in-

terpret “A lot of say” differently. To address this problem, we rank a respondent’s

answer to the self—assessment question relative to the same respondent’s answer
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to a vignette question. Compute the proportion of respondents, again separately
for China and Mexico, who rank themselves (according to the self-assessment
question) as having less say in the government’s decisions than Moses (the last
vignette). How does the result of this analysis differ from that of the previous
analysis? Give a brief interpretation of the result.

4. We focus on survey respondents who ranked these three vignettes in the expected
order (i.e., Alison 2 lane 2 Moses). Create a variable that represents how
respondents rank themselves relative to these vignettes. This variable should be
equal to 1 if respondents rank themselves less than Moses, 2 if ranked the same
as Moses or between Moses and Jane, 3 if ranked the same as Jane or between

Jane and Alison, and 4 if ranked the same as Alison or higher. Create the bar
plots of this new variable as done in question 1. The vertical axis should represent
the proportion of respondents for each response category. Also, compute the
mean value of this new variable separately for China and Mexico. Give a brief
interpretation of the result by comparing these results with those obtained in
question 1.

5. Is the problem identified above more or less severe among older respondents
when compared to younger ones? Answer the previous question separately for
those who are 40 years or older and those who are younger than 40 years. Does
your conclusion for the previous question differ between these two groups of

respondents? Relate your discussion to your finding for question 2.

3.9.3 VOTING IN THE UNITED NATIONS GENERAL ASSEMBLY

Like legislators in the US Congress, the member states of the United Nations (UN)

are politically divided on many issues such as trade, nuclear disarmament, and human

rights. During the Cold War, countries in the UN General Assembly tended to split into
two factions: one led by the capitalist United States and the other by the communist

Soviet Union. In this exercise, we will analyze how states’ ideological positions, as
captured by their votes on UN resolutions, have changed since the fall ofcommunism.5
Table 3.8 presents the names and descriptions of the variables in the data set contained
in the CSV file unvoting . csv.

In the analysis that follows, we measure state preferences in two ways. First, we can

use the proportion of votes by each country that coincide with votes on the same issue

cast by the two major Cold War powers: the United States and the Soviet Union. For

example, if a country voted for 10 resolutions in 1992, and if its vote matched the
United States’s vote on exactly 6 of these resolutions, the variable PctAgreeUs in

1992 would equal 60 for this country. Second, we can also measure state preferences in

terms of numerical ideal points as explained in section 3.5. These ideal points capture

what international relations scholars have called countries’ liberalism on issues such

as political freedom, democratization, and financial liberalization. The two measures

5 This exercise is based on Michael A. Bailey, Anton Strezhnev, and Erik Voeten (2015) “Estimating

dynamic state preferences from United Nations voting data.” Journal of Conflict Resolution, doi = 10.1177/
0022002715595700.
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Table 3.8. United Nations Ideal Points Data.
 

 

Variable Description

CountryName name of the country

CountryAbb abbreviated name of the country

idealpoint its estimated ideal point

Year year for which the ideal point is estimated

PctAgreeUs proportion of votes that match with votes cast by the

United States on the same issue

PctAgreeRUSSIA proportion of votes that match with votes cast by

Russia/the Soviet Union on the same issue
 

are highly correlated, with larger (more liberal) ideal points corresponding to a higher

proportion ofvotes that agree with the United States.

1. We begin by examining how the distribution of state ideal points has changed

since the end of communism. Plot the distribution of ideal points separately for

1980 and 2000—about 10 years before and 10 years after the fall of the Berlin
Wall, respectively. Add the median to each plot as a vertical line. How do the

two distributions differ? Pay attention to the degree of polarization and give a
brief substantive interpretation of the results. Use the quantile ( ) function to

quantify the patterns you identified.

2. Next, examine how the number of countries voting with the United States has

changed over time. Plot the average percentage agreement with the United States

across all countries over time. Also, add the average percentage agreement with

Russia as another line for comparison. Using the tappIY( ) function may help

with this analysis. Does the United States appear to be getting more or less

isolated over time, as compared to Russia? Identify some countries that are

consistently pro-US. What are the most pro-Russian countries? Give a brief

substantive interpretation of the results.

3. One problem with using the proportion ofvotes that agree with the United States.

or Russia as a measure of state preferences is that the ideological positions, and

consequently the voting patterns, of the two countries might themselves have
changed over time. This makes it difficult to know which countries’ ideological

positions have changed. Investigate this issue by plotting the evolution of the

two countries’ ideal points over time. Add the yearly median ideal point of

all countries. How might the results of this analysis modify (or not) your

interpretation of the previous analysis?

4. Let’s examine how countries that were formerly part of the Soviet Union differ

in terms of their ideology and UN voting compared to countries that were

not part of the Soviet Union. The former Soviet Union countries are Estonia,

Latvia, Lithuania, Belarus, Moldova, Ukraine, Armenia, Azerbaijan, Georgia,
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Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Russia. The

% in% operator, which is used as x % in% y, may be useful. This operator returns

a logical vector whose elements are TRUE ifthe corresponding element ofvector x
is equal to a value contained in vector y and otherwise FALSE. Focus on the most
recently available UN data from 2012 and plot each post-Soviet Union state’s

ideal point against the proportion of its votes that agree with the United States.

Compare the post-Soviet Union states, within the same plot, against the other
countries. Briefly comment on what you observe.

. We have just seen that while some post-Soviet countries have retained nonliberal

ideologies, other post-Soviet countries were much more liberal in 2012. Let’s
examine how the median ideal points ofSoviet/post-Soviet countries and all other
countries have varied over all the years in the data. Plot these median ideal points

by year. Be sure to indicate 1989, the year of the fall of the Berlin Wall, on the

graph. Briefly comment on what you observe.

. Following the end ofcommunism, countries that were formerly part ofthe Soviet

Union have become much more ideologically diverse. Is this also true ofthe world

as a whole? In other words, do countries still divide into two ideological factions?

Let’s assess this question by applying the k—means clustering algorithm to ideal

points and the proportion of votes agreeing with the United States. Initiate the
algorithm with just two centroids and visualize the results separately for 1989
and 2012. Briefly comment on the results.



Chapter 4
 

Prediction

Prophecy is a good line of business, but it is full of risks.

— Mark Twain, Following the Equator

In this chapter, we discuss prediction. Prediction is another important goal of data
analysis in quantitative social science research. Our first example concerns the predic-
tion of election outcomes using public opinion polls. We also show how to predict

outcomes of interest using a linear regression model, which is one of the most basic

statistical models. While many social scientists see causal inference as the ultimate goal

of scholarly inquiry, prediction is often the first step towards understanding complex
causal relationships that underlie human behavior. Indeed, valid causal inference

requires the accurate prediction of counterfactual outcomes. Later in the chapter we

discuss the connections between prediction and causal inference.

The 2008 US presidential election was historic. For the first time in American

history, an African-American candidate, Barack Obama, was elected. This election was

also important for the statistics community because a number of pundits accurately

predicted the election outcome.
The United States’s unique Electoral College system makes predicting election

outcomes challenging. A candidate is elected to office by winning an absolute majority

of electoral votes. Each of the 538 electors casts a single electoral vote. As of 2016, 535

of these votes are allocated among 50 states, corresponding to the 435 members of the
House of Representatives and the 100 members of the Senate. The remaining 3 votes
are given to the District of Columbia. In most cases, the electors vote for the candidate
who won the plurality of votes in the state they represent, leading to a “winner-take-

all” system in these states. In fact, some states have criminal penalties for voting for

the candidate who did not win the plurality of votes. A winning presidential candidate

must obtain at least 270 electoral votes.
Figure 4.1 shows the map of Electoral College votes for the 2008 election. See page

C2 for the full-color version. Obama won 365 electoral votes (blue states), whereas
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Figure 4.1. Electoral College Map of the 2008 US Presidential Election. The figure uses

gray rather than red for the states won by McCain. See page C2 for the full-color version.

the Republican candidate John McCain received 173 votes (red states).1 The Electoral

College system implies that to successfully forecast the outcome of the US presidential
election, we may need to accurately predict the winner of each state. Indeed, George

W. Bush won the 2000 election by taking 25 electoral votes from Florida, where he
defeated Al Gore by a slim margin of 537 votes after a controversial recount. As a

result, Gore lost the election by the narrow margin of 5 electoral votes, even though
he actually received a half million more popular votes than Bush at the national level.

More recently, Donald Trump won the 2016 election even though Hillary Clinton
received more votes nationally than Trump. Below, we show how to predict the election

outcome using public opinion polls conducted within each state. Before we present the

details of how this is done, we introduce two new programming concepts: loops and
conditional statements.

4.1.1 LOOPS IN H

In many situations, we want to repeat the same operations multiple times where

only small changes occur to the operations each time. For example, in order to forecast

the result of the US presidential election, we must predict the election outcome within

each state. This means that a similar set of computations will be performed a number

of times. We would like to avoid writing nearly identical code chunks over and over

again. A loop is a programming construct that allows us to repeatedly execute similar

code chunks in a compact manner. The R syntax for (i in X) will create a loop,

where i (or any other object name of your choice) is a loop counter that controls the

‘ Interestingly, Nebraska allocates two of its five electoral votes to the statewide winner while giving one
electoral vote to the winner of each congressional district (Maine follows the same system). As a result, although
McCain won a plurality of the popular vote in Nebraska, Obama received one electoral vote because he won the
majority of votes in the second congressional district.
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iterations ofthe loop, and X is the vector ofvalues that the loop counter will successively

take on. Consider the following pseudo-code.

(i ‘ X) {

expressionl

expressionz

expressionN

Here, the collection of expressions from expressionl through expressionN is

repeated for each value i ofthe vector X. During each of these iterations, i takes on the

corresponding value from the vector X, starting with the first element ofX and ending

with its last. Below is a simple example, which multiplies each number in a vector by

2. It is often useful to create an empty “container” vector whose elements are all NAs
in order to store the results from computing all iterations. We use the rep ( ) function

to do this. Comments can be written into the loop as with any other code chunk in

R. Braces { and } are used to denote the beginning and end of the body of the loop.
When we start a loop (or related functions) in the RStudio text editor, the spacing will

automatically indent and the closing bracket will align vertically with the for function.
This makes the code easier to interpret and debug (i.e., identify and remove errors from

the code).

values <— ’(2, 4, 6)

n <- ‘:24 ‘(values) # number of elements in “values”

results <- ‘v(NA, n) # empty Container vector for storing the results

## loop counter “i” will take values 1, 2, ..., n in that order

(1 ' lzn) (

## store the result of multiplication as the ith element of

## “results” vector

results[i] <- valuesti] * 2

(values[i], "times 2 is equal to“, results[i], "\n")

)

## 2 times 2 is equal to 4

## 4 times 2 is equal to 8

## 6 times 2 is equal to 12

results

## [1] 4 8 12

In each iteration ofthe above loop, the loop counter i takes an integer value, starting

with l and ending with n with an increment of 1. Note that the cat () function,

like print ( ), prints out an object on the screen. The cat () function combines

multiple objects (character or other) into a character string, as inputs separated by

commas. Without either the cat ( ) or print ( ) function, a loop will not print out
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the results [i] value on the screen. Finally, recall that \n indicates the addition of

a new line. Of course, in the above example, the loop is not strictly necessary because

one can simply execute values * 2, which multiplies each element of the values

vector by 2. Indeed, while loops may be conceptually easier, they are computationally

intensive and so should be avoided whenever possible.

One important process is debugging code that involves a loop. Several strategies

can reveal why a loop is not running properly. Since a loop simply executes the same

command chunks many times, one could check whether the commands that go inside

the loop can be executed without any error given a specific value of the loop counter.

In the above example, one may simply try the following command before constructing
the loop.

## check if the code runs when i = 1

i <— 1

x <— values[i] * 2

cat(values[i], "times 2 is equal to", x, "\n")

## 2 times 2 is equal to 4

Then, to make sure it behaves as we expect, we can change the first line to i < — 2 or

any other value that we want the loop counter i to take on. Another useful tip is to use

the print ( ) or cat ( ) functions to print out the current value of the loop counter.

This way, when there is an error, you always know how much of the loop succeeded.

For example, ifyou cannot even run one iteration, there is likely something wrong with

the code in the body of the loop. Alternatively, if the loop works for several iterations

and then fails, perhaps something specific about the iteration that failed is causing the

problem. The following example prints the iteration number to help identify the coding

error. We use the data. frame ( ) function to create an artificial data set with three

variables, one ofwhich is a character variable, and then attempt to compute the median

of each variable using a loop.

## a toy data frame

data <— deta.irame("a" = 1:2, "b" = V("hi", "hey"), “c“ = 3:4)

## we see an error occurring at iteration 2

results <— rcp(NA, 3)

for (i in 1:3) {

cat("iteration", i, "\n")

results[i] <— median(data[, i1)

}

## iteration l

## iteration 2

## Error in median.default(data[, i]): need numeric data

results

## [l] 1.5 NA NA
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The loop was successfully executed in the first iteration but failed in the second

iteration. This can be seen from the fact that an error message was printed before

the printout of the iteration 3 message. The reason for the failure is that the

median ( ) function takes numeric data only. As a result, the function produced an

error in the second iteration, making the loop halt without computing the median

for the second and third variables. This is indicated by NAs in the second and third

elements of the results vector.

412 GENERALCONDHWONALSTATBWENTSlNR

In section 2.2.4, we introduced simple conditional statements. We used the

ifelse ( ) function to create a vector of values where the elements of the resulting

vector depend on an input object ofthe logical class. The general syntax is i fel se (X ,

Y, Z). If an element X in the input is evaluated as TRUE, the value Y would be

returned. If x is evaluated as FALSE, then the other value, Z, would be returned. This

function is useful when recoding variables. Now, we will consider a more powerful

form of conditional statements that can implement (or not) arbitrary chunks of

R code depending on a logical expression. These take the form of if() {} and

i f ( ) { }else{ }. The first basic syntax is as follows.

if: (X) {

expressionl

expressionz

expressionN

If the value of X is TRUE, the code chunk expressionl through expressionN

will be executed. If the value of X is FALSE, then it will skip that code chunk entirely.

The following simple example illustrates this.

## define the operation to be executed

operation <— "add"

if (operation == “add") {

ca:("I will perform addition 4 + 4\n“)

4 + 4

l

## I will perform addition 4 + 4

## [l] 8

if (operation == "multiply") {

cat("I will perform multiplication 4 * 4\n")

4 * 4
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In the above code, the second portion of code on multiplication was not executed
because the operation object was set to "add" rather than “multiply". Thus,
the expression operation == "multiply" returned a logical value of FALSE,
indicating that the code chunk contained in the brackets is not performed. However,
if operation is set to "multiply", then 4 * 4, rather than 4 + 4, will be
evaluated.

The if ( ) { }else{ } statements allow for greater flexibility by incorporating a set
of R expressions to be evaluated if the argument in the if () function is FALSE.
They contrast with the if () {} statements, which specify only the expressions to
be evaluated when the argument in the if () function is TRUE. The following
code will execute the code chunk expressionla through expressionNa if X
is TRUE and the code chunk expressionlb through expressioan if X is
FALSE

(X) (

expressionla

expressionNa

) {

expressionlb

expressioan

Building on the earlier example, the following code illustrates how i f ( ) { }el se { }
statements work, implementing a different operation depending on the value of an

object. Specifically, if the operation object is set to "add", then the addition is

performed, but otherwise, the multiplication is executed.

## note that “operation” is redefined

operation <— "multiply"

(operation == "add") {

("I will perform addition 4 + 4")

4 + 4

{

<:w_:;2: ("I will perform multiplication 4 * 4")

4 * 4

r' M.} Bl   

}

## I will perform multiplication 4 * 4

## [l] 16

One can construct even more complicated conditional statements using the else

i f ( ) { } statement in the following manner.
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(X) {

expressionla

expressionNa

} (Y) {

expressionlb

expressioan

) (

expressionlc

expressionNc

The above syntax will execute the code chunk expressionla through

expressionNa if condition X is met. If X is not met, but another condition Y is

met, then the code chunk expres sionlb through expressioan will be executed.

Finally, ifboth X and Y are not satisfied, then the code chunk express ionlc through

expressionNc will be executed. Note that else i f ( ) can be repeated many times.

In addition, the order of expressions matters. For example, if condition Y rather than X

is evaluated first, then the code may produce a different result. Using else i f ( ) {},

we can modify the above example as follows.

## note that “operation” is redefined

operation <— "subtract“

(operation == “add") (

("I will perform addition 4 + 4\n")

4 + 4

} (operation == "multiply") {

(“I will perform multiplication 4 * 4\n")

4 * 4

l ‘ - (

("““, operation, "” is invalid. Use either “add” or “multiply.”\n“,

sep= "")
}

## “subtract” is invalid. Use either “add” or “multiply."

Note that the sep argument specifies how each object should be separated. In

the above example, sep = " " means that no character separates these objects. A

separator can be any character string, commonly a comma and space (sep = “ , “)

orasemicolon and space (sep = “ ; "). The default is sep = " ",which will insert

a space between objects.
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Finally, conditional statements can be used effectively within a loop. Suppose, for
example, that we want to perform a different arithmetic operation depending on
whether an integer is even or odd. The following code first checks whether the input
integer value is even or not. If it is even, R adds it to itself. If it is odd, R multiplies it.
A message summarizing this operation is printed out for each iteration. In R, the 525%
operator computes the remainder of a division. For example, 5 95% 2 will return 1,
which is the remainder for the division of 5 by 2. If dividing an input integer value by
2 returns the remainder of 0 rather than 1, we conclude that it is an even number.

values <- 1:5

n <— l,izu'ig‘i h (values)

results <— rup(NA, n)

r: .,.
u) (i in 1:n) (

## x and r get overwritten in each iteration

x <— valuesEi]

r <— x %% 2 # remainder when divided by 2 to check whether even or odd

if (r == 0) ( # remainder is zero

Ldl(X, "is even and I will perform addition",

x, "+", x, "\n")

results[i] <— x + x

* ( # remainder is not zero

 

':t(x, "is odd and I will perform multiplication",

X, "*lll X, "\n")

resultsii] <— x * x

## 1 is odd and I will perform multiplication l * 1

## 2 is even and I will perform addition 2 + 2

## 3 is odd and I will perform multiplication 3 * 3

## 4 is even and I will perform addition 4 + 4

## 5 is odd and I will perform multiplication 5 * 5

results

## [1] l 4 9 8 25

Here, the code indentation, which is done automatically in RStudio, is important,
making it clear that conditional statements are nested within a loop. The use of
appropriate indentation is essential for writing computer code that contains loops and
conditional statements.

¢l3 POLLPREDKHWONS

Given that we now know how to use loops and conditional statements, we undertake
the task of predicting the outcome of the 2008 US presidential election. Our forecast
is based on a number of public opinion polls conducted before the election. The CSV
data file presO8 . csv contains the election results by state. In addition, we have the



4.1 Predicting Election Outcomes —

Table 4.1. 2008 US Presidential Election Data.
 

 

Variable Description

state abbreviated name of the state

state . name unabbreviated name of the state

Obama Obama’s vote share (percentage)

McCain McCain’s vote share (percentage)

EV number of Electoral College votes for the state
 

Table 4.2. 2008 US Presidential Election Polling Data.
 

 

Variable Description

state abbreviated name ofthe state in which the poll was conducted

Obama predicted support for Obama (percentage)

McCain predicted support for McCain (percentage)

Pollster name of the organization conducting the poll

middate middate ofthe period when the poll was conducted
 

CSV file pollsOS . csv, which contains many polls within each state leading up to

the election.2 The names and descriptions of the variables in these data sets are given

in tables 4.1 and 4.2, respectively. We begin by creating a variable, called margin, in

both data frames, which represents Obama’s vote margin over McCain in percentage

points.

 

For each state, we generate a poll prediction for Obama’s margin of victory using

only the latest polls from the state. That is, we compute the mean prediction of all polls

taken in the state on the day closest to the election. Note that this day may differ among

states and there may be multiple polls conducted on the same day (more accurately,

the same middate). To do this, we first initialize or create an empty vector oflength 51,

called poll . pred, which will contain the poll prediction for each of the 50 states and

the District ofColumbia. In the loop, we subset the data so that each iteration contains

only the polls from one state.

2 The polling data were obtained from http://electoral-vote.com.
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We then further subset to extract the polls that were conducted within the state on

the day closest to Election Day. This last step requires the conversion of the middate
variable into the Date class using the as . Date ( ) function. The Date class is useful
because it can easily compute the number of days between the two specific dates. Input

to the as . Date ( ) function is a character string of the form year-month—date or

year/month/date.

‘,("2008-11-04")

*("2008/9/1")

x — y # number of days between 2008/9/1 and 11/4

## Time difference of 64 days

Using this operation, we create the variable, called DaysToElection, which
represents the number ofdays to the election. We compute this as the difference in days

between the middate and Election Day (November 4). Finally, we compute the mean

of poll predictions and store it as the corresponding element ofpol l . pred. Note that

we use the unique ( ) function to extract the unique state names in the code chunk
below.

## convert to a Date object

pollsOS$middate <— . (pollsOSSmiddate)

## compute the number of days to Election Day

pollsOBSDaysToElection <— ("2008-11—04") - p011508$middate

poll.pred <— (NA, 5l) # initialize a vector place holder

## extract unique state names which the loop will iterate through

st.names <— ': (pollsOBSstate)

## add state names as labels for easy interpretation later on

~(poll.pred) <— . (st.names)

## loop across 50 states plus DC

(i 'i 1:51){

## subset the ith state

state.data <— I (pollsOB, subset = (state == st.names[i]))

## further subset the latest polls within the state

latest <— ‘ (state.data, DaysToElection == ' (DaysToElection))

## compute the mean of latest polls and store it

poll.pred[i] <— t ‘ (latestsmargin)

To set up the loop, we use the unique () function to extract the set of unique

state names. Within the loop, we first subset the data for the ith state and store it as

state.data. For example, if i equals 1, it is Alabama and hence st .names [i]
yields AL. We then further subset the data by extracting only the polls taken on

the day closest to Election Day, which is indicated by the minimum value of the
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DaysToElection variable. Finally, the resulting data latest: is used to compute
the average ofthe predicted margins from the latest polls.
We investigate the accuracy of our poll prediction by subtracting it from the actual

election result of each state. The difference between the actual and predicted outcome
is called the prediction error. We compute the prediction error by comparing the actual

margin of victory with the predicted margin. We then compute the mean of poll
prediction errors across states. This represents the average prediction error, which we

call bias.

 

The result shows that on average across all states the poll predictions are approx-

imately unbiased. More precisely, the mean of poll prediction errors across states is
1.1 percentage points, representing a bias of small magnitude. The poll predictions

are for some states above and for other states below the actual election results, but

on average these errors appear to roughly cancel out. While the poll predictions
are approximately unbiased across states, the prediction for each state may not be

accurate. For some states, the poll predictions may be well above the actual margins

of victory, and these positive prediction errors are offset by large negative prediction

errors for other states. To investigate this possibility, we compute the root mean square

(RMS) of prediction error (see equation (2.3) introduced in section 2.6.2) or root-

mean-squared error (RMSE), which represents the average magnitude of prediction
error.

 

The result indicates that the average magnitude ofeach poll prediction error is about
6 percentage points.

 

The prediction error is defined as

prediction error = actual outcome — predicted outcome.

The average prediction error is called bias, and prediction is said to be unbiased
when its bias is zero. Finally, the root mean square of prediction error is called
root-mean-squared error, representing the average magnitude of prediction
error.  
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To obtain a more complete picture ofprediction errors, we create a histogram using
the hist ( ) function (see section 3.3.2).

 

Poll prediction error
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The histogram shows that the poll prediction error varies widely from one state to
another. However, most errors are relatively small and larger errors are less likely to
occur, yielding a bell-shaped distribution around zero.
We further examine the accuracy ofpoll predictions for each state by plotting them

(horizontal axis) against the corresponding actual election results (vertical axis) using

the two-letter state-name variable state. The states below (above) the 45-degree

line indicate that the poll predictions were too favorable towards Obama (McCain).

To plot text, we first create an “empty” plot by setting the type argument in the

plot () function to "n" and then use the text () function to add state labels. As

its first two arguments, the text () function takes the x and y coordinates for the
location where the character string is to be plotted. The third argument ofthis function,
labels, is a character vector of text labels to be plotted. In the current example, the
x-coordinates and y-coordinates represent the poll predictions and Obama’s actual

margms.
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Although for some states like the District of Columbia (DC) and Vermont (VT) the

poll prediction is grossly inaccurate, this may not matter given that the US presidential

election is essentially based on the winner-take-all system for each state. On the other

hand, even when poll predictions are close to the actual election results in terms of

percentage points, polls may predict the wrong candidate as the winner of a state.

There are two types of prediction errors where the poll predictions chose the wrong

winner. In the above plot, for the states that are plotted in the upper-left quadrant,

Obama was predicted to lose (because the poll results are negative) but he actually

won the states (because the actual election results are positive). Conversely, for the

states in the lower-right quadrant, Obama was predicted to win but actually lost the

states. The plot suggests that the poll predictions accurately chose the winner for most

states. However, three states, which the poll predictions called wrongly, had a close

race with the margin ofvictory approximately equal to 1 percentage point. We can use

the sign( ) function to determine the sign ofpol 1 . pred and preso 8smargin for

each state. The function returns 1 ifpositive (Obama wins) and — 1 ifnegative (McCain

wins) (0 if zero, a tie).
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Table 4.3. Confusion Matrix.

 

Actual outcome

Positive Negative

Predicted outcome

Positive true positive false positive

Negative false negative true negative

Note: There are two types of correct classification, true positive and true negative.
Similarly, false positive and false negative are two kinds ofmisclassification.

 

The problem of predicting the outcome category or class is called classification. In
the current context, for each state, we would like to predict whether Obama wins or
not. In a classification problem, prediction is either exactly correct or incorrect, and an
incorrect prediction is called misclassification. In our analysis, the misclassification rate
is 3/51, which is about 6 percent.

In a" binary classification problem, there are two types of misclassification. We
may predict Obama to be the winner for a state where he actually lost the election.
Conversely, Obama may be predicted to lose a state and yet in the actual election
win it. If we regard Obama’s victory (rather than his loss) as the “positive” outcome,
then the former type of misclassification is called false positive whereas the latter
is false negative. In the current example, Missouri (Mo) is a false positive while
Illinois (IN) and North Carolina (NC) are false negatives. Table 4.3 presents a con-
fusion matrix where the two types of misclassification and correct classification are
shown.

 

Classification refers to the problem of predicting a categorical outcome. Clas-
sification is either correct or incorrect. In a binary classification problem, there

are two types of misclassification: false positive and false negative, representing
incorrectly predicted positive and negative outcomes, respectively.   
 

Finally, we can compute the number of Electoral College votes for Obama based

on the poll predictions and compare it against the actual result, which was 364 votes.

Since 270 votes was the winning threshold, the results show that the polls correctly
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called Obama the elected president. The predicted total number of Electoral College

votes was 15 fewer than the actual election result.3

## actual results: total number of electoral votes won by Obama

“(presOS$EV[pre508$margin > 0])

## [l] 364

## poll prediction

nxw(pre508$Ev[poll.pred > 0])

## [1] 349

While the popular vote does not determine the election outcome, we can also

examine the accuracy ofnational polls and how public opinion changed over the course

of the campaign. To do this, we analyze the national polls contained in the CSV file

pollsUSOB . csv. The names and descriptions of the variables in this data set are

identical to those of the last four variables in table 4.2. For each of the last 90 days of

the campaign, we compute the average of support for each candidate using all polls

taken within the past week and examine how it changes as Election Day nears. This can

be done with a loop, where for a given day we take all polls that were conducted within

the previous 7 days and on the corresponding day. We then compare these poll—based

predictions against the actual vote shares in the election, which were 52.9% and 45.7%

for Obama and McCain, respectively. Using the code for state polls above as a template,

we construct the following code chunk.

## load the data

pollsUSOB <— , . ' ("pollsUSOB.csv")

## compute number of days to the election as before

pollsUSOB$middate <— ‘07 A \(pollsUSOB$middate)

pollsUSOB$DaysToE1ection <— '* “«("2008-11-04") - pollsU308$middate

## empty vectors to store predictions

Obama.pred <— McCain.pred <- (NA, 90)

(i ‘ 1:90) {

## take all polls conducted within the past 7 days

week.data <- ‘.1 (pollsUSO8, subset = ((DaysToElection <= (90 — i + 7))

& (DaysToElection > (90 - i))))

## compute support for each candidate using the average

Obama.pred[i] <— ‘~,‘(week.data$0bama)

McCain.pred[i] <— (week.data$McCain)

Note that in the above code we utilize shortcut syntax to assign the same value to

multiple objects. Specifically, we use the single expression x <— y < — 2 rather than

3 As noted earlier, Obama received one vote from Nebraska even though he lost the statewide vote.

 



Chapter 4: Prediction

two separate expressions, x <— z and y <- z, in order to assign the same value 2 to
two objects, x and y. Furthermore, within the loop, we subset the data pollsUSOB so
that the resulting data contain only the polls conducted within the past 7 days and the
day itself. For example, when the loop starts (i.e., i is equal to 1), we subset the polls
for which the DaysToElection variable is less than or equal to 96 (= 90 — l + 7)
and greater than 89 (= 90 — 1). In the final iteration (i.e., i is equal to 90), this variable
for the subsetted data takes a value less than or equal to 7 (= 90 — 90 + 7) and greater
than 0 (= 90 — 90).

We now display the results using a time-series plot. We define the horizontal axis
such that its leftmost value is 90 days prior to Election Day and its rightmost value
is Election Day. This can be done by specifying the x1im argument to be c (90 , 0)
instead of c (0 , 90) . The plot at the bottom uses gray circles rather than red for the
states won by McCain. See page C3 for the full-color version.
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Which person is the most competent?

Figure 4.2. Example Pictures of Candidates Used in the Experiment. Source: A. Todorov

et al. (2005) Science, vol. 308, no. 10 (June), pp. 1623—1626.

The resulting figure demonstrates the reasonable accuracy of preelection polls in

terms of margin. Indeed, the Election Day margin (the difference between two solid

circles) almost coincides with the predicted margin based on the polls taken within

a week prior to the election. It is also interesting that public opinion shifts quite

a bit during the course of campaign. Two months before the election, support for

Obama was roughly tied with that for McCain. However, as Election Day approached,

Obama’s margin over McCain gradually increased. On Election Day, it was more than

7 percentage points. It is also worth noting that the proportion of other voters who

were either undecided or supported third-party candidates declined.

In the previous section, we used polling data to predict election outcomes. When

doing so, we simply used the average of poll predictions. An alternative method of

prediction is based on a statistical model. In this section, we introduce one of the most

basic statistical models, called linear regression.

4.2.1 FACIAL APPEARANCE AND ELECTION OUTCOMES

Several psychologists have reported the intriguing result of an experiment showing

that facial appearance predicts election outcomes better than chance.4 In their experi-

ment, the researchers briefly showed student subjects the black-and-white head shots

oftwo candidates from a US congressional election (winner and runner-up). Figure 4.2

shows example pictures of the candidates from the 2004 Wisconsin Senate race. Russ

Feingold of the Democratic Party (left) was the actual winner, and Tim Michels of

the Republican Party (right) was the runner-up. The exposure of subjects to facial

pictures lasted less than a second, and the subjects were then asked to evaluate the

two candidates in terms of their perceived competence.

4 This section is based on Alexander Todorov, Anesu N. Mandisodza, Amir Goren, and Crystal C. Hall (2005)

“Inferences of competence from faces predict election outcomes.” Science, vol. 308, no. 10 (June). pp. 1623—1626.



Chapter 4: Prediction

Table 4.4. Facial Appearance Experiment Data.
 

 

Variable Description

congress session ofCongress

year year of the election

state state ofthe election

winner name of the winner

loser name of the runner-up

w . party party of the winner

1 . party party ofthe loser

d . votes number ofvotes for the Democratic candidate

r . votes number ofvotes for the Republican candidate

d . comp competence measure for the Democratic candidate

r . comp competence measure for the Republican candidate
 

The researchers used these competence measures to predict election outcomes.
Here, the competence measure for a Democratic candidate, for example, represents
the proportion ofexperimental subjects who rated the Democrat more competent than
the Republican. The key hypothesis is whether or not a within-a-second evaluation
of facial appearance can predict election outcomes. The CSV data set, face . csv,
contains the data from the experiment. Table 4.4 presents the names and descriptions
of the variables in this data set. Note that we include data only from subjects who did
not know the candidates’ political parties, their policies, or even which candidate was
the incumbent or challenger. They were simply making snap judgments about which
candidate appeared more competent based on their facial expression alone.
We begin our analysis ofthe facial appearance experiment data by creating a scatter

plot of the competence measure against election outcomes. To do this, we create the
win margins for Democratic candidates as the difference in two-party vote shares for
Democratic and Republican candidates. Positive win margins favor Democrats. A two-
party vote share is the number of votes each candidate receives out of just those votes

cast for a major party candidate (not out of all votes cast).

 

Next, we use the plot ( ) function to generate a scatter plot. To make the symbols
more informative, we can change them based on variables in our data set. The

argument pch for the plot ( ) function can specify the type of points to be plotted
(see section 3.6). We use the i felse ( ) function when specifying the col argument so
that red dots are used for the races with Republican winners and blue dots are used for

those with Democratic winners. The plot shows a mild upward trend in the Democratic
margin as the competence score for Democrats increases.
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The plot below uses gray circles instead of red circles for Republican winners. See

page C3 for the full-color version.

Facial competence and vote share
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4.2.2 CORRELATION AND SCATTER PLOTS

We learned in section 3.6.2 that correlation represents the degree to which one

variable is associated with another. A positive (negative) value ofcorrelation means that

one variable is more (less) likelynto be above (below) its mean when the other variable

is above its own mean. The upwards-sloping data cloud in the above scatter plot shows

a positive correlation between perceived competence and vote share differential. To

compute the correlation coefficient, we use the function cor ( ) .

This correlation of about 0.4 tells us that there is a moderately positive relation-

ship between a candidate’s perceived competence and his or her actual margin of

victory on Election Day. That is, candidates who appear more competent than their
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(a) Correlation = 0.09
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Figure 4.3. Correlation Coefficients and Patterns of the Data Cloud in Scatter Plots.

opponents—as rapidly judged by uninformed voters who don’t recognize the
candidates—are likely to win a higher share of the votes cast.

To get a better sense of the relationship between correlation coefficients and
data cloud shapes, figure 4.3 presents four artificial data sets with various degrees

of correlation. We observe that a positive (negative) correlation corresponds to an
upwards (downwards) trend in the data cloud, and a greater magnitude of the

correlation coefficient indicates a stronger linear relationship. Indeed, correlation

represents a linear relationship between two variables. Perfect positive (negative)

correlation, i.e., correlation of 1 (—1), would mean the two variables have a perfect

linear relationship With data points located on a single line.
Thus, it is important for us to note that a lack of correlation does not necessarily

imply a lack of a relationship. In panel (d), the correlation between the two variables
is low but there is a clear nonlinear relationship, which in this case is a quadratic
function.
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The correlation coefficient quantifies the linear relationship between two vari-

ables. An upwards trend in the data cloud in a scatter plot implies a positive

correlation, whereas a downwards trend in the data cloud represents a nega-

tive correlation. Correlation is often not suitable for representing a nonlinear

relationship.  
 

4.2.3 LEAST SQUARES

As shown above, correlation describes a linear relationship between two variables.

However, such a relationship is best characterized using the following linear model:

Y: a +5 X+ e . an
intercept slope error term

In the model, Y is the outcome or response variable and X is the predictor or inde-

pendent (explanatory) variable. In the current application, we will use the perceived

competence measure as the predictor and the difference in two-party vote share as the

outcome. Recall that any line can be defined by the in tercept a and the slope parameter

)3. The intercept 0: represents the average value of Y when X is zero. The slope fl

measures the average increase in Y when X increases by one unit. The intercept and

slope parameters are together called coefficients. The error (or disturbance) term, 6,

allows an observation to deviate from a perfect linear relationship.

We use a model like this under the assumption that it approximates the data-

generating process well. However, as well-known statistician George Box has stated,

we must recognize that “all models are wrong, but some are useful.” Even if the data

are not generated according to the linear model specified in equation (4.1), the model

can be a useful tool to predict the outcome of interest.

Since the values of oz and ,8 in equation (4.1) are unknown to researchers, they must

be estimated from the data. In statistics, the estimates of parameters are indicated by

“hats,” where d and B represent the estimates ofa and fl, respectively. Once we obtain

the estimated values of coefficients a and f3, then we have the so—called regression

line. We can use this line to predict the value of the outcome variable given that of

a predictor. Specifically, given a particular value of the predictor, X = x, we compute

the predicted value (or fitted value) of the outcome variable, denoted by 3;. using the

regression function

A

Y = d4—Bx. (42)

Most likely, the predicted value will not equal the observed value. The difference

between the observed outcome and its predicted value is called the residual or

prediction error. Formally, we can write the residual as

é=Y—?. mm

Notice that the residual is represented by 6 with a hat. Since the error term 6 in

equation (4.1) is unobserved, the residual represents an estimate of this error term.
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w

The linear regression model is defined as

Y = a+flX+e.

where Y is the outcome (or response) variable, X is the predictor or the inde-
pendent (or explanatory) variable, 6 is the error (or disturbance) term, and (a, [3)
are the coefficients. The slope parameter ,8 represents the increase in the average
outcome associated with a one-un-it increase in the predictor. Once the estimates
of the coefficients (61,3) are obtained from the data, we can predict the outcome,
using a given value ofthe predictorX—— x, as Y—- a+3x The difference between
the observed outcome and this fitted or predicted valueY18 called the residual and
is denoted byé—— Y— Y.  
 

To fit a linear regression model in R, we use the 1m( ) fimction. This function takes
a formula of the form Y " x as the main argument where the outcome variable is Y
and the predictor is x, taken from a data frame specified as the data argument. Note
that an intercept will be automatically added to the regression model.
We now obtain the regression line for the facial appearance experiment data. We

use the Democratic margin in the two-party vote share as the response variable and the
perceived competence for Democratic candidates as the predictor.

 

The output shows that the estimated intercept is —0.3122 whereas the estimated
slope is 0.6604. That is, when no experimental subject thinks a Democratic candidate
is more competent than a Republican counterpart, the predicted Democratic margin

of two-party vote share is approximately -31.2 percentage points. If the perceived

competence score increases by 10 percentage points, then the outcome variable is

predicted to increase on average by 6.6 (= 0.6604 x 10) percentage points.

There is an alternative way of fitting the same model without the data argument.
This requires specifying the entire names of objects for the outcome variable and the
predictor as follows.
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4.2 Linear Regression

In general, this is not recommended because it unnecessarily complicates the syntax

and may cause confusion. However, it may be useful when the vafiables we wish to use
for regression exist as separate objects in the workspace.

In additiog, to directly obtain the estimated coeflicients (d, B) and the predicted or

fitted values Y, we can use the coef ( ) and fitted( ) functions, respectively.

 

It is straightforward to add the regression line to the scatter plot using the

abline ( ) function which takes the output object from the 1m ( ) function as its input.

The plot also shows the estimated intercept a as well as the observed outcome Y, the
predicted or fitted value Y, and the residual é for one ofthe observations.

Facial competence and vote share
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This regression line is the “line of best fit” because it minimizes the magnitude of
prediction error. To estimate the line’s intercept and slope parameters, a commonly
used method is that of least squares. The idea is to choose 6: and ,3 such that together
they minimize the sum ofsquared residuals (SSR), which is defined as

ssn = Z}? = 2130/ — 17,-)2 = gun — a - 3X02. (4.4)

In the equation, Yi, Xi, and éi represent the outcome variable, the predictor, and
the residual, respectively, for the ith observation, and n is the sample size. The

second and third equalities follow from the definition of the residual given in
equations (4.3) and (4.2), respectively. The value of SSR is difficult to interpret.
However, we can use the idea of root mean square (RMS) introduced in sec-

tion 2.6.2 and applied earlier. Specifically, we can compute the root-mean-squared error
(RMSE) as

(4.5)

 

Therefore, RMSE represents the average magnitude of the prediction error for the
regression, and this is what the method of least squares minimizes.

In R, RMSE can be easily calculated by first obtaining the residuals from the
resid() function.

 

The result implies that while the perceived competence score does predict the

election outcome, the prediction is not very accurate, yielding on average a prediction
error of 26 percentage points.

The least squares estimates of intercept and slope parameters are given by

a = ?— 3X, (4.6)

_ 23;;ch — ?)(Xi — Y)
3 _ —Z§'=1(Xi_ 7V . (4.7)

Recall that the sample means of Y and X are given by Y = 1,12_1 Y- and X:
l"E_1 X.- , respectively. The results imply that the regression linenalways goes through

the center of the data (X, Y). This18 so because substituting_x—- X into equation (4.2)
and using the expression fora in equation (4.6) yields Y= Y:

?=(Y—B’X)+BY =
W

R
)
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In the above plot, we observe that this is indeed the case. The regression line runs

through the intersection of the vertical and horizontal dotted lines, which represent

the means ofX and Y, respectively.
In addition, when the method of least squares is used to estimate the coefficients, the

predictions based on the fitted regression line are accurate on average. More precisely,

the mean of residual é is zero, as the following algebraic manipulation shows:

n

meanofé = 1:0} —&—BX;)=T’_—dt—,BX=O.

n i=1
In this equation, the first equality is due to the definition of the residual, the next

equality is obtained by applying the summation for each term in the parentheses, and
the final equality follows from equation (4.6). We emphasize that this is an algebraic

equality and holds for any data set. In other words, a linear regression model always
has zero average prediction error across all data points in the sample, but this does

not necessarily mean that the linear regression model accurately represents the actual

data-generating process.

 

A common method of estimating the coefficients of the linear regression model is

the method of least squares, which minimizes the sum of squared residuals,

SSR = ELI 6? = ELM — a — 3X»?

The mean of residual_s is_always mg), and the regression line always goes through
the center of data (X , Y) where X and Y are the sample means of X and Y,

respectively.  
 

It is also important to understand the relationship between the estimated slope of

the regression and the correlation coefficient introduced in section 3.6.2:

1 " (Y,- — ?)(Xi — Y) m
3 ;Z n _ n _ x n —

i=1 \/% Zi=1(Y" _ Y)2\/%Z,~=1(Xi — X)2 \ffi Zi=1(Xi_ X)2

standard dev'at'on of Y
= correlation of X and Y X —-—.I—.l—-—. (4.8)

standard deVIatIon of X

The first equality holds because we divide and multiply the right hand side of

equation (4.7) by the standard deviation of Y, i.e., vi 2;;in — 7V, whereas the

second equality follows from the definitions of correlation and standard deviation (see
equations (3.2) and (2.4), respectively).

The expression for the estimated slope parameter in equation (4.8) has two im-

portant implications. First, a positive (negative) correlation corresponds to a positive

(negative) slope because standard deviations never take a negative value. Second, each

increase of 1 standard deviation in X is associated with an average increase of p

standard deviations in Y, where p is the correlation between X and Y. For example,

if the correlation is 0.5, then a 1 standard deviation increase in X would result in a 0.5

standard deviation increase in Y. In the current example, the correlation between the
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Figure 4.4. Galton's Regression Towards Mediocrity. Source: Francis Galton (1886)

”Regression towards mediocrity in hereditary stature.” Journal of the Anthropological

Institute of Great Britain and Ireland, vol. 15, pp. 246—263.

perceived competence score and the two-party vote share differential is 0.43, whereas
the standard deviations of X and Y are 0.19 and 0.29, respectively. Thus, an increase

in the perceived competence score of 0.19 is associated with an average increase in the

two-party vote share differential of 12—13 percentage points (z 0.43 x 0.29).

 

The estimated slope coefficient from a linear regression model equals the p
standard deviation unit increase in the outcome variable that is associated with
an increase of 1 standard deviation in the predictor, where p is the correlation
between the two variables.  
 

4.2.4 REGRESSION TOWARDS THE MEAN

In his 1886 paper entitled “Regression towards mediocrity in hereditary stature,” a
British scholar, Sir Francis Galton, conducted one of the first regression analyses. He
studied human hereditary stature by examining the relationship between the height of

adult children and the average of their parents’ heights, which Galton called the “mid-
parents’ height.” Galton was the first to present an example of the phenomenon called
regression towards the mean. He summarized this as “When Mid Parents are shorter
(taller) than mediocrity, their Children tend to be taller (shorter) than they.”

Figure 4.4 is taken from the original paper. In this figure, the values indicate

the number of observations and the ellipse represents the data cloud. The “locus of
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vertical tangential points” represents a regression line where the outcome variable is

adult children’s height (horizontal axis) and the predictor is their mid-parents’ height

(vertical axis). Note that the outcome variable is measured on the horizontal axis while

the predictor is on the vertical axis, which is the exact opposite of the current practice

ofplotting the outcome variable on the vertical axis. Galton also regressed mid-parents’

heights on the heights of adult children. This regression line is denoted by the “locus

of horizontal tangential points.” The angle of the slope of this regression line, which

Galton calculated to be 2/3, represents the rate of regression from mid-parents to

children.

To demonstrate the regression effect numerically, consider the observations that

have mid-parents’ heights of approximately 71 inches. As we can see from figure 4.4,

there are 24 such observations, represented by those in the second row from the top.

Out of these observations, only 8, or 33% of them, have children who are at least as

tall as their mid-parents. In contrast, focus on the observations whose mid-parents

are about 67 inches and hence shorter than the average height (they are in the second

row from the bottom). Out of 57 such observations, 40 observations, or 70%, have

children whose heights are at least their mid-parents’ height. Galton called this pattern

the “regression towards mediocrity.” Note, however, that as indicated by the positive

slope of the regression line, children whose parents are taller also tend to be taller on

average. We emphasize that as shown in chapter 6 this empirical phenomenon can

be explained by chance alone. Thus, regression towards the mean does not imply that

human heights are converging and everyone will have an identical height in the future!

Regression towards the mean is observed in other contexts as well. Below, we show

another example of this phenomenon, demonstrating that Obama tended to gain fewer

votes in 2012 than in 2008 for the states in which he did well in 2008. Other examples

include test scores where students who perform well in the midterm exam tend not to

do as well in the final exam. An important point is that this decline in performance

may have arisen due to chance rather than to a lack of Obama’s or the students’

efforts.

 

Regression towards the mean represents an empirical phenomenon where an

observation with a value of the predictor further away from the distribution’s
mean tends to have a value of an outcome variable closer to that mean. This

tendency can be explained by chance alone. 
 

4.2.5 MERGING DATA SETS IN R

We will examine whether or not the US presidential election data exhibit the
regression towards the mean phenomenon. To do this, we use Obama’s vote share

in the 2008 election to predict his vote share in his 2012 reelection. We merge the

2012 election result data set, preslz .csv, into the 2008 election data set. The

variable names and descriptions of the 2012 election result data set are given in

table 4.5.
Merging two data sets can be done in R using the merge ( ) function. The function

takes three main arguments, x, y, and by, where the x and y arguments represent two

data frames to be merged and the by argument indicates the variable name(s) used for

merging. Let’s first look at two data sets we would like to merge.
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Table 4.5. 2012 US Presidential Election Data.
 

 

Variable Description

state abbreviated name ofthe state

obama Obama’s vote share (percentage)

Romney Romney’s vote share (percentage)

EV number of Electoral College votes for the state
 

 
We will use the state name variable state, which is contained in both data sets, to

merge the two data frames.
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## CO 1 Colorado 1 Max. :92.00

## (Other):45 (Other) :45

## McCain EV.x margin

## Min. : 7.00 Min. : 3.00 Min. :—32.000

## lst Qu.:40.00 lst Qu.: 4.50 lst Qu.:—13.000

## Median :47.00 Median : 8.00 Median : 4.000

## Mean :47.06 Mean :10.55 Mean 4.314

## 3rd Qu.:56.00 3rd Qu.:ll.50 3rd Qu.: 17.500

## Max. :66.00 Max. :55.00 Max. 85.000

##

## Obama.y Romney EV.y

## Min. :25.00 Min. 7.00 Min. . 3.00

## lst Qu.:40.50 1st Qu.:41.00 lst Qu.: 4.50

## Median :51.00 Median :48.00 Median : 8.00

## Mean :49.06 Mean :49.04 Mean :10.55

## 3rd Qu.:56.00 3rd Qu.:58.00 3rd Qu.:ll.50

## Max. :91.00 Max. :73.00 Max. :55.00

##

Note that if the data frames have variables with identical names, i.e., Obama and Ev,

then the merged data frame will append .x and .y to each name, thereby attributing

each variable to its original data frame. The variable used for merging must exist in

both data frames. This variable may have the same name in both data frames, as in the

above code chunk, but if the variable happens to have different names, then we can

use the by. x and by.y arguments to specify the exact variable names used in each

data frame. By default, the merged data frame keeps the name of the variable from data

frame x, which is specified by the by. x argument. An example code chunk is given

here.

## change the variable name for illustration

names(pre512)[1] <— "state.abb"

## merging data sets using the variables of different names

pres <— merge(presO8, prele, by.x = “state", by.y = "state.abb“)

Summa Ky (pres)

## state state.name Obama.x

## AK 1 Alabama 1 Min. :33.00

## AL 1 Alaska 1 lst Qu.:43.00

## AR 1 Arizona 1 Median :51.00

## AZ 1 Arkansas 1 Mean :51.37

## CA 1 California: 1 3rd Qu.:57.50

## CO . 1 Colorado 1 Max. :92.00

## (Other):45 (Other) :45

## McCain EV.x margin

## Min. 7.00 Min. 3.00 Min. :-32.000
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##

##

##

##

##

##

##

##

##

##

##

##

##

##
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1st Qu.:40.00 lst Qu.: 4.50 lst Qu.:—13.000

Median :47.00 Median : 8.00 Median : 4.000

Mean :47.06 Mean :10.55 Mean : 4.314

3rd Qu.:56.00 3rd Qu.:11.50 3rd Qu.: 17.500

Max. :66.00 Max. :55.00 Max. : 85.000

Obama.y Romney EV.y

Min. :25.00 Min. : 7.00 Min. : 3.00

lst Qu.:40.50 lst Qu.:41.00 lst Qu.: 4.50

Median :51.00 Median :48.00 Median : 8.00

Mean 249.06 Mean :49.04 Mean :10.55

3rd Qu.:56.00 3rd Qu.:58.00 3rd Qu.:11.50

Max. :91.00 Max. :73.00 Max. :55.00

An alternative way of combining two data frames is the cbind ( ) function, which
enables column-binding of multiple data frames. (As a side note, the rbind ( ) func-

tion performs row-binding of multiple data frames by stacking one below another.)
But sometimes problematically, the cbind() function assumes the proper sorting

of data frames such that corresponding observations appear in the same row of the

data frames. In our current application, each state must appear in the same row of the

two data frames. The merge ( ) function, on the other hand, appropriately sorts the

data frames according to the variable used for merging. Another disadvantage of the
cbind( ) function is that it preserves all columns in both data frames even when they

represent the same variable, containing identical information.

The code chunk below illustrates these two problems. The resulting merged data
frame keeps all variables from both data frames, and more importantly, the merged

data frame has incorrect information for the District of Columbia (DC) and Delaware

(DE) because their order is different in the two original data frames. In contrast, the

merge ( ) function will sort the second data frame, preslz, appropriately to match

with the first data frame, pres 0 8.

## cbinding two data frames

presl <— cbind(presOS, pres12)

## this shows all variables are kept

summary(pres1)

## state.name state Obama

## Alabama : 1 AK : 1 Min. :33.00

## Alaska 1 AL : 1 lst Qu.:43.00

## Arizona 1 AR : 1 Median :51.00

## Arkansas 1 AZ : 1 Mean 251.37

## California: 1 CA : 1 3rd Qu.:57.50

## Colorado 1 CO : 1 Max. :92.00

## (Other) :45 (Other):45
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' Using the merged data frame, we investigate whether-or not the regression towards
the mean phenomenon ezdsts in the US presidential election data.‘ Given the recent 
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trend of increasing polarization in American politics (see section 3.5), we standardize
vote shares across elections by computing their z-scores so that we can measure
Obama’s electoral performance in each state relative to his average performance of

that year (see section 3.6.2). That is, we subtract the mean from Obama’s vote share

in each election and then divide it by the standard deviation. This can be done easily
by using the scale ( ) function. We perform this transformation because technically,

the regression towards the mean phenomenon holds when both the outcome and
explanatory variables are standardized.

pres$0bama2008.z <- scale(pres$0bama.x)

pres$0bama2012.z <— scale(pressobama.y)

##

fi

fi

##

##

##

##

##

##

##

##

fi

fi

##

##

##

##

##

##

##

We regress Obama’s 2012 standardized vote share on his 2008 standardized vote

share. As expected, we observe a strong positive linear relationship between the two.
Obama tended to receive more votes in 2012 from states that gave him more votes in

2008. Note that when we standardize both the outcome variable and the predictor, the

estimated intercept becomes zero. This is because the estimated intercept is given by

d = Y —— 37 (see equation (4.6)) and after standardizing, the sample means of both
variables, Y and 3?, are zero. As shown below, in this case, R estimates the intercept to

be essentially zero. It is also possible to fit the model without an intercept by including
— l in the formula.

intercept is estimated as essentially zero

t1 <— Lm(0bama2012.z ~ Obama2008.z, data = pres)

t1

Call:

Im(formula = 0bama2012.z ~ Obama2008.z, data = pres)

Coefficients:

(Intercept) Obama2008.z

-3.521e-l7 9.834e—01

regression without an intercept; estimated slope is identical

tl <- 1m(0bama2012.z ~ —1 + Obama2008.z, data = pres)

t1

Call:

lm(formu1a = Obama2012.z ~ -1 + Obama2008.z, data = pres)

Coefficients:

Obama2008.z

0.9834
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Here, we plot the fitted regression line as well as the data points where we observe a -
strong linear relationship.
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Now we compute the proportion of states where Obama received a greater share of

standardized votes in 2012 than he did in 2008.We do so using first the bottom quartile

of Obama’s 2008 (standardized) vote share, then the top quartile. If the regression

towards the mean phenomenon exists, then this proportion should be greaterfor the

states in the bottom quartile than those in the top quartile.
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In the above code, we use the quanti le ( ) function to compute the top and bottom
quartiles. Then, a logical vector where TRUE (FALSE) indicates Obama’s 2012 vote
share being greater than (less than or equal to) his 2008 vote share is subsetted by
another logical vector. This second logical vector, inside the square brackets, indicates
whether Obama’s 2008 vote share for a state is in the bottom or top quartile. The result

clearly shows the regression towards the mean phenomenon. Obama fared better in

2012 than in 2008 in 57% of bottom quartile states, where he failed most in 2008. In
contrast, Obama fared better in 2012 only among 46% of the top quartile states, where
he succeeded most in 2008.

4.2.6 MODEL FIT

Model fit measures how well the model fits the data, i.e., how accurately the

model predicts observations. We can assess model fit by looking at the coefificient of

determination, or R2, which represents the proportion oftotal variation in the outcome

variable explained by the model. To define R2, we first introduce the total sum of
squares or TSS, which is defined as

TSS =im — ?)2.
i=1

The TSS represents the total variation of the outcome variable based on the square

distance from its mean. Now, we can define R2 as the proportion ofTSS explained by
the predictor X :

R2 _ TSS — ssn _ ssn
TSS _ ?E‘

The SSR or sum of squared residuals is defined in equation (4.4) and represents the

residual variation of Y left unexplained by X . The value of R2 ranges from 0 (when

the correlation between the outcome and the predictor is 0) to 1 (when the correlation

is 1), indicating how well the linear model fits the data at hand.

 

The coefficient of determination is a measure of model fit and represents the

proportion of'variation in the outcome variable explained by the predictor. It is

defined as one minus the ratio of the sum of squared residuals (SSR) t0 the total

sum of squares (TSS).   
 

As an illustrative example, consider the problem of predicting the 2000 US election

results in Florida using the 1996 US election results from the same state at the county

level. In Florida, there are 68 counties, and the CSV file florida . csv contains the
number of votes cast for each candidate in those two elections. Table 4.6 displays the

names and descriptions ofvariables in this data file. We focus on libertarian candidates
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{996 and 2000 US Fresideniiai Election Data for Florida Counties.

 

 

 

Variable Description

county county name

C1 inton9 6 Clinton’s votes in 1996

Dole9 6 Dole’s votes in 1996

Perot 9 6 Perot’s votes in 1996

BushO O Bush’s votes in 2000

GoreOO Gore’s votes in 2000

BuchananOO Buchanan’s votes in 2000
 

Ross Perot in 1996 and Pat Buchanan in 2000, using the votes for the former to predict
the votes for the latter. We then compute R2 from this regression model by first

computing T38 and then SSR. Recall that the resid( ) function extracts the vector

of residuals from the regression output.

florida <— 1 tuic'i, :35, -("florida.csv")

## regress Buchanan’s 2000 votes on Perot's 1996 votes

fit2 <- ,3':(Buchanan00 ~ Perot96, data = florida)

fitz

##

## Call:

## lm(formula = BuchananOO ~ Perot96, data = florida)

##

## Coefficients:

## (Intercept) Perot96

## 1.34575 0.03592

## compute TSS (total sum of squares) and SSR (sum of squared residuals)

TSSZ <— :"2((florida$Buchanan00 — r:mas.(floridasBuchananOO))"2)

SSRZ <- ‘dw(r@#3d(fit2)‘2)

## coefficient of determination

(TSSZ - SSR2) / TSSZ

## [1] 0.5130333

The result shows that 51% ofthe variation ofBuchanan’s 2000 votes can be explained

by Perot’s 1996 votes.
We turn this calculation into a function so that we can easily compute the coefficient

of determination for different regression models (see section 1.3.4). The function takes

as input the output from the lm() function, which is a list object containing various

elements (see section 3.7.2). The value ofthe outcome variable can be recomputed from

 



 

Chapter 4: Prediction

the regression output object by summing the fitted value, which can be obtained using
the fitted( ) function, and the residual for each observation.

R2 <- function(fit) {

resid <- resid(fit) # residuals

y <- iivted(fit) + resid # outcome variable

TSS <— sum((y — mean(y))‘2)

SSR <- sum(resid‘Z)

R2 <— (TSS - SSR) / TSS

return(R2)

}

H2(fit2)

## [1] 0.5130333

Alternatively, we can obtain the value of R2 by applying the summary () function
to the output from the lm( ) function (see also section 7.3).

## built-in R function

fiCZSummary <- summary(fit2)

fit25ummary$r.squared

## [1] 0.5130333

The resulting coefficient of determination appears relatively low given that we are
predicting votes for a candidate from the same party using the previous election result.

Earlier, we saw that Obama’s vote shares at the state level are strongly correlated

between the 2008 and 2012 elections. We can compute R2 for that regression where

the corresponding output object is f i t 1, which represents the output ofthe state-level

regression. The coefficient of determination for the Florida regression proves to be
much lower than that for the state-level regression.

R2(fit1)

## [1] 0.9671579

Given this unusually poor performance, it is useful to more closely inspect the
residuals from the Florida regression. To do this, we create a residual plot where
residuals are plotted against fitted values.

piot(fitt9d(fit2), :esfd(fit2), xlim = C(0, 1500), ylim = C(-750, 2500),

xlab = "Fitted values", ylab = "Residuals")

dbl 1mg (h = 0)
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We observe an extremely large residual or outlier, where in the 2000 election,

Buchanan received 2000 votes, substantially more than expected. The next line of
code shows that this observation represents Palm Beach county. This can be seen by
extracting the county name whose residual equals the maximum value of residuals.

 

It turns out that in Palm Beach county, the so-called butterfly ballot was used for this
election. A picture of this ballot is shown in figure 4.5. Voters are supposed to punch a

hole that corresponds to the candidate they would like to vote for. However, as can be
seen in the picture, the ballot is quite confusing. It appears that many supporters ofAl

Gore in this county mistakenly voted for Buchanan by punching the second hole from
the top instead of the third hole. As mentioned at the beginning of the chapter, in the

2000 election, George Bush was elected to office by winning Florida with a razor-thin
margin of537 votes even though Gore won over halfa million votes more than Bush in
the entire country. It is widely believed that voting irregularities in Palm Beach county,
as evident in the residual plot, cost Gore the presidency.

We now fit the same model without Palm Beach county. Later, we will see whether
this removal improves the model fit, by comparing residual plots and regression lines
with Palm Beach against those without it. We begin by computing the coefficient of
determination without Palm Beach.
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Figure 4.5. Butterfly Ballot in Palm Beach County.

fit3 <- lm(Buchanan00 ~ Perot96, data = florida.pb)

fit3

##

## Call:

## Im(formula = BuchananOO ~ Perot96, data = florida.pb)

##

## Coefficients:

## (Intercept) Perot96

## 45.84193 0.02435

## R—squared or coefficient of determination

R2(fit3)

## [1] 0.8511675

Without Palm Beach, the coefficient of determination dramatically increases from

0.51 to 0.85. The improvement in model fit can also be easily seen through the residual

plot as well as the scatter plot with regression lines. We find that the regression line

is influenced by Palm Beach—removing it shifts the regression line considerably. The
new regression line fits the remaining observations better.

## residual plot

plot(fitted(fit3), resid(fit3), xlim = C(0, 1500), ylim = c(-750, 2500),

xlab = "Fitted values", ylab = "Residuals".

main = “Residual plot without Palm Beach")

abline(h = 0) # horizontal line at 0
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Finally, it is important to emphasize that the model fit considered in this sec—

tion is based on in-sample predictions rather than out-of-sample predictions. That
is, model fit statistics, such as the coefficient of determination, describe how well
one’s model fits the sample at hand. If tailored too closely to a particular sample,
which is called overfitting, the model may make less accurate predictions in another
sample. In cases where we seek a general model that can be applied to other data,

we need to be careful to avoid overfitting the model to a particular sample. In
section 4.3.2, we will describe one way to adjust R2 in order to reduce the possibility of

overfitting.

.
,
J
”
"
"

\ Regression is a primary tool for making predictions in social science research. How

1} can regression be used to draw causal inference? As we discussed in chapter 2, causal

1‘ inference requires the prediction of counterfactual outcomes. For example, for units

‘1 who received a treatment, we wish to predict the values of the outcome variable that

i would result without the treatment. Under certain assumptions, regression models can

‘ be used to predict counterfactual outcomes. We must be careful, however, because
association, which can be quantified through regression, does not necessarily imply

causation.
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Table 4.7. Women as Policy Makers Data.
 

 

Variable Description

GP identifier for the Gram Panchayat (GP)

vi 1 lage identifier for each village

reserved binary variable indicating whether the GP was reserved

for women leaders or not

female binary variable indicating whether the GP had a female

leader or not

irrigation variable measuring the number ofnew or repaired irrigation

facilities in the village since the reserve policy started

water variable measuring the number ofnew or repaired

drinking water facilities in the village since the

reservation policy started
 

4.3.1 RANDOMIZED EXPERIMENTS

Our running example is a study that examines the causal effects of having female
politicians in government on policy outcomes.5 Do women promote different policies
than men? To answer this question, it is not sufficient to simply compare policy

outcomes between districts that elect some female politicians and those that elect only
male politicians. This is because these two types of districts may differ in terms ofmany
factors other than having female politicians. For example, if liberal districts may be

more likely to elect female politicians, it is not clear whether policy differences can be

attributed to ideology or politician’s gender.
To overcome this potential confounding problem, the authors of the study took

advantage of a randomized policy experiment in India where, since the mid-l9905,

one-third of village council heads have been randomly reserved for female politicians.
The CSV data set women . csv contains a subset of this data from West Bengal. The
policywas implemented at the level ofgovernment called Gram Panchayat or GP. Each

GP contains many villages. For this study, two villages were selected at random within

each GP for detailed data collection. Table 4.7 shows the names and descriptions ofthe
variables in this data set. Each observation in the data set represents a village and there
are two villages associated with each GP.

We first check whether or not the reservation policy was properly implemented by

computing the proportions of female politicians elected for the reserved seats as well

as the unreserved ones. Since each GP has the same number of villages, we can simply
compute the average across villages without creating a new data set at the GP level. For

the reserved seats, this proportion should be equal to l.

5 This section is based on Raghabendra Chattopadhyay and Esther Duflo (2004) “Women as policy makers:

Evidence from a randomized policy experiment in India.” Econometrica, vol. 72, no. 5, pp. 1409—1443.
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women <- reafi.cmv("women.csv")

## proportion of female politicians in reserved GP vs. unreserved GP

moan(womensfemale[womenSreserved == 1])

## [1] 1

1mm" (womensfemale[womenSreserved == 0])

## [l] 0.07476636

It appears that the reservation policy has been followed. Every GP that was supposed

to reserve a council position for women actually elected at least one female politician.

In contrast, 93% of the GPs to which the reservation policy was not applicable had

no female representative. Following what we learned in chapter 2, we can compare

the mean policy outcomes between the villages in the reserved GPs and those in the

unreserved GPs. We hypothesize that female politicians are more likely to support

policies that female voters want. The researchers found that more women complain

about the quality of drinking water than men, who more frequently complain about

irrigation. We estimate the average causal effects of the reservation policy on the

number of new or repaired irrigation systems and drinking water facilities in the

villages since the policy was implemented. We use the difference-in-means estimator

as in section 2.4.

## drinking water facilities

moan(womenswater[women$reserved == 1]) -

wean(womenswater[womensreserved == 0])

## [1] 9.252423

## irrigation facili ties

mean(women$irrigation[womenSreserved == 1]) -

mean(womenSirrigation[womensreserved == 0])

## [1] -0.3693319

We find that the reservation policy increased the number of drinking water

facilities in a GP on average by about 9 (new or repaired), whereas the policy

had little effect on irrigation systems. This finding is consistent with the aforemen-

tioned hypothesis that female politicians tend to represent the interests of female

voters.
How can we use regression to analyze the data from randomized experiments like

this one? It turns out that regressing an outcome variable on a treatment variable yields

a slope coefficient identical to the difference in average outcomes between the two

groups. In addition, the resulting intercept corresponds to the average outcome among

the control units. More generally, when the predictor X is binary, taking a value of

either 0 or 1, the linear model defined in equation (4.1) yields the estimated coefficients
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ofthe following expressions:

1 n

a= afim—mn.
i=1 '

mean outcome among the control

1 " 1 "
3= — Km — —§h-&m

n1 i=1 "0 i=1
w

moan outcome among the treated mean outcome among the control

In this equation, n1 = 2L1 X; is the size ofthe treatment group and no = n— n1 is the

size ofthe control group. Thus, 3 can be interpreted as the estimated average treatment
effect.

Using our experimental data, we confirm this numerical equivalence between
regression coefficients and average outcomes. That is, we observe that the estimated
slope coefficient is equal to the corresponding diflerence-in-means estimator.

 
We can directly connect the potential outcomes covered in chapter 2 to the

regression model:

Y(X) = a+flX+e.

Since the regression model predicts the average outcome given a value ofthe predictor,
the estimated average treatment effect equals the estimated slope coefficient when X is
binary. Recall that fl represents the estimated change in Y when X is increased by one

unit. Then, we have 1??) — 17(3) = (6! + 3) — d = ,3, while the estimated average

outcome for the control group is equal to the estimated intercept, i.e., 17(3) = 6:. Thus,
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the linear regression model provides an alternative, but numerically equivalent, way to

analyze experimental data in this setting.

 F

When applied to experimental data with a single, binary treatment, the estimated

slope coefficient ofthe linear regression model can be interpreted as an estimate of

average treatment effect and is numerically equivalent to the difference-in-means

estimator. The estimated intercept, on the other hand, is equal to the estimated

average outcome under the control condition. The randomization of treatment

assignment permits this causal interpretation of association identified under a

linear regression model.  
 

4.3.2 REGRESSION WITH MULTIPLE PREDICTORS

So far, we have included only one predictor in the linear regression model. However,
a regression model can have more than one predictor. In general, a linear regression

model with multiple predictors is defined as

Y = a+fi1X1+52X2+---+f3po+6.

In this model, a is the intercept, fl; is the coefficient for predictor Xj, e is an error

term, and p is the number of predictors and can be greater than 1. The interpretation
of each coefficient flj is the amount of change in the outcome variable associated with

a one-unit increase in the corresponding predictor Xj when all other predictors are

held constant or so-called ceteris paribus. Therefore, linear regression with multiple

predictors enables researchers to assess the impact of each predictor.
The least squares method, as described in section 4.2.3, can be used to estimate the

model parameters. That is, we choose the values of (6:, Bl, . . . , 3p) such that the sum

ofsquared residuals (SSR) is minimized. The SSR is defined as

n n

SSR = Zéiz = :(Yi —d — .31in — 32Xi2 — ' " — 3pXiP)2'
i=1 '=1

In the equation, 6i is the residual and Xi} is the value of the jth predictor for the ith
observation. Recall that the residual is defined as the difference between the observed

response Y and its predicted or fitted value ’1; = 6: + 31X1 + 32X; + - ‘ - + BXP.

The validity of predictions based on a linear regression model critically rests on the

assumption of linearity. The method of least squares always gives us the line that “best

fits” the data in the sense of minimizing the SSR. However, this does not necessarily
mean that the linear model is appropriate. While a comprehensive treatment oftesting

and relaxing this assumption is beyond the scope of this book, we must not forget that
any model or method requires an assumption, and linear regression is no exception.

As an example of linear regression models with multiple predictors, we consider the

randomized experiment on social pressure and turnout introduced in section 2.4.2.

In that study, registered voters were randomly assigned to one of the four groups.
We can fit a linear regression model, in which group assignment is used to predict

turnout. Fitting the linear regression model is done via the 1m( ) function as before.
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One can add more than one predictor by simply using the + operator, for example,
lm (y ~ x1 + x2 + x3 ) . In this example, since the messages variable is a factor,

the 1m( ) function automatically creates a set of indicator or dummy variables, each of
which is equal to 1 if a voter is assigned to the corresponding group. These indicator
variables will be used for computation but will not be saved in the data frame. The

model includes all but the variable corresponding to the base level. The base level of

a factor variable is the level displayed first when we apply the levels () function,
which lists levels in alphabetical order. The other values of a factor variable are defined
in relation to this base level value.

social <— read.csv("social.csv“)

1evets(social$messages) # base level is “Civic Duty”

## [1] "Civic Duty" "Control" “Hawthorne" "Neighbors"

Now we fit the linear regression model using this factor variable.

fit <— 1m(primary2008 ~ messages, data = social)

fit

##

## Call:

## 1m(formula = primary2008 ~ messages, data = social)

##

## Coefficients:

## (Intercept) messagesControl messagesHawthorne

## 0.314538 —0.017899 0.007837

## messagesNeighbors

## 0.063411

Alternatively, one can create an indicator variable for each group and then specify
the regression model using them. The results are identical to those given above.

## create indicator variables

    
socia1$Control <— ifrivo(socia1$messages == "Control", 1, 0)

social$Hawthorne <— j sc(socia1$messages == "Hawthorne", 1, 0)

socialSNeighbors <- jieEse(socia1$messages == "Neighbors", l, O)

## fit the same regression as above by directly using indicator variables

1m(primary2008 ~ Control + Hawthorne + Neighbors, data = social)

Mathematically, the linear regression model we just fit is given by

Y = a + ,81 Control + flz Hawthorne + ,83 Neighbors + e.

In this model, each predictor is, an indicator variable for the corresponding group.
Since the base level of the messages variable is " Civic Duty" , the 1m( ) function
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excludes the corresponding indicator variable. Using the fitted model, we can predict

the average outcome, which in this case is the average proportion ofvoters who turned
out. For example, under the Control condition, the average outcome is predicted to

be 6: + [31 = 0.315 + (—0.018) = 0.297 or 29.7%. Similarly, for the Neighbors group,

the predicted average outcome is d + [33 = 0.315 + 0.063 = 0.378.

The predicted average outcome can be obtained using the predict () function.
This function, like the fitted ( ) function, takes the output from the lm( ) function

and computes predicted values. However, unlike the fitted ( ) function, which

computes predicted values for the sample used to fit the model, the predict ()
function can take a new data frame as the newdata argument and make predictions

for each observation in this data frame. The new data frame’s variables must match

the predictors of the fitted linear model, though they can have different values. In the
current application, we create a new data frame using the data . frame ( ) function.

The resulting data frame contains the same variable messages as the predictor of the

model but only four observations, each of which has one of the unique values of the

original messages variable. We use the unique ( ) function to extract these unique

values and return them in the order of their first occurrence.

## create a data frame with unique values of “messages”

unique.messages <— data iram©(messages = unique(social$messages))

unique.messages

## messages

## 1 Civic Duty

# # 2 Hawthorne

## 3 Control

## 4 Neighbors

## make prediction for each observation from this new data frame

predicc(fit, newdata = unique.messages)

## 1 2 3 4

## 0.3145377 0.3223746 0.2966383 0.3779482

As we saw in the case of a linear regression model with a single, binary predictor

(see section 4.3.1), the predicted average outcome for each treatment condition equals

the sample average within the corresponding subset of the data.

## sample average

tapply(socialSprimaryZOOB, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 0.3145377 0.2966383 0.3223746 0.3779482

To make the output of linear regression more interpretable, we can remove an

intercept and use all four indicator variables (rather than removing the indicator
variable for the base level in order to include a common intercept). This alternative
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specification enables us to directly obtain the average outcome within each group as
a coefficient for the corresponding indicator variable. To omit the intercept in linear
regression, we simply use —1 in the formula. The following code chunk illustrates this.

## linear regression without intercept

fit.noint <- im(primary2008 ~ —1 + messages, data = social)

fit.noint

##

## Call:

## Im(formula = primary2008 ~ —1 + messages, data = social)

##

## Coefficients:

## messagescivic Duty messagesControl messagesHawthorne

## 0.3145 0.2966 0.3224

## messagesNeighbors

## 0.3779

Each coefficient above represents the average outcome for a given group. As a result,
we can estimate an average treatment effect relative to the control for each treatment

condition (Civic Duty, Hawthorne, or Neighbors) by calculating that treatment
condition’s coefficient minus the coefficient for the control group, which is the baseline
group under this model with no intercept. The difference in the estimated causal effects

between any two groups equals the difference between the corresponding coefficients,
whether one uses the model with no intercept or the original model. Therefore, the

average effect ofthe Neighbors treatment (relative to the Control condition) equals

0.378 — 0.297 in the model with no intercept, or 0.063 — (—0.018) in the original

model, either of which equals 0.081 or 8.1 percentage points. As was the case before,

the same estimate of average causal effect can be obtained in two ways—through linear

regression with a factor treatment variable or the difference-in-means estimator.

## estimated average effect of “Neighbors” condition

coe£(fit)["messagesNeighbors"] - ooe:(fit)["messagesControl"]

## messagesNeighbors

## 0.08130991

## difference-in—means

moan(socialsprimary2008[socialsmessages == "Neighbors"]) —

mean(social$primary2008[socialsmessages == “Control"J)

## [1] 0.08130991

Finally, we can compute the coeflicient of determination or R2 as in section 4.2.6.
When there are multiple predictors, however, we often compute the adjusted R2 with

the so-called degrees offreedom correction that accounts for the number of predictors.
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Roughly speaking, the degrees of freedom refers to the number of observations that are

“free to vary,” which is often represented by the total number ofobservations minus the

number of parameters to be estimated. In the current setting, the degrees of freedom

equals n — p — 1 = n — (p + 1) because n is the number of observations and p + 1

is the number of coefficients to be estimated, Le, a coefficient for each of p predictors

plus an intercept.

Since one can always increase the (unadjusted) R2 by including an additional

predictor (which always decreases SSR), the degrees of freedom correction adjusts R2

downwards as more predictors are included in the model. The formula of the adjusted

R2 is given by

adjusted R2 = 1 — —————SSR/("_ P _ 1)
TSS/(n — 1)

SSR is divided by the number of observations n minus the number of coefficients to be

estimated (1) + l). T88 is divided by (n — 1) since TSS estimates only one parameter,

the mean of the outcome variable or 7. As in section 4.2.6, we create a function that

computes the adjusted R2.

## adjusted R-squared

ade2 <~ l'wri' v(fit) {

resid <— :gsiw(fit) # residuals

y <- '1' ud(fit) + resid # outcome

n <- ‘1-‘ (y)

TSS.adj <- ~n:..:((y - W(Y))A2) / (n - 1)

SSR.adj <- sum(residAZ) / (n — 2.xusx(: _ (fit)))

R2.adj <— 1 — SSR.adj / TSS.adj

‘~:‘~~(R2.adj)

)

afijfit(fit)

## [l] 0.003272788

T2(fit) # unadjusted R—squared calculation

## [1] 0.003282564

In this case, the difference between unadjusted and adjusted R2 is small because the

number of observations is large relative to the number of coefficients. Alternatively, we

can obtain both adjusted and unadjusted R2 by applying the summary ( ) function to

output from the lm( ) function (see also section 7.3).

 “¢(fit)

fitsummarySadj.r.squared

 fitsummary <— m: \LLJ

## [1] 0.003272788
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m,“

## [1]
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The linear regression model with multiple predictors is defined as

Y=U+I31X1+.32X2+"'+IBpo+€,

where the coefficient ,8i represents the increase in the average outcome associated
with a one-unit increase in X ,- while holding the other variables constant. The
coefficients are estimated by minimizing the sum of squared residuals. The
degrees of freedom adjustment is often made when computing the coefficient
of determination.

3 HETEROGENEOUSTREATMENTTNTECTS

When applied to randomized experiments, linear regression with multiple pre-
dictors can also be helpful for exploring heterogeneous treatment effects. Even if
the average treatment effect is positive, for example, the same treatment may affect
some individuals in a negative way. Identifying the characteristics associated with the
direction and magnitude of the treatment effect is essential in determining who should
receive the treatment. In the current application, we might hypothesize that the social
pressure treatment would barely affect those who vote infrequently. In contrast, they
may be the ones who would be most affected by such treatment. To illustrate the
analysis ofheterogeneous treatment effects, we examine the difference in the estimated
average causal effect of the Neighbors message between those who voted in the 2004
primary election and those who did not. We can do this by subsetting the data and then
estimating the average treatment effect within each subset. Finally, we compare these
two estimated average treatment effects.

## average treatment effect (ATE) among those who voted in 2004 primary

social.voter <— HuumeL<SOCial, primary2004 == 1)

ate.voter <-

mean(social.votersprimary2006[social.voter$messages == "Neighbors"]) -

meau(social.votersprimary2006[socia1.voter$messages == "Control"])

ate.voter

## [l] 0.09652525

## average effect among those who did not vote

social.nonvoter <— suhsyu(social, primary2004 == 0)

ate . nonvoter <—

dn(social.nonvoterSprimaryZOOS[social.nonvotersmessages == “Neighbors“J) -

Wows(social.nonvoter$primary2006[social.nonvotersmessages == "Control"])

ate.nonvoter

0.06929617
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We find that those who voted in the 2004 primary election have the estimated

average effect of 9.7 percentage points, which is approximately 2.7 percentage points

greater than those who did not vote in the election. This implies that the Neighbors

message affects those who voted in the 2004 primary election more than those who did

not.

The same analysis can be carried out through the use of linear regression with an

interaction effect between the treatment variable Neighbors and the covariate of

interest primary2 O 04. In our application, the model is given by

Y = a + 51 primary2004 + [32 Neighbors + fig (primary2004 x Neighbors) + e.

(4.9)

The final predictor is the product oftwo indicator variables, primary2004 x Neighbors,

which is equal to 1 if and only if an individual voted in the 2004 primary election

(primary2 004 = 1) and received the Neighbors treatment (Neighbors = 1).

Thus, according to the model, among the voters who turned out in the 2004 primary

election (primary2004 = 1), the average effect of the Neighbors message equals

,6; + fig, whereas the same effect for those who did not vote in the 2004 election

(primary2004 = 0) equals [32. Thus, the coefficient for the interaction term [33

represents the additional average treatment effect the first group of voters receive

relative to the second group.
More generally, an example of the linear regression model with an interaction

term is

Y = “+51X1+fl2X2+fi3X1X2+6.

where the coefficient for the interaction term [33 represents how the effect of X1

depends on X; (or vice versa). To see this, set X2 = x2 and then compute the predicted

value when X1 = x1. This is given by 6: + 31x, + fizxz + 33x1x2. Now, compare this

with the predicted value when X1 is increased by one unit, i.e., X1 = x1 + 1. Under this

scenario, the predicted value is d + 310:1 + 1) + 32x2 + 33(x1 + l)x2. Then, subtracting

the previous predicted value from this one, we obtain the following expression for how

the change in the average outcome associated with a one-unit increase in X1 depends

on the value of X2:

31 + 33x2.

This is another linear equation. The intercept :31 represents the increase in the average

outcome associated with a one-unit increase in X1 when X2 = 0. Then, each one-unit

increase in X2 has the effect of further increasing X 1 by the slope ,33.
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An example of a linear regression model with an interaction term is

Y = a + 51X1+ 52X2 + 53X1X2 + 6-

The model assumes that the effect of X1 linearly depends on X2. That is, as we
increase X2 by one unit, the change in the average outcome associated with a one-
unit increase of X1 goes up by [33.

In R, an interaction term can be represented by a colon : with the syntax
x1:x2 producing an interaction term between the two variables x1 and x2. We
illustrate the use of interaction terms by focusing on the Neighbors and Control
groups.

## subset Neighbors and Control groups

social.neighbor <— s;hum:(social, (messages == “Control") |

(messages == "Neighbors"))

## standard way to generate main and interaction effects

fit.int <— ;m(primary2006 ~ primary2004 + messages + primary2004:messages,

data = social.neighbor)

fit.int

##

## Call:

## Im(formula = primary2006 ~ primary2004 + messages + primary2004zmessages,

## data = social.neighbor)

##

## Coefficients:

## (Intercept)

## 0.23711

## primary2004

## 0.14870

## messagesNeighbors

## 0.06930

## primary2004:messagesNeighbors

## 0.02723

Since the Control group is the baseline condition, the slope coefficients are esti-

mated only for the Neighbors condition and its interaction with the primary2 O 04

variable.

Alternatively, an asterisk * generates two main efi‘ect terms as well as one interaction

effect term. That is, the syntax x1*x2 produces x1, x2, and x1 : x2. In most appli-

cations, one should include the corresponding main effects when the model has an
interaction term. The same regression model as above can be fitted using the following

syntax.
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To interpret each estimated coefficient, it is again helpful to consider the predicted

average outcome. Among those who voted in the 2004 primary election, the estimated

average effect of the Neighbors treatment can be written as the difference in the

estimated average outcome between the treatment and control groups. In terms of

model parameters, this difference is equal to (a + 31 + B; + 33) - (a + 31) = 32 + 33,

where 32 and B3 are excluded from the second part of the equation because for the

control group, Neighbors equals 0. In contrast, the estimated average treatment

effect among those who did not vote is given by (6!+ [92) -d = 32. Thus, the difference

in the estimated average treatment effect between those who voted in the 2004 primary

election and those who did not equals the estimated coefficient for the interaction effect

term, i.e., (32 + 33) — 32 = 33. This implies that the coefficient for the interaction

effect term I33 characterizes how the average treatment effect varies as a function of the

covariate.

While we have so far focused on a factor or categorical variable, it is also possible

to use a continuous variable as a predictor. The use of continuous variables requires

a stronger linearity assumption that a one-unit increase in the predictor leads to an

increase ofthe same size in the outcome, regardless ofthe baseline value. In the current

application, we consider the age of the voter in 2006 as a predictor. We first compute

this variable by subtracting the year ofbirth variable from the year of election.

 

Thus, in this subset of the data, the ages of voters vary from 20 to 106. We now

explore how the average causal effect of the Neighbors treatment changes as a

function of age. To do this, we use the age variable instead of the primary2004

variable in the linear regression model given in equation (4.9):

Y = a + [81 age + [8; Neighbors + fl; (age x Neighbors) + e.

We can use the same computation strategy as above to understand how the average

treatment effect changes as a function of age. Consider a group of voters who are

x years old. The estimated average treatment effect of the Neighbors message for

these voters is given by (d + Ax + 32 + Bax) — (d + 31x) = B; + 33x. In

contrast, among the voters who are (x + 1) years old, the estimated average effect is

{a + flux +1)+ 32 + 33(x +1)}—{a + Bloc +1)} = B: + 330: +1).Thus.the
estimated coefficient for the interaction effect term [93 = {32 + .33(x+ 1)} — (B; + 83x)

represents the estimated difference in the average treatment effect between two groups

ofvoters whose ages differ by one year.
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To compute this estimated difference in R, we first fit the linear regression model
with the interaction term between the age and Neighbors variables. We use
the syntax age * messages, which produces the main terms and the interaction
term.

fit.age <— im(primary2006 ~ age * messages, data = social.neighbor)

fit.age

##

## Call:

## 1m(formula = primary2006 ~ age * messages, data = social.neighbor)

##

## Coefficients:

## (Intercept) age

## 0.0974733 0.0039982

## messagesNeighbors agezmessagesNeighbors

## 0.0498294 0.0006283

The result suggests that the estimated difference in the average treatment effect
between two groups of voters whose ages differ by one year is equal to 0.06 percentage
points. Based on this regression model, we can also compute the estimated average
treatment effect for different ages. We choose 25, 45, 65, and 85 years old for
illustration. We use the predict ( ) function by providing the newdata argument
with a data frame that contains these ages as separate observations.

## age = 25, 45, 65, 85 in Neighbors group

age.neighbor <- data.5rgmn(age = saq(from = 25, to = 85, by = 20),

messages = "Neighbors“)

## age = 25, 45, 65, 85 in Control group

age.control <— N» \.Lv:uw(age = su:(from = 25, to = 85, by = 20),

messages = "Control")

## average treatment effect for age = 25, 45, 65, 85

ate.age <— p idic;(fit.age, newdata = age.neighbor) —

nqwdicr(fit.age, newdata = age.control)

ate.age

## 1 2 3 4

## 0.06553713 0.07810329 0.09066944 0.10323560

Researchers have found that the linearity assumption is inappropriate when model-

ing turnout. While people become more likely to vote as they get older, their likelihood

of voting starts decreasing in their 60s or 708. One common strategy to address this
phenomenon is to model turnout as a quadraticfunction of age by including the square

of age as an additional predictor. Consider the following model, which also includes
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interaction terms:

Y = a + ,81 age + [32 age2 + ,53 Neighbors + ’34 (age >< Neighbors)

+ fig (age2 x Neighbors) + 6. (4.10)

In R, a formula can contain mathematical functions such as a square or natural

logarithm using the I ( ) function. For example, to include a square of the x variable in

a formula, we can use the syntax I (x‘2 ) . The I ( ) function enables other arithmetic

operations such as I (sqrt (x) ) and I (log (x) ) . We now fit the model specified in

equation (4.10).

fit.age2 <- 3m(primary2006 ~ age + I(ageAZ) + messages + age:messages +

L(age“2):messages, data = social.neighbor)

fit.age2

##

## Call:

## Im(formula = primary2006 ~ age + I(ageAZ) + messages + agezmessages +

## I(age“2):messages, data = social.neighbor)

##

## Coefficients:

## (Intercept) age

## -7.385e—02 1.143e—02

## I(ageAZ) messagesNeighbors

## —7.389e—05 —4.330e-02

## agegmessagesNeighbors I(ageAZ):messagesNeighbors

## ~ 4.646e—03 —3.961e—05

In a complicated model like this one, the coefficients no longer have an easy

interpretation. In such situations, it is best to predict the average outcome under

various scenarios using the predict () function and then compute quantities of

interest. Here, we predict the average turnout rate for voters of different ages,

ranging from 25 to 85, under the Neighbors and Control conditions. We then

compute the average treatment effect as the difference between the two conditions

and characterize it as a function of age. The following syntax accomplishes this

task.

## predicted turnout rate under the Neighbors treatment condition

yT.hat <- :n‘miicL.(fit.age2,

newdata = data.{rame(age = 25:85, messages = "Neighbors"))

## predicted turnout rate under the Control condition

yC.hat <— §§Ted§('t‘(fit.age2,

newdata = fiata.frame(age = 25:85, messages = "Control"))
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For ease of interpretation, we plot the results. The first plot displays the pre-
dicted turnout as a function of age separately for the Neighbors and Control
groups. The second plot shows the estimated average treatment effect as a function
of age.
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We find that according to this model, the estimated average treatment effect peaks
around 60 years old, and the effect size is much smaller among young and old
voters.

4.3.4 REGRESSION DISCONTINUITY DESIGN

The discussion in chapter 2 implies that we can interpret the association between
treatment and outcome variables as causal if there is no confounding variable. This
was the case in the experimental studies we analyzed in sections 4.3.1—4.3.3. In
observational studies, however, the treatment assignment is not randomized. As
a result, confounding factors, rather than the treatment variable, may explain the
outcome difference between the treatment and control groups. 'In section 2.5, we
discussed several research design strategies to address this potential selection bias

problem. Here, we introduce another research design for observational studies called
regression discontinuity design (RD design).
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Table 4.8. Members of the British Parliament Personal Wealth Data
 

 

Variable Description

surname surname of the candidate

firstname first name of the candidate
party party of the candidate (labour or tory)

1n. gross log gross wealth at the time of death

1n . net log net wealth at the time of death

yob year of birth of the candidate

yod year of death of the candidate

margin . pre margin of the candidate’s party in the previous election

region electoral region

margin margin of victory (vote share)
 

As an application of RD design, we consider how much politicians can increase

their personal wealth due to holding office. Scholars investigated this questionby

analyzing members of Parliament (MPs) in the United Kingdom.6 The authors of the

original study collected information about personal wealth at the time of death for

several hundred competitive candidates who ran for office in general elections between

1950 and 1970. The data are contained in the CSV file MPs . csv. The names and

descriptions of the variables in this data set appear in table 4.8.

A naive comparison of MPs and non-MPs in terms of their wealth is unlikely to

yield valid causal inference because those who became MPs differ from those who

did not in terms ofmany observable and unobservable characteristics. Instead, the key

intuition behind RD design is to compare those candidates who narrowly won office

with those who barely lost it. The idea is that when one’s margin of victory switches

from a negative number to a positive number, we would expect a large, discontinuous,

positive jump in the personal wealth of electoral candidates if serving in office actually

financially benefits them. Assuming that nothing else is going on at this point of

discontinuity, we can identify the average causal effect ofbeing an MP at this threshold

by comparing the candidates who barely won the election with those who barely lost it.

Regression is used to predict the average personal wealth at the point of discontinuity.
A simple scatter plot with regression lines is the best way to understand RD design.

To do this, we plot the outcome variable, log net wealth at the time ofdeath, against the

margin of victory. We take the natural logarithmic transformation of wealth because
this variable is quite skewed by a small number of politicians accumulating a large

amount of wealth (see the discussion in section 3.4.1). We then separately fit a linear
regression model to the observations with a positive margin (i.e., the candidates who

won elections and became MPs) and another regression model to those with a negative
margin (the candidates who lost). The difference in predicted values at the point of

6 This application is based on Andrew C. Eggers and lens Hainmueller (2009) “MP3 for sale? Returns to office

in postwar British politics.” American Political Science Review, vol. 103, no. 4, pp. 513—533.
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discontinuity, Le, a zero margin of victory, between the two regressions represents the
average causal effect on personal wealth of serving as an MP.

We begin by subsetting the data based on party (Labour and Tory) and then fit two
regressions for each data set.

## load the data and subset them into two parties

MP5 <- T‘L?‘

 

i‘wsv(“MPs.csv“)

MPs.labour <- s \t(MPs, subset = (part == "labour"))
  

 

  

 

MPs.tory <- NLHJVV(MPS, subset = (party == "tory"))

## two regressions for Labour: negative and positive margin

labour.fit1 <- lm(ln.net ~ margin,

data = MPs.labour[MPs.laboursmargin < 0, ])

labour.fit2 <— lm(1n.net ~ margin,

data = MPs.labour[MPs.laboursmargin > 0, ])

## two regressions for Tory: negative and positive margin

tory.fit1 <— jm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])

tory.fit2 <- Em(1n.net ~ margin, data = MPs.tory[MPs.tory$margin > 0, 1)

To predict the outcome using a specific value of predictor, we can use the

predict ( ) function by specifying a new data frame, newdata, as the argument. We
conduct a separate analysis for Labour and Tory candidates to estimate each party’s
causal effect of interest.

## Labour: range of predictions

yll.range <— c(min(MPs.labour$margin), O) # min to 0

y21.range <— «(0, max(MPs.1abour$margin)) # 0 to max

## prediction

 ‘0(margin = y11.range))

 

yl.1abour <- pred3‘t(labour.fit1, newdata = qua.5

  

y2.labour <- pret;ct(labour.fit2, newdata = data ?:dmc(margin = y21.range))

## Tory: range of predictions

ylt.range <— c(min(MPs.tory$margin), O) # min to 0

y2t.range <— «(0, max(MPs.tory$margin)) # 0 to max

## predict outcome

y1.tory <— p:edict(tory.fitl, newdata = daeatvramc(margin = ylt.range))

y2.tory <- predict(tory.fit2, newdata = datd.{3amc(margin = y2t.range))

We can now plot the predicted values for each party in the scatter plot of log net
wealth and electoral margin.

## scatter plot with regression lines for Labour

p}wL(MPs.labour$margin, MPs.labour$ln.net, main = "Labour",

xlim = :(-0.5, 0.5), ylim = c(6, 18), xlab = "Margin of victory",

ylab = "log net wealth at death")
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The result suggests that Tory MPs financially benefit from serving in office whereas

Labour MPs do not. How large is the effect for Tory candidates? We can numerically

compute the differences in prediction at the zero margin and put them back on

the original scale (pounds) since net wealth is measured on a log scale. Recall from

section 3.4.1 that the inverse function of the natural logarithm is the exponential

function, given by exp ( ) in R.
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tory . nonMP

## 2

## 278762.5

## causal effect in pounds

tory.MP — tory.nonMP

## 1

## 255050.9

The estimated effect of being an MP on the personal wealth of Tory candidates is a
little above 250,000 pounds. Since the average net wealth for Tory non-MPs is predicted
to be a little above 270,000 pounds, the estimated effect is quite substantial. Being an
MP almost doubles one’s net wealth at death.
How should one examine the internal validity of regression discontinuity design?

One way is a placebo test. A placebo test finds a case where the effect is theoretically

known to be zero and then shows that the estimated effect is indeed close to zero. The

name comes from the fact that in a medical study a placebo is supposed to have zero

effect on health outcomes (though much evidence suggests that a placebo often has

effects, perhaps via psychological mechanisms). In the current application, we estimate

the average treatment effect on the margin ofvictory for the same party in the previous

election. Since being an MP in the future should not affect the past election result, this

effect should be zero if the RD design is valid. If the estimated effect is far from zero,

on the other hand, it would suggest a possible violation of the assumption of regression
discontinuity. For example, the incumbent party may be engaged in election fraud in

order to win close elections.

## two regressions for Tory: negative and positive margin

tory.fit3 <- I”(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])

tory.fit4 <- an(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin > O, ])

## the difference between two intercepts is the estimated effect

vw~7(tory.fit4)[l] - ~i\*(tory.fit3)[l]

## (Intercept)

## -0.01725578

The estimated effect on the previous margin of victory is less than 2 percentage

points. This small effect size gives empirical support for the claim that RD design is
applicable to this study. In chapter 7, we will more formally answer the question of

how small is small enough to reach this conclusion.

While RD design can overcome the main difficulty of observational studies, i.e.,

potential confounding bias, this strength of internal validity comes at the cost of

external validity. Specifically, the estimated causal effects obtained under this design
apply only to the observations near the point of discontinuity. In our application, these

observations represent candidates who narrowly won or lost elections. The degree to

which MPs benefit financially from serving in office may be quite different for those
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who won elections by a larger margin. Thus, although RD requires weaker assumptions
than other approaches, the resulting estimates may not be generalizable to a larger
population of interest.

 

Regression discontinuity design (RD design) is a research design strategy for

causal inference in observational studies with possible confounding factors. RD

design assumes that the change in outcome at the point of discontinuity can be

attributed to the change in the treatment variable alone. While RD design often

has strong internal validity, it may lack external validity because the result may
not be generalizable to observations away from the point of discontinuity.

We began this chapter with a discussion of election forecasting. We showed that
preelection polls can be used to obtain relatively accurate, though not perfect, predic-

tions of election outcomes in the context of US presidential elections. We introduced
prediction error and explained how the accuracy of prediction can be measured
using statistics such as bias and the root-mean-squared error. We also discussed the

problem of classification, which is the prediction of categorical outcomes. Two types
of misclassification are possible—false positives and false negatives. For example, a

voter who did turn out being classified as a nonvoter would be a false negative, whereas
a voter who did not turn out being classified as a voter would be a false positive. There
is a clear trade-off between the two: minimizing false positives tends to increase false

negatives and vice versa.
We then introduced a linear regression model as a commonly used method to

predict an outcome variable of interest using another variable. The model enables
researchers to predict an outcome variable based on the values of explanatory vari-

ables or predictors. Predictions based on the linear regression model are typically

obtained through the method of least squares by minimizing the sum of squared

prediction errors. We discussed the exact relationship between linear regression and

correlation, and the phenomenon called regression towards the mean. Finally, we
presented several ways to assess model fit through the examination of the coefficient
of determination and residuals. It is important to avoid overfitting one’s model to

the data at hand so that the model does not capture any idiosyncratic characteristics

of the sample and instead identifies the systematic features of the data-generating

process.
Despite our intuition, association discovered through regression does not neces-

sarily imply causation. A regression’s ability to predict observable outcomes does not

necessarily entail ability to predict counterfactual outcomes. Yet, valid causal inference

requires the latter. At the end of the chapter, we discussed the use of regression in
the analysis of experimental and observational data. We discussed how to estimate

heterogeneous treatment effects using the linear regression model with interaction
terms. We also discussed the regression discontinuity design. By exploiting the
discontinuity in the treatment assignment mechanism, this design enables researchers
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Table 4.9. Intrade Prediction Market Data from 2008 and 2012.
 

 

Variable Description

day date of the session

statename full name of each state (including District of Columbia in 2008)

state abbreviation of each state (including District of Columbia in 2008)

PriceD closing price (predicted vote share) of the Democratic nominee’s

market

PriceR closing price (predicted vote share) of the Republican nominee’s

market

VolumeD total session trades of the Democratic Party nominee’s market

VolumeR total session trades of the Republican Party nominee’s market
 

to credibly identify causal effects in observational studies. The main disadvantage of
the regression discontinuity design, however, is the potential lack of external validity.
Specifically, the empirical conclusions based on this design may not be applicable
beyond the observations close to the discontinuity threshold.

4.5.1 PREDICTION BASED ON BETTING MARKETS

Earlier in the chapter, we studied the prediction of election outcomes using polls.
Here, we study the prediction of election outcomes based on betting markets. In

particular, we analyze data for the 2008 and 2012 US presidential elections from the
online betting company called Intrade. At Intrade, people trade contracts such as
“Obama to win the electoral votes of Florida.” Each contract’s market price fluctuates
based on its sales. Why might we expect betting markets like Intrade to accurately

predict the outcomes of elections or of other events? Some argue that the market can

aggregate available information efficiently. In this exercise, we will test this efi‘lcient

market hypothesis by analyzing the market prices of contracts for Democratic and
Republican nominees’ victories in each state.

The data files for 2008 and 2012 are available in CSV format as intrade08 . csv
and intrade12 . csv, respectively. Table 4.9 presents the names and descriptions

of these data sets. Each row of the data sets represents daily trading information
about the contracts for either the Democratic or Republican Party nominee’s victory

in a particular state. We will also use the election outcome data. These data files are
pres08 . csv (table 4.1) and prele . csv (table 4.5).

1. We will begin by using the market prices on the day before the election to predict
the 2008 election outcome. To do this, subset the data such that it contains the

market information for each state and candidate on the day before the election
only. Note that in 2008, Election Day was November 4. We compare the closing

prices for the two candidates in a given state and classify a candidate whose
contract has a higher price as the predicted winner of that state. Which states



4.5 Exercises

were misclassified? How does this compare to the classification by polls presented

earlier in this chapter? Repeat the same analysis for the 2012 election, which was

held on November 6. How well did the prediction market do in 2012 compared
to 2008? Note that in 2012 some less competitive states have missing data on

the day before the election because there were no trades on the Republican

and Democratic betting markets. Assume Intrade predictions would have been
accurate for these states.

. How do the predictions based on the betting markets change over time? Imple—
ment the same classification procedure as above on each of the last 90 days of
the 2008 campaign rather than just the day before the election. Plot the predicted

number of electoral votes for the Democratic Party nominee over this 90-day

period. The resulting plot should also indicate the actual election result. Note

that in 2008, Obama won 365 electoral votes. Briefly comment on the plot.

. Repeat the previous exercise but this time use the seven-day moving-average
price, instead of the daily price, for each candidate within a state. Just as in

section 4.1.3, this can be done with a loop. For a given day, we take the average
of the Session Close prices within the past seven days (including that day). To

answer this question, we must first compute the seven-day average within each

state. Next, we sum the electoral votes for the states Obama is predicted to win.

Using the tapply( ) function will allow us to efficiently compute the predicted

winner for each state on a given day.

. Create a similar plot for 2008 statewide poll predictions using the data file
pollsO8 . csv (see table 4.2). Notice that polls are not conducted daily within
each state. Therefore, within a given state, for each of the last 90 days of the

campaign, we compute the average margin ofvictory from the most recent poll(s)

conducted. If multiple polls occurred on the same day, average these polls. Based

on the most recent predictions in each state, sum Obama’s total number of

predicted electoral votes. One strategy to answer this question is to program two

loops—an inner loop with 51 iterations (for each state) and an outer loop with 90

iterations (for each day).

. What is the relationship between the price margins ofthe Intrade market and the

actual margin of victory? Using the market data from the day before the election

in 2008 only, regress Obama’s actual margin of victory in each state on Obama’s

price margin from the Intrade markets. Similarly, in a separate analysis, regress
Obama’s actual margin of victory on Obama’s predicted margin from the latest

polls within each state. Interpret the results of these regressions.

. Do the 2008 predictions of polls and Intrade accurately predict each state’s 2012

elections results? Using the fitted regressions from the previous question, forecast

Obama’s actual margin ofvictory for the 2012 election in two ways. First, use the

2012 Intrade price margins from the day before the election as the predictor in
each state. Recall that the 2012 Intrade data do not contain market prices for all
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Table 4.10. 2012 US Presidential Election Polling Data.
 

 

Variable Description

state abbreviated name of the state in which the poll was conducted

Obama predicted support for Obama (percentage)

Romney predicted support for Romney (percentage)

Pollster name of the organization conducting the poll

middate middate of the period when the poll was conducted
 

states. Ignore states without data. Second, use the 2012 poll-predicted margins
from the latest polls in each state as the predictor, found in pollle . csv.

Table 4.10 presents the names and descriptions of the 2012 US presidential

election polling data.

4.5.2 ELECTION AND CONDITIONAL CASH TRANSFER PROGRAM IN MEXICO

In this exercise, we analyze the data from a study that seeks to estimate the electoral
impact of Progresa, Mexico’s conditional cash transfer program (CCT program).7 The
original study relied on a randomized evaluation of the CCT program in which
eligible villages were randomly assigned to receive the program either 21 months (early

Progresa) or 6 months (late Progresa) before the 2000 Mexican presidential election.
The author of the original study hypothesized that the CCT program would mobilize
voters, leading to an increase in turnout and support for the incumbent party (PR1, or
Partido Revolucionario Institucional, in this case). The analysis was based on a sample
of precincts that contain at most one participating village in the evaluation.

The data we analyze are available as the CSV file progresa . csv. Table 4.11

presents the names and descriptions of variables in the data set. Each observation in

the data represents a precinct, and for each precinct the file contains information about

its treatment status, the outcomes of interest, socioeconomic indicators, and other

precinct characteristics.

1. Estimate the impact of the CCT program on turnout and support for the

incumbent party (PRI) by comparing the average electoral outcomes in the
“treated” (early Progresa) precincts versus the ones observed in the “control”

(late Progresa) precincts. Next, estimate these effects by regressing the out-
come variable on the treatment variable. Interpret and compare the estimates

under these approaches. Here, following the original analysis, use the turnout
and support rates as shares of the eligible voting population (t2000 and

pri2 0 0 0s, respectively). Do the results support the hypothesis? Provide a brief

interpretation.

7 This exercise is based on the following articles: Ana de la 0 (2013) “Do conditional cash transfers affect voting

behavior? Evidence from a randomized experiment in Mexico.” American Ioumal ofPolitical Science, vol. 57, no. 1,

pp. 1—14 and Kosuke Imai, Gary King, and Carlos Velasco (2015) “Do nonpartisan programmatic policies have
partisan electoral effects? Evidence from two large scale randomized experiments.” Working paper.
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Table 4.11. Conditional Cash Transfer Program (Progresa) Data.
 

 

Variable Description

treatment whether an electoral precinct contains a village where

households received early Progresa

pri2 0 0 05 PRI votes in the 2000 election as a share of precinct

population above 18

pri2 O 00v official PRI vote share in the 2000 election

t2 00 O turnout in the 2000 election as a share of precinct

population above 18

t2 00 Or official turnout in the 2000 election

pri 1 994 total PRI votes in the 1994 presidential election

pan19 94 total PAN votes in the 1994 presidential election

prd19 94 total PRD votes in the 1994 presidential election

pri 19 94s total PRI votes in the 1994 election as a share of precinct

population above 18

panl 9 945 total PAN votes in the 1994 election as a share of precinct

population above 18

prdl 9 945 total PRD votes in the 1994 election as a share of precinct

population above 18

pri 1 9 94v official PRI vote share in the 1994 election

panl 9 94v official PAN vote share in the 1994 election

prdl9 94v official PRD vote share in the 1994 election

t1 994 turnout in the 1994 election as a share of precinct

population above 18

t1 9 9 4 r official turnout in the 1994 election

votole 94 total votes cast in the 1994 presidential election

avgpoverty precinct average of village poverty index

pobtotl 9 9 4 total population in the precinct

vi 1lages number ofvillages in the precinct
 

2. In the original analysis, the author fits a linear regression model that includes, as
predictors, a set ofpretreatment covariates as well as the treatment variable. Here,

we fit a similar model for each outcome that includes the average poverty level in

a precinct (avgpoverty), the total precinct population in 1994 (pobtotl 9 94),

the total number ofvoters who turned out in the previous election (votos 1 9 9 4),

and the total number ofvotes cast for each ofthe three main competing parties in

the previous election (pri1994 for PRI, pan19 94 for Partido Accién Nacional

or PAN, and prdl 9 94 for Partido de la Revolucién Democrética or PRD).

Use the same outcome variables as in the original analysis, which are based on
the shares of the voting age population. According to this model, what are the
estimated average effects ofthe program’s availability on turnout and support for
the incumbent party? Are these results different from those you obtained in the
previous question?
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3. Next, we consider an alternative, and more natural, model specification. We

will use the original outcome variables as in the previous question. However,

our model should include the previous election outcome variables measured as

shares of the voting age population (as done for the outcome variables t1994,

pril994s, panl994s, and prdl994s) instead of those measured in counts.

In addition, we apply the natural logarithmic transformation to the precinct

population variable when including it as a predictor. As in the original model,
our model includes the average poverty index as an additional predictor. Are the

results based on these new model specifications different from those we obtained
in the previous question? If the results are different, which model fits the data

better?

. We examine the balance of some pretreatment variables used in the previous
analyses. Using box plots, compare the distributions of the precinct population

(on the original scale), average poverty index, previous turnout rate (as a share

of the voting age population), and previous PRI support rate (as a share of the

voting age population) between the treatment and control groups. Comment on

the patterns you observe.

. We next use the official turnout rate 122 O 0 Or (as a share of the registered voters)

as the outcome variable rather than the turnout rate used in the original analysis
(as a share of the voting age population). Similarly, we use the official PRI’s
vote share pri2000v (as a share of all votes cast) rather than the PRI’s support

rate (as a share of the voting age population). Compute the average treatment

effect of the CCT program using a linear regression with the average poverty

index, the log-transformed precinct population, and the previous official election

outcome variables (t1994r for the previous turnout; pri1994v, pan1994v,

and prdl994v for the previous PR1, PAN, and PRD vote shares). Briefly

interpret the results.

. So far we have focused on estimating the average treatment effects of the CCT
program. However, these effects may vary from one precinct to another. One

important dimension to consider is poverty. We may hypothesize that since

individuals in precincts with higher levels of poverty are more receptive to

cash transfers, they are more likely to turn out in the election and support the
incumbent party when receiving the CCT program. Assess this possibility by
examining how the average treatment effect of the policy varies by different
levels of poverty for precincts. To do so, fit a linear regression with the following

predictors: the treatment variable, the log-transformed precinct population, the
average poverty index and its square, the interaction between the treatment and

the poverty index, and the interaction between the treatment and the squared

poverty index. Estimate the average effects for unique observed values and plot

them as a function of the average poverty level. Comment on the resulting

plot.
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Table 4.12. Brazilian Government Transfer Data.
 

 

Variable Description

pop82 population in 1982

poverty8 O poverty rate of the state in 1980

poverty9 l poverty rate of the state in 1991

educ8 0 average years in education of the state in 1980

educ9 1 average years in education of the state in 1991

1 i terate 9 l literacy rate of the state in 1991

s tat:e state

region region

id municipal ID

year year of measurement
 

4.5.3 GOVERNMENT TRANSFER AND POVERTY REDUCTION IN BRAZIL

In this exercise, we estimate the effects of increased government spending on edu-

cational attainment, literacy, and poverty rates.8 Some scholars argue that government

spending accomplishes very little in environments of high corruption and inequality.
Others suggest that in such environments, accountability pressures and the large

demand for public goods will drive elites to respond. To address this debate, we exploit
the fact that until 1991, the formula for government transfers to individual Brazilian

municipalities was determined in part by the municipality’s population. This meant

that municipalities with populations below the official cutoff did not receive additional

revenue, while states above the cutoff did. The data set trans fer . csv contains the

variables shown in table 4.12.

1. We will apply the regression discontinuity design to this application. State the

required assumption for this design and interpret it in the context of this specific
application. What would be a scenario in which this assumption is violated? What

are the advantages and disadvantages of this design for this specific application?

2. Begin by creating a variable that determines how close each municipality was to

the cutoff that determined whether states received a transfer or not. Transfers
occurred at three separate population cutoffs: 10,188, 13,584, and 16,980. Using

these cutoffs, create a single variable that characterizes the difference from

the closest population cutoff. Following the original analysis, standardize this

measure by dividing the difference by the corresponding cutoff, and multiplying

it by 100. This will yield a normalized percentage score for the difference between

the population of each state and the cutoff, relative to the cutoffvalue.

8 This exercise is based on Stephan Litschig and Kevin M. Morrison (2013) “The impact of intergovernmental
transfers on education outcomes and poverty reduction.” American Economic Journal: Applied Economics, vol. 5,
no. 4, pp. 206—240.
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. Begin by subsetting the data to include only those municipalities within 3 points
of the funding cutoff on either side. Using regressions, estimate the average

causal effect of government transfer on each of the three outcome variables of
interest: educational attainment, literacy, and poverty. Give a brief substantive
interpretation of the results.

. Visualize the analysis performed in the previous question by plotting data points,
fitted regression lines, and the population threshold. Briefly comment on the plot.

. Instead of fitting linear regression models, we compute the difference-in—means

of the outcome variables between the groups of observations above the threshold

and below it. How do the estimates differ from what you obtained in question 3?
Is the assumption invoked here identical to the one required for the analysis

conducted in question 3? Which estimates are more appropriate? Discuss.

. Repeat the analysis conducted in question 3 but vary the width of the analysis

window from 1 to 5 percentage points below and above the threshold. Obtain the

estimate for every percentage point. Briefly comment on the results.

. Conduct the same analysis as in question 3 but this time using the measures of

poverty rate and educational attainment taken in 1980, before the population-

based government transfers began. What do the results suggest about the validity
of the analysis presented in question 3?


