
Chapter 5
 

Discovery

The greatest value of a picture is when it forces us to notice

what we never expected to see.

—John W. Tu key, Exploratory Data Analysis

Over the last couple of decades, the variety as well as volume of data analyzed in

quantitative social science research has dramatically increased. In this chapter, we

introduce three types of data that were not analyzed in previous chapters: textual,

network, and spatial data. We conduct exploratory data analysis to inductively learn

about the underlying patterns and structure of these data. We saw an example of such

analysis applied to the degree of political polarization in chapter 3. In this chapter,

we first analyze textual data to discover topics and predict authorship of documents

based on the frequency of word usage. Our application is the disputed authorship of

The Federalist Papers. Second, we analyze network data, which record the relationships

among units. As examples, we will explore the marriage network in Renaissance

Florence and social media data from Twitter. Finally, we visualize spatial data and

examine changes in patterns across time and space. Our examples are the cholera

outbreak in the 19th century and the expansion of Walmart retail stores in the 21st

century.

The widespread use of the Internet has led to an astronomical amount of digitized

textual data accumulating every second through email, websites, and social media

outlets. The analysis of blog sites and social media posts can give new insights

into human behavior and opinions. At the same time, large-scale efforts to digitize

published articles, books, and government documents have been underway, provid-

ing exciting opportunities to revisit previously studied questions, by analyzing new

data.

5.1.1 THE DISPUTED AUTHORSHIP OF THE FEDERALIST PAPERS

While new opportunities for text analysis have grown in recent years, we begin

by revisiting one of the earliest examples of text analysis in the statistics literature.

We analyze the text of The Federalist, more commonly known as The Federalist
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Figure 5.1. The Title Page of The Federalist, Vol. 1. Source: Library of Congress.

Papers.l The Federalist, whose title page is displayed in figure 5.1, consists of 85 essays
attributed to Alexander Hamilton, John Jay, and James Madison from 1787 to 1788 in
order to encourage people in New York to ratify the newly drafted US Constitution.
Because both Hamilton and Madison helped draft the Constitution, scholars regard
The Federalist Papers as a primary document reflecting the intentions ofthe authors of
the Constitution.

The Federalist Papers were originally published in various New York state news-
papers under the pseudonym of “Publius.” For this reason, the authorship of each
paper has been the subject of scholarly research. According to the Library of
Congress,2 experts believe that Hamilton wrote 51 essays while Madison authored
15.3 In addition, Hamilton and Madison jointly authored 3 papers whereas John Jay
wrote 5.4 The remaining 11 essays were written by either Hamilton or Madison, though

1 This section is in part based on F. Mosteller and D.L. Wallace (1963) “Inference in an authorship problem.”
Journal of the American Statistical Association, vol. 58, no. 302, pp. 275—309.

2 See the website https : / lwww. congress . gov/resources /display/content /The+Federa1ist
+Papers#TheFederalistPapers- 1. fl

3 The Federalist Papers known to be written by Hamilton: nos. 1. 6-9, 11-13, 15-17, 21—36. 59—61, and 65-85.
Papers known to be written by Madison: nos. 10, 14, 37—48, and 58.

4 The Federalist Papers known to be jointly written by Hamilton and Madison: nos. 18—20. The Federalist
Papers known to be written by John Jay: nos. 2-5 and 64.
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5.1 Textual Data m

Table 5.1. The Federalist Papers Data.
 

AFTER an unequivocal experience of the inefficiency

of the subsisting federal government, you are called

upon to deliberate on a new Constitution for the

United States of America.

This shall accordingly constitute the subject of my next

address.
 

Note: The data consists ofthe raw text ofeach of85 essays in The Federalist Papers. The first and

last sentences of The Federalist Paper no. 1 appear here as an example.

scholars dispute which one.5 Below, we analyze the text of The Federalist Papers to

predict their authorship.

The text of the 85 essays is scraped from the Library of Congress website and

stored as prX. txt, where xx represents the essay number ranging from 01 to

8 5. Scraping refers to an automated method of data collection from websites using a

computer program. Each data file contains the textual data of its corresponding essay.

See table 5.1, which displays the first and last sentences of The Federalist Paper no. 1 as

an example.

Before analyzing the data, we need to preprocess it. The tm package provides a

number of useful natural language processing functionalities in R. One functionality

eliminates unnecessary white space between words. Another, called stemming, strips

away prefixes and suffixes to produce stem words so that different forms of the same

word can be recognized. For example, the stem form of“government” is “govern.” Note

that the stemming functionality in the tm package requires another package called

SnowballC. Be sure to install these packages by utilizing the install . packages ( )

function or clicking the Install icon under the Packages tab in the bottom-right

window of RStudio (see section 1.3.7 for more detailed instructions). The installation

of a package needs only to occur once. However, in order to use a package, you must

load it once in each new R session using the library () function. Load multiple

packages simultaneously by separating them with commas.

 

We begin by loading the text corpus, or collection of texts, into R using the

Corpus ( ) function. The DirSource ( ) function specifies the directory and pattern

of corpus file names. The directory argument indicates the files’ location, in this

case the working directory’s subdirectory called federal i s t, a folder you must create

5 The Federalist Papers with disputed authorship are nos. 49, 50—57, 62, and 63.
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Table 5.2. Commonly Used Functions to Preprocess Raw Texts.
 

 

Function Description

tolower ( ) transform to lower case
stripWhitespace ( ) remove white space
removePunctuation ( ) remove punctuation
removeNumbers ( ) remove numbers
removeWords ( ) remove specified words
stemDocument ( ) stem the words in a document for specified language
 

before running the code. The pattern argument identifies a pattern contained in the
names of all data files, in this case fp (prl . txt, fplo . txt, etc.).

 

We now preprocess our corpus. We use the tm_map () fimction, which enables
various natural language processing operations on corpora. The first argument of
this function is the name of a corpus, while the second argument is a function
that transforms text. Table 5.2 summarizes these functions. We first turn all letters
to lower case by using the tolower () function. Since tolower () is a function
in the R base package rather than in the tm package, it must pass through the
wrapper function called content_trans former ( ) (as ofversion 0.6—1).6 Next, we
eliminate unnecessary white space with the stripWhitespace ( ) function, remove
punctuation with the removePunctuation ( ) function, and remove numbers with
the removeNumbers () function.

 

5 Note that older versions of the tin package do not require the use of the content_transformer ()
function.
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5.1 Textual Data

Next, to remove the most commonly used words such as a and the, we first use

the stopwords ( ) function to obtain a list of stop words for the input language. The

beginning of the English list appears below.

i'iectd (m; DD‘JJC‘ r F13: ( "english" ) )

# # [l] u i ll "me ll Ilmyll Ilmysel f n “We II II Our n

We will then pass this list through the removeWords ( ) function. Finally, we stern

each word.

## remove stop words

corpus <- tmfmap(corpus.prep, removeWords, stopwords(“english"))

## finally stem remaining words

corpus <— Lmeap(corpus, stemDocument)

We can extract a specific essay by using double square brackets [ [ and ] ] with an

integer indicating the element to be extracted (see section 3.7.2 for more details about

the use of double square brackets). In addition, the content ( ) function prints out

the actual text of the selected document.

## the output is truncated here to save space

cnntent(corpus[[10]]) # essay no. 10

## [1] “among numer advantag promis wellconstruct union none"

## [2] " deserv accur develop tendenc break "

## [3] " control violenc faction friend popular govern never"

Compare this preprocessed document with the corresponding section ofthe original

text, which is displayed here.

AMONG the numerous advantages promised by a well-constructed

Union, none

deserves to be more accurately developed than its tendency

to break and

control the violence of faction. The friend of popular

governments never

We observe from the above text that all preprocessing was done as specified in our

prior code. That is, all letters were transformed to lower case, punctuation marks such

as hyphens and commas were taken out, stop words and white space were removed,

and words were stemmed to be reduced to their stem word (e.g., transform numerous

to numer and promised to promis).
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512 DOCUMENTTERMIWATWX
One quick way to explore textual data is to simply count occurrences ofeach word or

term. The number oftimes a particular word appears in a given document is called term
frequency (tf). The tf statistic can be summarized in a document-term matrix, which
is a rectangular array with rows representing documents and columns representing
unique terms. The (i , j) element of this matrix gives the counts of the jth term
(column) in the ith document (row). We can also flip rows and columns and convert a
document-term matrix to a term-document matrix where rows and columns represent
terms and documents, respectively. A document-term matrix can be created by the
DocumentTermMatrix ( ) function in R (similarly, the TermDocumentMatrix ( )
function creates a term-document matrix).

dtm <— DocumentTermMatrix(corpus)

dtm

## <<DocumentTermMatrix (documents: 85, terms: 4849)>>
## Non—/sparse entries: 44917/367248

## Sparsity : 89%

## Maximal term length: 18

## Weighting : term frequency (tf)

t

Because the output of the DocmnentTermMatrix ( ) function is a special matrix,
R prints the document-term matrix’s summary rather than the document-term matrix
itself. The summary contains the number ofdocuments as well as the number ofterms.
In addition, the number of nonsparse 0r nonzero entries and the number of sparse en-
tries in the document-term matrix are provided. Sparsity refers to the proportion of
zero entries in the document-term matrix. As is the case in this example, a document-
term matrix is typically sparse. That is, the vast majority of its entries are zero because
most terms appear in only a small number of documents. In the case of The Federalist
Papers, 89% of the elements of the document-term matrix are 0. Finally, the summary
output provides the maximal term length and quantity by which the entries of this
matrix are weighted. In the current example, each entry represents the tf statistic.

To take a closer look at the actual entries of this matrix, we use the inspect ( )
function, which displays detailed information on a corpus or term-document matrix.
We can subset these matrix objects just like we subset a data frame object using square
brackets [, ]. As an example, the following syntax inspects the first 5 rows and first
8 columns of the document-term matrix.

inspect(dtm[l:5, 1:81)

## <<DocumentTermMatrix (documents: 5, terms: 8)>>

## Non—/sparse entries: 4/36

## Sparsity : 90%

## Maximal term length: 7

## Weighting : term frequency (tf)

##
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Alternatively, we can coerce this object into a standard matrix object using the

as .matrix ( ) function, and print it directly.

5.1.3 TOPIC DISCOVERY

We begin by visualizing and analyzing the document-term matrix created above.

Our analysis of word frequency critically relies on the commonly used bag—of-words

assumption, which ignores the grammar and ordering of words. This means that our

analysis is unlikely to detect subtle meanings oftexts. The distribution oftermfrequency

(tf) should, however, allow us to infer topics discussed in the documents. A common

way to visualize this distribution is a word cloud where more frequently used words

appear in a larger font. The wordcloud ( ) function in the wordcloud package creates

a word cloud, which may serve as a useful visualization tool because the document-

term matrix often contains too many columns to visually inspect.

Like clustering, covered in section 3.7, topic discovery is an example of unsupervised

learning because we lack access to true information about topic assignment. That is, we

do not know, a priori, what topics exist in the corpus and characterize each document.

We wish to discover topics by analyzing the distribution of term frequency within a

given document and across documents. In contrast, in supervised learning, researchers

use a sample with an observed outcome variable to learn about the relationship

between the outcome and predictors. For example, we may have human coders read

some documents and assign topics. We can then use this information to predict the

topics of other documents that have not been read. Clearly, the lack of information

about outcome variables makes unsupervised learning problems more challenging than

supervised problems.

We begin by visualizing The Federalist Papers nos. 12 and 24 with word clouds

in order to infer their topics. Both papers are known to be authored by Alexander

Hamilton. In the wordcloud package, which we must install, the wordcloud ()

function takes two main arguments. The first argument takes a vector ofwords while

the second argument takes the frequencies of those words. To avoid clutter, we limit

the maximum number ofwords to be plotted by setting max . words to 2 0.
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The comparison of the two word clouds shows that the left-hand plot for pa-
per no. 12 contains words related to economy such as revenu (the root form of
revenue), commerc (commerce), trade, tax, land, and so on. In contrast,
the right-hand plot for paper no. 24 contains more words about security includ-
ing power, peac (the root form of peace), garrison, and armi (army). Re-
call that the stemDocument () function stems documents. We now can use the
stemCompletion () function to recover the full version of a stemmed word. The
function’s first argument takes the stem word or words, while the second argument
takes candidate full words. Our candidate full words here come from the unstemmed
corpus, corpus . prep.

 

These discovered topics are indeed consistent with the actual content of the papers.
Paper no. 12 is entitled, “The utility of the Union in respect to revenue” and discusses
the economic benefits of the 13 colonies forming one nation. In contrast, the title of
no. 24 is “The powers necessary to the common defense flirther considered” and
discusses the creation of a national army as well as the relationship between legislative
power and federal forces.

In the above analysis, we visualized the distribution of term frequency within each
document. However, a certain term’s high frequency within a document means little
if that term often appears across the documents of the corpus. To address this issue,
we should downweight the terms that occur frequently across documents. This can be
done by computing the statistic called term frequency—inverse documentfrequency, or
tf—idf in short. The tf—idf statistic is another measure of the importance ofeach term in
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a given document. For a given document d and term w, we define tf—idf(w, d) as

tf—idf(w, d) = tf(w, d) x idf(w). (5.1)

In the above equation, tf(w , d) represents termfrequency or the number ofoccurrences

ofterm w in document d . In some cases, we convert tf(w, d) to a log scale when it takes

a positive value. Note that tf(w, d) equals 0 when term w never occurs in document d.

The other factor in equation (5.1), idf(w), is the inverse documentfrequency, which

is typically defined as

idf(w) = log ((17:17)) .

In this equation, N is the total number of documents and df(w) is the document

frequency or the number of documents that contain term w. Dividing by df(w)

implies that idf(w) takes a smaller value when term w is used more frequently across

documents. As a consequence, common terms across documents receive less weight in

tf—idf.

We can compute the tf—idf measure using the weightTfIdf () func-

tion, which takes as its input the document-term matrix output from the

DocumentTennMatrix () function. Note that the weightTfIdf () function has

an argument normal i ze, for which the default value is FALSE. If this argument is set

to TRUE, then term frequency tf(w, d) will be divided by the total number of terms in

document d.

Below, we list the 10 most important terms for The Federalist Papers nos. 12 and 24

using the tf—idf measure. The sort ( ) function helpfully identifies the terms with the

largest tf—idf values. We sort a vector in decreasing (increasing) order by specifying

the decreasing argument as TRUE (FALSE). Since the class of dtm.tfidf is

still DocumentTermMatrix, we need to convert it to a matrix before applying the

sort () function.
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## 10 most important words for paper no. 24
head(sort(dtm.tfidf.mat[24, ], decreasing = TRUE), n = 10)

## garrison dockyard settlement spain armi
## 0.02965511 0.01962294 0.01962294 0.01649040 0.01544256
## frontier arsenal western post nearer
## 0.01482756 0.01308196 0.01306664 0.01236780 0.01166730

The results clearly show that the most important terms for The Federalist Paper
no. 12 concern the economy whereas those for paper no. 24 relate to security policies,
though such word association is done by the researcher.

The analysis of documents based on term frequency relies on the bag-of-words
assumption that ignores the order of words. To measure the relative importance
of a term in a document, we can compute the term frequency—inverse document
frequency (tf—idf), which represents the relative frequency of the term inversely
weighted by the number of documents in which the term appears (document
frequency).

Finally, we consider an alternative approach to topic discovery, by identifying
clusters of similar essays, based on the tf-idf measure. We focus on the essays written
by Hamilton. Following section 3.7, we apply the k-means algorithm to this weighted
document-term matrix. After some experimentation, we choose the number ofclusters
to be 4. While arbitrary, this choice produces clusters that seem reasonable. We check
the number of iterations to convergence to make sure that it does not exceed the default
maximum value 1 O.

k <— 4 # number of clusters

## subset the Federalist papers written by Hamilton

hamilton <— c(l, 6:9, 11:13, 15:17, 21:36, 59:61, 65:85)
dtm.tfidf.hamilton <- dtm.tfidf.mat[hamilton, ]

## run k—means

km.out <— kmeans(dtm.tfidf.hamilton, centers = k)
km.out$iter # check the convergence; number of iterations may vary

## [1] 2

We next summarize the results by printing out the 10 most important terms at the
centroid of each of the resulting clusters. We also show which essays of The Federalist
Papers belong to each cluster. Since we must perform the same operation for each
cluster, we use a loop (see section 4.1.1).
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## [ll] "fp72.txt" "fp73.txt" "fp74.txt" “fp75.txt“ "fp76.txt"
## [16] "fp77.txt" "fp78.txt" "fp79.txt" "fp84.txt"

##

## CLUSTER 4

## Top 10 words:

## court juri appel jurisdict suprem

## 0.05119100 0.03715999 0.01948060 0.01865612 0.01474737

## tribun trial cogniz inferior appeal

## 0.01448872 0.01383180 0.01343695 0.01155172 0.01139125
##

## Federalist Papers classified:

## [l] "fp81.txt" "fp82.txt" "fp83.txt"

Examining the 10 most important terms at the centroid of each cluster suggests that
cluster 2 relates to war and taxation, as indicated by terms like armi, taxat, and war,
while cluster 1 covers only one document. Cluster 3 addresses institutional design and
cluster 4 appears to be concerned with judicial systems. Comparing these topics with
the actual contents of The Federalist Papers shows a decent degree of validity for the
results of the k-means clustering algorithm.
We have been using The Federalist Papers to illustrate how text analyses can reveal

topics. Of course, since we can easily read all of The Federalist Papers, the automated
text analysis may not be necessary in this case. However, similar and more advanced
techniques can be applied to a much larger corpus that humans would struggle to read
in full over a short amount of time. In such situations, automated text analysis can play
an essential role in helping researchers extract meaningful information from textual
data.

514 AUTHORSHHDPREDKNWON

As mentioned earlier, the authorship of some of The Federalist Papers is unknown.
We will use the 66 essays attributed to either Hamilton or Madison to predict the
authorship of the 11' disputed papers. Since each Federalist paper deals with a different
topic, we focus on the usage of adjectives, adverbs, prepositions and conjunctions. In
particular, we analyze the frequency of the following 10 words: although, always,
commonly, consequently, considerable, enough, there, upon, while,
whi 1st. We select these words based on the analysis presented in the academic paper
that inspired this section (see footnote 1). As a result, we must use the unstemmed
corpus, corpus . prep. We first compute the term frequency (per 1000 words)
separately for each term and document and then subset the resulting term-frequency
matrix to contain only these words.

## document—term matrix converted to matrix for manipulation

dtml <— astwat3’1:»:({JocumenmL‘Sfi‘rr:

tfm <— dtml / :(va/Si.u‘ns(dtm1)

11:49:51 ,:;,1,>r(corpus . prep) )

* 1000 # term frequency per 1000 words
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## words of interest

words <— ("although", "always", “commonly", "consequently“,

"considerable", "enough", “there“, "upon", "while“, “whilst")

## select only these words

tfm <- tfm[, words]

We then calculate the average term frequency separately for Hamilton and Madison

across each author’s entire body of documents.

## essays written by Madison: “hamilton” defined earlier

madison <- 3(10, 14, 37:48, 58)

## average among Hamilton/Madison essays

tfm.ave <— ~‘ ( _ ’ ,(tfm[hamilton, ]) / fiw‘w ‘(hamilton),

.(tfm[madison, ]) / x‘..3(madison))

tfm.ave

## although always commonly consequently

## [1,] 0.01756975 0.7527744 0.2630876 0.02600857

## [2,] 0.27058809 0.2006710 0.0000000 0.44878468

## considerable enough there upon while

## [1,] 0.5435127 0.3955031 4.417750 4.3986828 0.3700484

## [2,] 0.1601669 0.0000000 1.113252 0.2000269 0.0000000

## whilst

## [1.] 0.007055719

## [2,] 0.380113114

The results suggest that Hamilton prefers to use terms such as there and upon,

which Madison seldom uses, preferring instead to use consequent1y and whilst.

We will use the frequency of these 4 words as the predictors of a linear regression

model, where the outcome variable is the authorship of an essay. We first fit this

linear regression model to the 66 essays whose authorship is known to estimate the

coefficients. The resulting fitted model can then be used to predict the unknown

authorship ofthe 11 essays based on the 4 words’ frequencies. For the linear regression

model, we first create the outcome variable by coding essays authored by Hamilton as

l and those written by Madison as -1. We then construct a data frame object, which

contains this authorship variable as well as the term—frequency matrix 1: fm for all essays

whose authorship is known.

author <— ' V(NA, .'\:(dtm1)) # a vector with missing values

author[hamilton] <- 1 # 1 if Hamilton

author[madison] <— -1 # —1 if Madison

## data frame for regression

author.data <— dr'.,“' m_(author = author[c(hamilton,madison)],

tfm[~(hamilton, madison), ])
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To predict the authorship, we use the term frequency of the 4 words selected based
on our preliminary analysis, i.e., upon, there, consequent ly, and whilst. The
data frame object we created above contains the term frequency of the 10 words
including these 4. We estimate the coefficients using the 66 essays with known
authorship.

hm.fit <— 1m(author ~ upon + there + consequently + whilst,

data = author.data)

hm.fit

##

## Call:

## Im(formula = author ~ upon + there + consequently + whilst, data = author.data)
##

## Coefficients:

## (Intercept) upon there consequently

## -0.26288 0.16678 0.09494 -0.44012

## whilst

## —0.65875

The results are consistent with the preliminary analysis we conducted above. The es-
timated coefficients for upon and there are positive while those for consequently
and whi l s t are negative, implying that the first two words are associated with Hamil-
ton whereas the latter pair are associated with Madison. Interestingly, the estimated
coefficient for whilst has the largest magnitude. Holding the term frequency of the
other 3 words constant, one additional use of whilst (per 1000 words) in an essay
decreases the predicted authorship score by 0.66. To put this number into perspective,
we compute the standard deviation of fitted values using the fitted ( ) and sd ()
functions.

hm.fitted <- fitted(hm.fit) # fitted values

sd(hm.fitt9d)

## [1] 0.7180769

We find that the magnitude of this coefficient is large and close to 1 standard
deviation of fitted values. That is, one additional use of whilst (per 1000 words)
accounts for approximately 1 standard deviation of variation in our predicted value
for the authorship score.

515 CROSS MAUDATKJN

How well is this model fitting the data? We classify each essay using its fitted
value and compute the classification error. To do this, we compute the proportion of
positive fitted values among the essays authored by Hamilton. Similarly, we compute
the proportion of negative fitted values among those written by Madison. The results
represent the classification success rate (see section 4.1.3).
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The results show that the model perfectly classifies the authorship of these essays.

Like the coefficient ofdetermination introduced in chapter 4, however, this measure of

prediction accuracy is based on in-sample prediction. That is, the same data we used to

fit the model are again used for assessing the prediction accuracy. This is not necessarily

a good idea because we can overfit a model to the data at hand. Overfitting occurs

when a model captures idiosyncratic features of a specific sample while muddling up

systematic patterns that exist across different samples.

Let us instead consider out—of-sample prediction. The idea is that we use new

observations to assess the predictive performance of a model. In chapter 4, we

performed out-of-sample prediction by forecasting election results using preelection

polls. Similarly, here, we employ a procedure called leave-one-out cross validation.

Specifically, we set aside one observation and predict its outcome variable value

after fitting the model to the remaining observations. We repeat this procedure for

each observation in the sample and compute the classification error. Cross validation

enables us to assess the accuracy of model prediction without relying on in-sample

prediction.

 

Cross validation is a methodology to assess the accuracy of model prediction

without relying on in-sample prediction, which often leads to overfitting. Suppose

that we have a sample of n observations. Then, the leave-one-out cross-validation

procedure repeats the following steps for each observation i = 1, . . . , n:

1. Take out the ith observation and set it aside.

2. Fit the model using the remaining n — l observations.

3. Using the fitted model, predict the outcome for the ith observation

and compute the prediction error.

Finally, compute the average prediction error across n observations as a measure

ofprediction accuracy.  
 

In R, we can cross validate using a loop, where each iteration fits the model to

the data after excluding one observation, then predicts that observation’s outcome

variable value. A convenient way of setting aside the ith observation is to use the minus

sign, i.e., —i, to remove a certain row of the data frame. As we saw in section 4.3.4,

the predict () function can compute the predicted value Y. In this function, the

newdata argument should specify a data frame whose only row is the observation of

interest.
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n <- nrow(author.data)

hm.c1assify <- rep(NA, n) # a container vector with missing values

for (i in 1:n) {

## fit the model to the data after removing the ith observation

sub.fit <— Im(author ~ upon + there + consequently + whilst,

data = author.data[-i, ]) # exclude ith row

## predict the authorship for the ith observation

hm.c1assify[i] <- predict(sub.fit, newdata = author.data[i, 1)

The results below show that even when the cross validation procedure is used, the
model continues to perfectly classify the authorship of each essay.

## proportion of correctly classified essays by Hamilton

mean(hm.classify[author.data$author == 1] > 0)

## [l] 1

## proportion of correctly classified essays by Madison

mean(hm.classify[author.data$autho == -l] < 0)

## [l] 1

Finally, we use this fitted model to predict the unknown authorship of the 11 essays.
When using predict ( ) for prediction, don’t forget to coerce the term-frequency
matrix into a data frame through the as .data. frame ( ) function. Note that this
function differs from the data. frame ( ) function, which creates a data frame.

disputed <— c(49, 50:57, 62, 63) # 11 essays with disputed authorship

tf.disputed <— as.data.frame(tfm[disputed, ])

## prediction of disputed authorship

pred <— predict(hm.fit, newdata = tf.disputed)

pred # predicted values '

## fp49.txt fp50.txt fp51.txt fp52.txt fp53.txt

## -O.9983l799 -0.06759254 -1.53243206 -0.26288400 -0.54584900

## fp54.txt fp55.txt fp56.txt fp57.txt fp62.txt

## —0.56566555 0.04376632 —0.57115610 -1.22289415 -1.00675456

## fp63.txt

## -0.21939646

For ease of presentation, we plot the predicted values using different colors.

Red squares signify essays known to be written by Hamilton, while blue circles
indicate those by Madison. Black triangles represent papers with disputed authorship.

Points above (below) the dashed horizontal line, indicating zero, correspond to essays
classified as written by Hamilton (Madison).
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The plot above uses gray squares instead of red squares for the essays authored by

Hamilton. See page C4 for the full-color version. As our plot shows, the model predicts

that Madison wrote all of the 11 essays except one. That one was barely classified as

written by Hamilton, having a predicted value near zero.

Next, we consider network data, which describes relationships among units rather

than units in isolation. Examples include friendship networks among people, citation

networks among academic articles, and trade and alliance networks among countries.

Analysis of network data differs from the data analyses we have covered so far in that

the unit of analysis is a relationship.

5.2.1 MARRIAGE NETWORK IN RENAISSANCE FLORENCE

We introduce the basic concepts and methods for network data by analyzing a well-

known data set about the marriage network in Renaissance Florence.7 The CSV data

7 This section is in part based on Iohn F. Padgett and Christopher K. Ansell (1993) “Robust action and the rise

ofthe Medici, 1400-1434.” American Journal afSocialogy, vol. 98, no. 6, pp. 1259—1319.
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Table 5.3. Florence Marriage Network Data.

 

FAMILY ACCIAIUOL ALBIZZI - - - LAMBERTES MEDICI - ~ ' STROZZI TORNABUON

ACCIAIUOL 0 0 - - - 0 l - - - 0 0
ALBIZZI O 0 - - - 0 l - - - 0

LAMBERTES 0 0 - - ' 0 0 - - - 0 0
MEDICI l 1 - - - 0 0 - - - 0 1

STROZZI 0 0 - - - 0 0 ' - ' 0 0

TORNABUON 0 0 - - - 0 l - - - 0 0 
 

Note: The data are in the form of an adjacency matrix where each entry represents whether a family in its row
has a marriage relationship with another family in its column.

file, florentine . csv, contains an adjacency matrix whose entries represent the
existence of relationships between two units (one unit represented by the row and the
other represented by the column). Specifically, there are 16 elite Florentine families in
the data, leading to a 16 x 16 adjacency matrix. Ifthe (i , j ) entry ofthis adjacency matrix
is 1, then it implies that the 1'th and jth Florentine families had a marriage relationship.
In contrast, a value of 0 indicates the absence of a marriage. Table 5.3 displays part of
this data set. Below, we print out the part of the adjacency matrix corresponding to the
first 5 families.

 

The submatrix shows that there was only one marriage relationship among these
5 families. The marriage was between the Barbadori and Castellan families. This
adjacency matrix represents an undirected network because the matrix contains no
directionality. We could add directionality by incorporating which family proposed
a marriage if such information were available. In contrast, the Twitter data we analyze
later are an example of a directed network where any relationship between a pair of
units specifies a sender and a receiver. For an undirected network, the adjacency matrix
is symmetric: the (i, j) element has the same value as the (j , i ) element. Finally, using

the rowSums ( ) or colSums ( ) filnction, we can check which family had the largest
number of marriage relationships.
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5.2 Network Data

The result shows that the Medici family had 6 marriage relationships. It turns out

that through this marriage network, the Medici family made themselves the most

powerful faction in Renaissance Florence and eventually took over the state.

 

Network data carry information about the relationships between units.

A directed network contains directionality, with senders and receivers, whereas

an undirected network does not. An adjacency matrix, whose entries indicate

the existence or absence of a relationship between two units, is one way to

represent network data. An undirected network yields a symmetric adjacency

matrix, whereas a directed network does not. 

 

 
 

5.2.2 UNDIRECTED GRAPH AND CENTRALITY MEASURES

The most common tool for visualizing network data is a graph, which is also a

mathematical object, as well as a visualization tool. A graph 9 consists of a set of nodes

(or vertices) V and a set of edges (or ties) E , i.e., g = (V, E). A node represents

an individual unit, or a family in our current example, and is typically depicted as

a solid circle. An edge, on the other hand, represents the existence of a relationship

between any pair of nodes (e.g., a marriage relationship between two families) via a

line connecting those nodes.
The igraph package makes it easy to visualize network data as a graph. Be

sure to install the package if you have not done so already. We first use the

graph . adj acency ( ) function to turn an adjacency matrix into an igraph object.

meaning an object that the igraph package can use. We set the mode argument

to "undirected" since we are analyzing an undirected network. We also specify

diag = FALSE to indicate the assumption that there is no marriage within a family,

resulting in a value of zero for every diagonal element of the adjacency matrix. Finally,

we can visualize the marriage network data as a graph by applying the plot ( ) function

to the igraph object.
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Pucci

Pazzi .

Salviati Barbadori

    

  
Castellan

    
     

Acciaiuol Medici 'd Ifi

R' o Strozzi

' Peruzzi

Tomabuon

Bischeri

Ginori Guadagni  
Lambertes

The Medici family appears to occupy the center ofthe Florentine marriage network,
being connected to various parts of the graph. We now introduce a variety of graph-
based measures that can quantify centrality, or the extent to which each node is
connected to other nodes and appears in the center ofa graph. The number ofedges, or
degree, is perhaps the most crude measure ofhow well a node is connected to the other
nodes in a graph. Figure 5.2a illustrates this measure using a simple undirected network
example, where degree is indicated as an integer value within each node. Above, we
found that the Medici family had the largest number of marriage relationships, so it
has the highest degree. The degree of every node can be calculated by applying the
degree ( ) function to the igraph object.

 

Degree is problematically a local measure because it simply counts the number of
edges that come out of a given node. As a result, it does not account for the structure
of the graph beyond its immediate neighbors. As an alternative, we can count the sum
ofedges from a given node to all other nodes in a graph, including the ones that are not
directly connected. This measure, calledfarness, describes how far apart a given node is
from each one of all other nodes in the graph. This contrasts with degree, which counts
the number of connected nodes. The inverse of farness, closeness, represents another

.4
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(a) Degree ('3) Closeness (c) Betweenness

Figure 5.2. Degree, Closeness, and Betweenness in an Undirected Network. This simple

example of an undirected network illustrates three alternative measures of centrality:

degree, closeness, and betweenness.

measure of centrality. The closeness for node v is defined as

1
cl 6 v = ——
osen ss( ) farness(v)

l

zueV, “#1, distance between 1) and u ’
 

where the summation is taken over all nodes other than u itself. The distance between

two nodes is the number of edges in the shortest path, which is the shortest sequence

of connected nodes, between the two nodes of interest. Figure 5.2b shows the values of

this measure for each node in a simple example ofan undirected network. In R, we can

use the closeness ( ) function to compute this measure. If a node is not connected

to any other node, then the number of nodes in the graph, i.e., 16 in this case, is used

instead of the length of the shortest path. Thus, Pucci family’s closeness is equal to

1/(15 x 16).

 

As with degree, we find that the Medici family has the largest value of closeness.

To facilitate the interpretation of this measure, we can calculate the average number of

edges from a given node to another node. This is done by dividing the fatness by the

number of other nodes on a graph. In the current example, we have a total of 16 nodes

and so we divide the famess by 15. The results below imply that on average, there are

2.7 edges between the Medici family and another family in this network, which is the

lowest among all families considered in this network data.
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1 / (closeness(florence) * 15)

##

##

##

##

##

##

ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

3.600000 3.000000 3.200000 3.400000 3.466667 3.866667

GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI
3.066667 3.933333 2.733333 4.333333 3.600000‘16.000000

RIDOLFI SALVIATI STROZZI TORNABUON

2.933333 3.466667 3.200000 3.000000

A different type of centrality measure is betweenness. According to this measure,
a node is considered to be central if it is responsible for connecting other nodes. In
particular, if we assume that communication between a pair of nodes occurs through
the shortest path between them, a node that lies on many such shortest paths may
possess special leverage within a network. For a given node v, we calculate betweenness
in three steps. First, compute the proportion of the shortest paths between two
other nodes, t and u, that contain v. For example, two shortest paths occur between
the Albizzi family and Tornabuon family, but we want only the proportion that
contain v. Second, calculate this proportion for every unique pair of nodes t and u
in the graph, excluding v. Third, sum all proportions. The formal definition is given by

betweenness(v)

2 number of shortest paths that contain node v
 

number of shortest paths between nodes t and u.
(LweKt#mu#v

Figure 5.2c illustrates this centrality measure in the same undirected network example
used for the other two measures.

The betweenness ( ) function can be used to compute this measure. We find that
by far, the Medici family has the highest value of betweenness. In fact, since any given
node can be uniquely paired with 105 other nodes, the Medici family lies in the shortest
path of more than 45% of all possible pairs of other nodes.

betweenness ( florence)

##

##

##

##

##

##

ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

0.000000 19.333333 8.500000 9.500000 5.000000 0.000000

GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI

23.166667 0.000000 47.500000 0.000000 2.000000 0.000000

RIDOLFI SALVIATI STROZZI TORNABUON

10.333333 13.000000 9.333333 8.333333

 

A graph is another way to represent network data where nodes (vertices) represent

units and an edge (or tie) between two nodes indicates that a relationship
exists between them. There are various centrality measures, including degrees,

closeness, and betweenness. These measures evaluate the extent to which each
node plays a central role in a graph.
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We visualize the Florentine marriage network data by making the size of each node

proportional to two centrality measures, closeness and betweenness. The values of

closeness are relatively small, and so we multiply them by 1000 in order to enlarge

the nodes of the graph.

 

Closeness Betweenness

   

  

 

  

Pazzi Pazzi

Ginori   
  

   

Albizzi Acciaiuol

Lambertes AIb'zz'

Barbadori
Guadagni Pucci

o

; Bischeri
Castellan

Peruzzi

The graphs illustrate that the Medici family stands out especially in terms of

betweenness, while the closeness measure suggests they are one of several well-

connected families. In sum, using three measures of centrality—degree, closeness, and

betweenness—we find that the Medici family is the most connected and central in

the network of Florentine marriage relationships. In Renaissance Florence, the Medici

family had the largest number ofmarriage relationships, was closely connected to other

‘ families, and occupied a critical position in marriages among other families..
[
f
u

5.2.3 TWITTER-FOLLOWING NETWORK

The Florentine marriage network data exemplify an undirected network where

1 each edge has no directionality. Next, we analyze Twitter-following data among

‘ US senators as directed network data. In this data set, an edge represents an instance

of a senator following another senator’s Twitter account.8 The data consist of two

~ files, one listing pairs of the Twitter screen names of the following and followed

§ politicians, twitter— following . csv, and the other containing information about

- each politician, twitter—senator . csv. Table 5.4 lists the names and descriptions

3 This data set is generously provided by Pablo Barberé.
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Table 5.4. Twitter Following Data.
 

Variable Description
 

Twitter-following data

following Twitter screen name of the following senator
followed Twitter screen name ofthe followed senator

Twitter senator data

screen_na.me Twitter screen name

name name ofsenator

party party (D = Democrat, R = Republican, I = Independent)
5tate state abbreviation
 

Note: The data are in two files, one listing the pairs of following and followed senators and the
other containing information about each senator.

of variables in these two data files. We set the stringAsFactors argument to FALSE in
the read. csv() function so that names of senators are treated as characters rather
than factors.

 

We begin by creating an adjacency matrix with these two data sets. For directed
network data, the (i, j )th element ofthe adjacency matrix is 1 ifan edge connects node
i to node j. A value of0 indicates the absence ofany relationship. Consequently, unlike
the case of undirected network data, the adjacency matrix is asymmetric: the (i, j)th
element of this matrix may not equal its (j , i)th element. We create this adjacency
matrix by initializing it with a matrix ofzeros and then changing the value of its (i, j)th
element from 0 to 1 if the ith politician follows the jth politician.

 

Finally, as before, we use the graph.adj acency() function to turn the ad-
jacency matrix into an igraph object. This time, however. we need to specify its
mode argument as "directed" to indicate that the input is a directed network
data set.
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(a) lndegree (b) Outdegree (c) Closeness (indegree)

(d) Closeness (outdegree) (e) Betweenness (directed)

Figure 5.3. Degree, Closeness, and Betweenness in a Directed Network. This simple

example of directed network data illustrates three alternative measures of centrality:

degree, closeness, and betweenness.

5.2.4 DIRECTED GRAPH AND CENTRALITY

We can define the three centrality measures discussed earlier for a directed network.

We now have two types of degree measures. The sum of edges coming to a node (i.e.,

the number of times a politician’s Twitter account is followed by another politician)

is called indegree, whereas the sum of edges coming out of a node (i.e., the number of

times a politician follows the Twitter account of another politician) is called outdegree.

Figures 5.3a and 5.3b illustrate the two degree measures using a simple directed

network The degree ( ) function accepts an argument mode with three options,

" in" for indegree, " out " for outdegree, and " total" (the default when mode is

unspecified) for total degree, which is the sum of indegree and outdegree. We compute

and store indegree and outdegree as additional variables in the senator data frame.

By construction, the twitter . adj matrix has the same ordering of senators as the

senator data frame. As a result, one can insert the output ofthe degree ( ) function

without sorting them.
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senatorsindegree <— degree(twitter.adj, mode = "in")

senatorsoutdegree <— degree(twitter.adj, mode = "out")

Next, we extract the cases with the 3 greatest values ofindegree and outdegree. To do
this, we use the order ( ) function, which returns the ordering index vector. Like the
sort ( ) function, the order ( ) function allows one to sort in decreasing or increasing
order by specifying the decreasing argument as TRUE or FALSE, respectively. The
key difference is that the order ( ) function returns the ordering index vector while
the sort ( ) function returns the ordered vector itself. This ordering index can then be
used to extract details about the cases of interest. Recall from section 3.7.2 that the $
operator extracts an element from a list. Below, we identify the 3 politicians who have
the greatest values of indegree and another set of 3 politicians who have the greatest
values of outdegree.

in.order <— order(senator$indegree, decreasing = TRUE)

out.order <— o:der(senator$outdegree, decreasing = TRUE)

## 3 greatest indegree

senatoriin.order[1:3], ]

##

##

##

##

##

##

##

##

screen_name name party state indegree
51 SenJohnMcCain John McCain R AZ 64

57 lisamurkowski Lisa Murkowski R AZ 60
18 SenatorCollins Susan M. Collins D ME 58

outdegree

51 15

57 87

18 79

## 3 greatest outdegree

senatorIout.order[l:3], ]

##

##

##

##

##

##

##

##

screen_name name party state indegree

37 SenDeanHeller Dean Heller R NV 55
21 SenBobCasey Robert P. Casey, Jr. D PA 43

65 sendavidperdue David Perdue R GA 30

outdegree

37 89

21 88

65 88

The other two measures of centrality introduced above, closeness and betweenness,
can be defined for directed network data as well. There are‘three ways to define a path
from one node to another. We can ignore directionality as in the case of undirected
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networks or incorporate it in one of two ways: traveling along an outgoing path

in its direction, or traveling along an incoming path against its direction. Closeness

for incoming paths corresponds to indegree, while closeness for outgoing paths

corresponds to outdegree. Figures 5.3c and 5.3d illustrate the closeness measures based

on incoming and outgoing paths, respectively.

To compute closeness in R, therefore, the closeness ( ) function has the mode

argument, which can take either “in" (incoming path), "out" (outgoing path),

or "total" (ignore directionality). Betweenness, however, sees only two options

(direct = TRUE or FALSE), because the distinction between incoming and outgo-

ing paths does not make sense from the perspective of a node in the path between

two other nodes (see figure 5.3e). In particular, the betweenness() function

takes a logical value for the directed argument, indicating whether to consider

directionality. Below, we first graphically compare two closeness measures (incoming

versus outgoing path) and then compare directed betweenness against undirected

betweenness using another plot. Before making these plots, we set the parameters for

colors and symbols based on party. Specifically, we use blue triangles for Democrats,

red circles for Republicans, and black crosses for Independents.

n <— nrow(senator)

## color: Democrats = blue, Republicans = red, Independent = black

col <— rep(“red", n)

col[senator$party == "D"] <— "blue"

col[senator$party == “1"] <— ”black"

## pch: Democrats = triangle, Republicans = circle, Independent = cross

pch <— rep(16, n)

pch[senator$party == “D"] <- 17

pch{senator$party == "1"] <— 4

Using these color and symbol parameters, we are now ready to make the plots.

## plot for comparing two closeness measures (incoming vs. outgoing)

plot(closeness(twitter.adj, mode = "in"),

closeness(twitter.adj, mode = "out“), pch = pch, col = col,

main = "Closeness", xlab = “Incoming path", ylab = "Outgoing path“)

## plot for comparing directed and undirected betweenness

plot(betweenness(twitter.adj, directed = TRUE),

betweenness(twitter.adj, directed = FALSE), pch = pch, col = col,

main = “Betweenness”, xlab = "Directed", ylab = "Undirected")



Chapter 5: Discovery

The plots below use solid gray circles for Republicans instead of red gray circles. See
page C4 for the full-color version.
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There is little association between the two closeness measures based on incoming
and outgoing paths. This suggests that in this Twitter network, a senator’s closeness to
other senators in terms of being followed by them has little relationship to closeness
based on the same senator following them. Interestingly, however, the betweenness
measure is quite similar, regardless of whether one incorporates directionality. The
two betweenness measures suggest that several Republican senators are well connected
and central to the network (see the upper-right corner of the right-hand plot).

As a final alternative measure of centrality, we introduce PageRank. PageRank was
developed by the cofounders of Google, Sergey Erin and Larry Page, to optimize the
ranking of websites for their search engine outcomes. PageRank is computed using
an iterative algorithm. In section 3.7, we saw k-means clustering as an example of an
iterative algorithm. PageRank is based on the idea that nodes with a greater number
of incoming edges are more important. Intuitively, we can think of incoming edges as
votes of support. In the Twitter example, those senators who have a large number of
followers are seen as more important. Furthermore, if a node has an incoming edge
from another node with a large number of incoming edges, it results in a greater value
of PageRank than if it has an incoming edge from a node with fewer incoming edges.
In other words, if the Twitter account of a politician is followed by another politician
whose account has many followers, they receive a larger PageRank than they would if
followed by a politician with fewer followers. Finally, we note that the sum ofPageRank
values across all nodes equals 1.

The algorithm begins by assigning a set of initial PageRank values to all nodes. At
each iteration, the PageRank value for node j will be updated using

Aij x PageRank,-
(5.2)

outdeg reei

1—d "
PageRankj = —+d x E

n
i=1

”vote” from node i to node j

I

300
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In this equation, A”- is the (i, j )th element of the adjacency matrix indicating whether

or not an edge connects node i to node j, d is a constant to be specified (typically

set to 0.85), and n is the number of nodes. The equation shows that the PageRank for

a given node j equals the sum of “votes” from other nodes that have an incoming

edge into node j. If there is no edge from node i to node j , then A;,- = 0, and

therefore no vote is given to node j from node 1'. However, if AU = 1, then a vote

from node i to node j is equal to the PageRank value of node i divided by node i’s

outdegree. This means that each node must equally allocate its PageRank value across

all other nodes to which it has outgoing edges. For example, if a node has a PageRank

value of 0.1 and has two outgoing edges, then each receiver obtains 0.05 from this

node. This iterative algorithm stops when the PageRank values for all nodes no longer

change.

 

There are several centrality measures for directed networks, including indegree

and outdegree, closeness (based on incoming edges, outgoing edges, or both), and

betweenness (with or without directionality). PageRank is an iterative algorithm

that produces a centrality measure where each node equally allocates its “votes” to

other connected nodes.  
 

In R, we can compute PageRank by the page . rank ( ) function. The function can

also be applied to an undirected networkby setting the directed argument to FALSE

(the default value is TRUE). The output object is a list that includes a numeric vector of

PageRank, as an element called vector.

 

Below, we visualize usage of the Twitter network among US senators by setting

node size proportional to PageRank. The plot () function for adjacency matrices

takes several arguments, including vertex . size (to adjust the size of each node),

vertex . color (to adjust the color of each node), vertex . label (to specify the

label of each node), edge . arrow . size (to adjust the size of each edge’s arrow), and

edge . width (to adjust the width of each edge). See ?igraph . plotting for more

details.
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The plot above shows that this Twitter network is quite dense but also polarized.

Republican senators appear to be clustered together while Democrats form another
cluster, suggesting that senators tend to follow senators of their own party. In addition,
while Republican senators appear to have slightly greater PageRank values than
Democrats, the partisan difference is minor.

To better understand the algorithm, we consider a function that updates the
PageRank at each iteration according to equation (5.2). Let n be the number of nodes
in a graph, A be an n x n adjacency matrix, d be a constant, and pr be a vector of
PageRank values from the previous iteration. Then, this function can be defined as
follows.

 

We will apply this function to the simple network used in figure 5.3. We will use

the while () loop so that the algorithm stops when the differences in PageRank
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The fulI-color version of the plots on page 99 in section 3.6.1.
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The full-color version of the plot on page 141 in section 4.2.1.
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The full-color version of the plot on page 218 in section 5.2.2.
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The full-color version of figure 5.5 on page 222.

 
The full-color version of the maps on page 229 in section 5.3.4.
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The full-color version of the maps on page 230 in section 5.3.4.
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The fuII-color version of the map on page 232 in section 5.3.4
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The fuII-color version of the maps on page 234 in section 5.3.6.
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values between two successive iterations become negligible. The whi 1e loop takes the

syntax

' 11? (condition) {

LOOP CONTENTS HERE

where the loop contents will be executed repeatedly so long as the conditional

statement, condition, is evaluated to be TRUE. In our application, we will compute

the maximum absolute difference in PageRank values between two successive iterations

and stop the algorithm when this becomes less than a prespecified threshold. To test

this script, we first construct an adjacency matrix with arbitrary values.

nodes <— 4

## adjacency matrix with arbitrary values

adj <— ma‘«§>( (O, 1, O, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0),

ncol = nodes, nrow = nodes, byrow = TRUE)

adj

## [,1] [,2] [,3] [.4]

## [1,] 0 1 0 1

## [2,] 1 0 l 0

## [3,] O l 0 0

## [4,] O l O 0

adj <— qraph.adeCQQCy(adj) # turn it into an igraph object

To implement the PageRank algorithm, we set the starting values and specify the

constant d in the algorithm (we choose 0.85). We then use the while () loop to

iteratively run the algorithm until a convergence criterion is satisfied. For the conver-

gence criterion, we use 0.001 as the threshold for the maximal absolute difference in

the PageRank values between two successive iterations. We use equal PageRank values

across nodes as their starting values.

d <— 0.85 # typical choice of constant

pr <- gup(l / nodes, nodes) # starting values

## maximum absolute difference; use a value greater than threshold

diff <- 100

## while loop with 0.001 being the threshold

MMLLG (diff > 0.001) (

pr.pre <— pr # save the previous iteration

pr <— Vugc?*nk(n = nodes, A = adj, d = d, pr = pr)

diff <— m¢x(ubs(pr — pr.pre))
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The result shows that the second observation has the highest PageRank value.
This makes sense because, as shown in the adjacency matrix, this observation has the
greatest number ofincoming edges, represented by the second column.

In addition to texts and networks, we introduce another type of data, spatial data.
Spatial data are best analyzed by visualization through maps. This chapter covers two
types of spatial data. One is spatial point data, which can be plotted as a set of points
on a map. The other is spatial polygon data, which represent a sequence of connected
points on a map corresponding to the boundaries of certain areas such as counties,
districts, and provinces. We also consider spatial—temporal data, which are a set of
spatial point or polygon data recorded over time, revealing changes in spatial patterns
over time.

5.3.1 THE 1854 CHOLERA OUTBREAK IN LONDON
In his book, Mode of Communication of Cholera, a British physician John Snow

demonstrated the effective use of maps for visualizing the spatial distribution of fatal
cholera cases. Snow collected the spatial point data about fatal cases in the Soho
neighborhood of London during the 1854 outbreak and plotted this information on
a map. Figure 5.4 reproduces the original map. Black rectangle areas indicate fatal
cholera cases, which were found to cluster around the Broad Street water pump located
at the center ofthe map. All water pumps are also indicated by solid circles and labeled
as such on the map.

From this map, Snow discovered that fatal cholera cases were clustered on and
around Broad Street. He speculated that cholera was spread by sewage-contaminated
water, a theory the authorities and the water company were reluctant to believe. After
extensive research that included close inspection of water and interviews with local
residents, Snow concluded that the water pump at the corner ofBroad and Cambridge
Streets was the source of the cholera outbreak. He concluded by writing,

The result of the inquiry then was, that there had been no particular outbreak or
increase of cholera, in this part ofLondon, except among the persons who were
in the habit of drinking the water of the above-mentioned pump-well. (p. 40)

Snow also employed a “grand natural experiment” to show that the water supply
of the Southwark and Vauxhall Company was responsible for the spread of cholera in
London. Figure 5.5 reproduces the spatial polygon map that Snow used to visualize
the area of the natural experiment, meaning a situation in the world that resembles an
experiment without intervention from researchers. The map shows that the Lambeth
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Figure 5.4. John Snow's Map of Fatal Cholera Cases in London. Black rectangle areas

indicate fatal cholera cases, which were found to cluster around the Broad Street water

pump. All water pumps are also indicated on the map. Original source: John Snow (1855)

Made of Communication of Cholera. London: John Churchill, New Burlington Street.

Company supplied cleaner water to the area further south (indicated by the red region),

whereas the Southwark and Vauxhall Company provided contaminated water to the

neighborhoods along the River Thames (indicated by the blue region). See page C6

for the full-color version. Snow argued that the overlapping area represented a natural

experiment where two companies competed for customers: some people received their

water supply from one company while their neighbors received water from the other

company. Assuming that the two groups of customers were alike in all other respects,

any difference in their cholera rates resulted from the choice of company.

After much research, Snow concluded that probably no confounder affected this

natural experiment. Based on the discussion in section 2.5.2, confounding factors
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Figure 5.5. John Snow's Map of the Natural Experiment. The map shows the area of
the natural experiment where two water companies (the Lambeth Company and the
Southwark and Vauxhall Company) compete for customers. This area is represented by
the overlap of red (Lambeth) and blue (Southwark and Vauxhall) regions as shown in the
full-color version of this figure on page C6.

in this context refer to the variables associated with water companies and cholera
outbreak rates of a neighborhood. He describes this experiment succinctly as follows:

The mixing of the supply is of the most intimate kind. The pipes of each
Company go down all the streets, and into nearly all the courts and alleys. A few
houses are supplied by one Company and a few by the other, according to the
decision of the owner or occupier at that time when the Water Companies were
in active competition. In many cases a single house has a supply different from
that on either side.’Each Company supplies both rich and poor, both large
houses and small; there is no difference either in the condition or occupation of
the persons receiving the water ofthe different Companies. . ..

The experiment, too, was on the grandest scale. No fewer than three hundred
thousand people of both sexes, of every age and occupation, and of every rank
and station, from gentlefolks down to the very poor, were divided into two
groups without their choice, and, in most cases, without their knowledge; one
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group being supplied with water containing the sewage ofLondon, and amongst

it, whatever might have come from the cholera patients, the other group having

water quite free from such impurity. (pp. 74-75)

By matching the addresses of persons dying of cholera with the companies that

supplied them water, Snow was able to show that the overwhelming majority of deaths

had occurred in the households with water supplied by the Southwark and Vauxhall

Company.

Snow’s book illustrates the power of spatial data analysis. In particular, the visualiza-

tion of spatial data through maps enables researchers to discover previously unknown

patterns and present their findings in a convincing manner.

5.3.2 SPATIAL DATA IN R

In chapter 4, we analyzed the 2008 US presidential election. Figure 4.1 presents a

map of the Electoral College, efficiently visualizing the outcome of the election. This

is an example of spatial polygon data, where each state represents a polygon whose

boundaries can be constructed by connecting a series of points. We can then color

each polygon or state blue (red) if Barack Obama (John McCain) won the plurality of

votes within that state.

In R, the maps package provides various mapping tools as well as many spatial

databases. The package contains a spatial database of various cities in the world.

For example, it includes a data frame of US cities called us . cities. Any built-in

data frame can be loaded by using the data () function. Below, we show the first

few observations of this data set, which contains the name (as the name variable),

state (country. etc), population (pop), latitude (lat), longitude (long), and

whether the city is the capital of the country (capital = 1), the capital of a state

(capital = 2), or neither (capital = 0).

 

Now we can add state capitals to the map of the United States. We can use the

map () function to access one spatial database and visualize the data therein. For

example, in order to plot the United States, we set the database argument to

"usa " . Spatial points can be easily added to maps using the points ( ) function with
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their longitude and latitude information as the inputs for the x and y coordinates,
respectively. Each state capital is represented by a solid circle whose size is proportional
to its population. We can add a title by using the title () function after a map is
drawn.

 

US state capitals

 
As another example, we plot the state of California. We use the " state " database,

which contains the spatial polygon data about US states, and specify the regions
argument to " California ".

We will add to a map of California the seven cities that have the largest populations. LL
To extract these cities from the data, we use the order () function as before (see
section 5.2.4).
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We now add these cities to the map using the points ( ) function, as well as their

city names using the text ( ) function.

Largest cities of California

   
  
   

   

  

0 Sacramento CA

San Francisco CA

0 Fresno CA

Los Angeles CA

Long Beach CA

San Diego CA

It is instructive to consider what the spatial polygon data look like in R. To do

this, we can set the plot argument of the map () function to FALSE to suppress the

plotting. Then, the function will return a list object with a sequence of coordinates

saved as x (x-coordjnate or longitude) andy (y-coordinate or latitude). Within the list.

NA separates different polygons whose names are stored as names. We use the US map

to illustrate this.

Now, we can. check the number of coordinates used to create the US map by

computing the length of vector x. We also display the first few after combining the

x- and y-coordinates into a matrix using the cbind ( ) function.



 

Chapter 5: Discovery

m (usasx)

## [1] 7252

Huéé‘;((:.‘;._)1:j.l_:[(usa$xl usa$y)) # first five coordinates of a polygon
## [,l] [,2]
## [1,] —lOl.4078 29.74224

## [2,] -lOl.3906 29.74224

## [3,] -101.3620 29.65056

## [4,] —101.3505 29.63911

## [5,] -101.3219 29.63338

## [6,] -101.3047 29.64484

We observe that the map of the United States consists of 7252 pairs of coordinates.
The map ( ) function connects these points to construct maps.

Spatial data contain information about patterns over space and can be visualized
through maps. While spatial point data represent the locations of events as points
on a map, spatial polygon data represent geographical areas by connecting points
on a map.

533 COLOHSHWH

We next learn how to color maps. Color is important for visualization in general,
not simply for maps. So far, we have been specifying colors using names like " red"
or "blue". The only exception is section 3.7.3 where we used a set of integers
that correspond to different colors through the palette () function. In fact, R
knows the names of 657 different colors. To see them all, look at the output of the
colors() function.

allcolors <— ww'x;»()

1y»«~€.(allcolors) # some colors

## [1] "white" "aliceblue" "antiquewhite"
## [4] "antiquewhitel" "antiquewhiteZ" "antiquewhiteB"

(allcolors) # number of color names

## [l] 657

However, R can produce many more colors than this. To refer to a color from the
full range of possible colors, we can use the hexadecimal color code. Hexadecimal is
a number system whose base is 16, with integers 0—9 and letters A—F representing
values from 0 to 15. A hexadecimal color code is a sequence of six characters beginning
with a hash sign (#). Each set of two digits represents the strength of the three
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primary colors—red, green, and blue, or RGB—with each taking a value from 0 to

255 (or one of 23 levels). For example, half-strength red and blue together yields

purple. This can be represented as RGB = (127, 0, 127). Recognizing that 127 is

equal to 7F in the base-l6 numeral system, we arrive at the hexadecimal color code of

#7F007F.

In R, the rgb () function helps create hexadecimal color codes from numerical

values. The three arguments, red, green, and blue, take the intensity of each color,

ranging from 0 to l, which gets translated into an integer value from 0 to 255 and

then represented as a hexadecimal numeral. In addition, we can create more than one

color code from rgb ( ) at a time. The arguments can take vectors of length longer

than 1. Below are some examples of hexadecimal color code. There are also many

online sources that help us find the hexadecimal representation of a color. We start

with primary colors.

 

Black and white can be represented by 0% or 100% for each primary color,

respectively.

 

Finally, we can create purple (50% red and 50% blue) and yellow (100% red and

100% green). The rgb () function can take a vector of inputs, as illustrated in this

example.

 

Another advantage of using hexadecimal color codes is that we can make the colors

(partly) transparent by adding two additional digits, from 00 to FF, to the end of a

hexadecimal color code. This enables us to control the level of transparency. Again, it

is easier to think about the intensity scale from 0 to 1 and use the rgb () function to

transform it to a hexadecimal color code. The function takes a fourth argument alpha,

which can be used for this purpose. An example is given here.



Chapter 5: Discovery

 

Once we know the hexadecimal colors, we can use them (as a character object) in our
plots in the same way that we have been using named colors like " red" and "blue " .
In the following plot, semitransparent circles can be easily distinguished even when
they overlap, whereas it is harder to distinguish between nontransparent circles. Note
that in this plot we suppress the default afis labels in order to avoid distraction by
setting the arm argument to FALSE in the plot ( ) function.

 

 

  
 

5.3.4 US PRESIDENTIAL ELECTIONS

Now that we understand how color is represented in R, we can color maps. Here,
we color the map ofthe United States using the 2008 presidential election results. The
election data were introduced in chapter 4. The names and description ofvariables in
the data file pres08 . csv are given in table 4.1.
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We will color each state in two ways. First, we use blue for the states won by Obama

and red for the states won by McCain. This will produce a map just like figure 4.1

With “blue and red states.” Second, we exploit the fact that various shades of purple

can be produced as a mixture of blue and red in the RGB color scheme. Specifically,

we compute the two-party vote share and set the intensity of blue as the Democratic

two-party vote share and that of red as the Republican two-party vote share. In this

way, the color of a state reflects the degree of support for Democratic and Republican

candidates. The following code chunk loads the data set, computes the two-party vote

shares, and sets the RGB color scheme for California based on its two-party vote share.

presOS <- read.csv("presO8.csv")

## two—party vote share

pre508$Dem <— presO8$Obama / (presOB$Obama + presO8$McCain)

presOBSRep <— pres08$McCain / (pre508$0bama + presoasMcCain)

## color for California

ca1.color <- rgb(red = pre508$Rep[pres08$state == "CA"],

blue = pre508$Dem[pre508$state == "CA"],

green = 0)

We now color the map of California in two ways. First, we Color it as a blue state

because Obama won California in 2008. Second, we color it using the RGB color

scheme based on the two-party vote share. To add color to a map, we must specify

the col argument. In addition, we set the f i 1 l argument to TRUE in order to fill each

state with the specified color.

## California as a blue state

map(database = "state", regions

fill = TRUE)

## California as a purple state

“California”, col “blue“,

map(database = "state", regions = "California", col = ca1.color,

fill = TRUE)

The right plot below uses gray instead of purple. See page C6 for the full-color

version.
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We will repeat this for all states using a loop. The map does not include Hawaii,
Alaska, and Washington DC, so we will skip those states. Note that we will set the add
argument to TRUE in order to add a color to each state. A loop is used because we color
one state at a time. We first use a dichotomized color scheme where the states Obama
won appear blue and those won by McCain are shown as red. In the second map, we
use the RGB color scheme based on the two-party vote share for each state. The code
chunks used for these two maps are almost identical. The only difference is the way in
which color is chosen for each state.

## USA as red and blue states

map(database = "state") # create a map

for (i in l:nrow(presO8)) {

if ((presoasstate[i] != "HI") & (presOB$state[i] 1: "AK“) &
(presO8$state[i] != "DC")) {

map(database = "state", regions = presO8$state.name[i],
col = ifelse(presOB$Rep[i] > presOBSDemli], "red", “blue"),

fill = TRUE, add = TRUE)

}

## USA as purple states

map(database = "state") # create a map
for (i in l:nrow(presO8)) {

if ((presOB$state[i] != "HI") & (presOS$state[i] 1: "AK") &
(pre508$state[i] != "DC")) {

map(database = "state“, regions = presOB$state.name[i],

col = rgb(red = presO8$Rep[i], blue = pres08$Dem[i],

green = 0), fill = TRUE, add = TRUE)

The maps below use gray scale. See page C7 for the full-color version.

 

The left-hand map shows that Obama won many states on the West and East Coasts
whereas McCain was particularly strong in the Midwest. However, the right-hand map
illustrates that no state is completely dominated by either Democrats or Republicans.
Each state has both types of voters, and it is the winner-take-all electoral system that is
responsible for characterizing each state as either a blue or a red state.
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Table 5.5. Walmart Store Opening Data.

 

z“ Variable Description
 \

1 opendate opening date for the store

\ st .address street address of the store

1
i

 

c ity city ofthe store

state state ofthe store

type store type (Wal -MartStore, SuperCenter, DistributionCenter)

. long longitude of the store

1 lat latitude of the store

‘ Note: The data set contains spatial and temporal information about Walmart store openings from

the first opening on March 1, 1962 until August 1, 2006.

l

1‘ 5.3.5 EXPANSION OF WALMART

1 Shifting from politics to business, we next examine the expansion of Walmart, a

successful American multinational chain of retail discount department and warehouse

stores.9 Walmart opened its first store in 1962 in Rogers, Arkansas. Over the next

several decades, it opened many stores within the United States and then around the

world. Walmart has become one of the largest retail multinational companies in the

. world. Table 5.5 shows the names and descriptions of variables in the Walmart store

‘ opening data, walmart . csv. This data set contains spatial and temporal informa-

.5 tion about Walmart store openings, from the first opening on March 1, 1962 until

\ August 1, 2006.
We begin by plotting all of the store locations on a map. The data set contains

three different types of stores, represented by the variable type. Wal—MartStore

represents a standard Walmart store, whereas SuperCenter is a standard Walmart

store as well as a full supermarket. Walmart Supercenters often include pharma-

cies, garden shops, car service centers, and other specialty centers. We also plot

DistributionCenter data, representing stores that distribute food and goods to

_ standard Walmart stores and Supercenters. To distinguish the three types of stores, we

\ use different colors—red for standard Walmart stores, green for Supercenters, and blue

for Distribution Centers. We make the colors transparent so that circles representing

Q different stores can overlap with each other. Distribution Centers, which are fewer than

the other two types, will be represented by larger circles so that they stand out. The

13 following code chunk defines these parameters.

 

5' This section is in part based on Thomas 1. Holmes (2011) “The diffusion of Wal-Mart and economies of

density." Econometrica, vol. 79, no. 1, pp. 253—302.

,
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walmartsstorecolors[walmart$type == 'SuperCenter"] <-
rgb(red = 0, green = 1, blue = 0, alpha = 1/3)

walmart$storecolors[walmartstype == "DistributionCenter"] <—
rgb(red = 0, green = 0, blue = 1, alpha = 1/3)

## larger circles for DistributionCenter

'Wa1mrt$storesize <- ifelse(walmart$type == llDistributionCent:er", 1, 0.5)

Finally, we create a map and add Walmart store locations to it. We also include a
legend using the legend( ) function. To use this function, we specify the location of
the legend by setting the x and y coordinates and provide a vector of legend texts as
the legend argument. A box encloses the legend by default when the bty argument is
left unspecified, whereas setting the argument to "n “ eliminates the box. As before, the
pch argument can be used to specify types of objects to plot. We choose solid circles
whose size can be controlled by the pt . cex argument.

## map with legend

map(database = "state“)

points(wa1mart$10ng, walmartslat, col = walmart$storecolors,

pch = 19, cex = walmartsstoresize)

legend(x = -120, y = 32, bty = I‘n",

legend = c(“Walmart”, ”Supercenter", "Distribution center"),
C61 = c("red", "green", "b1ue'), pch = 19, # solid circles
ptv.cex = c(0.5, 0.5, 1)) # size of circles

The map below uses dark and light gray circles in place of red and green circles. See
page C7 for the full-color version.

    0 Walmart

0 Supercenter

. Distribution center

The map clearly shows the business strategy of Walmart. While Supercenters
are widespread throughout the Midwest and South, they appear less prevalent in
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the Northeast and the West Coast, as well as in urban centers more generally. In

these areas, Walman has chosen not to expand past the standard discount store

format.

5.3.6 ANIMATION IN R

The previous analysis of Walmart store openings ignored the temporal dimension

even though the data set contains the opening date. By examining the spatial-temporal

patterns rather than spatial patterns alone, we can better understand how Walmart

expanded its stores over time. What visualization strategy should we employ to achieve

this goal? We can create a series ofmaps over time, showing all stores at various points

in time.

To do this, it is useful to define a function (see section 1.3.4) that subsets the data

given a specified date, and then creates a map of Walmart stores like the one shown

above. All we need to do is to include our previous code chunk in a function. Below,

we create this function, called walmart .map ( ) . The function takes two inputs.

The first argument data takes a data frame, which should have a variable called

opendate representing the opening date of the store. This variable should belong

to the Date class. The second argument date takes another Date object defining

the point in time for which the map should be created. The function subsets all the

stores that opened on or before the specified date and then plots their locations on

a map.

 

Using this function, it is straightforward to create a map at any given point of time.

We create a map for every ten years.

 
The following maps use dark and light gray circles in place of red and green circles.

See page C8 for the full-color version.



 

Chapter 5: Discovery

1975 1 985

  
1995 2005

 

Another method for visualizing spatial—temporal data like the above is animation,
which dynamically shows how geographical patterns change over time. The animation
package can show how Walmart has opened its stores at various locations at different
times. We first set the number of maps to be animated and then create a vector of
equally spaced dates from the beginning to the end of the data set.

 

We are now ready to animate. At its core, using the animation package involves little
more than writing a loop to create a series ofmaps over time. In fact, we need just one
extra fimction, saveHTML ( ) , to wrap the loop. The function takes the R code chunk as
the main input, enclosed in curly braces { }, and then inserts all plots that are created
with the loop into an HTML file. The resulting HTML file can display the animation in
a web browser. Useful arguments ofthe saveHTML ( ) function include html f 1 1e for
the HTML filename, ti tle for the title of the animation, outdir for the name ofthe
directory where the resulting files will be saved, and autobrowse indicating whether
or not the output will be automatically displayed on a browser. In addition to HTML,
available formats include saveLatex ( ) for LaTeX files and saveVideo ( ) for video
files.

The following code chunk creates an animation and saves the HTML file
named walmart . html and all other files to the working directory. Note that the
saveHTML ( ) function repeatedly calls the walmart . map ( ) function we created
earlier through a loop. The getwd( ) function returns the path to the working
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l directory, and specifying this function as the outdir input will save all output files

in that directory.

 

We can play the animation by opening the resulting walmart . html file in a web

browser. While watching, we see quite clearly the Southern origins of the Walmart

franchise and its gradual spread throughout the region in the 1970s and 1980s.

l Particularly striking is the speed of the mid-1990s expansion throughout the rest of

l the country, as well as when and where new Distribution Centers are established in

, anticipation of regional expansion.

This chapter introduced types of data different from those we analyzed in the

1 previous chapters. We focused on how to discover systematic patterns in a variety

‘ of data. We began by analyzing textual data under the bag-of-words assumption

that ignores the sequence of words. By focusing on the frequency of different terms

l within and across documents, we can discover topics that underlie the corpus. We

introduced term frequency—inverse document frequency as a statistic that measures

: the importance of each term in a particular document. Using The Federalist Papers as

\ an example, we also showed how the frequency of words can predict the authorship

of essays via a linear regression model. To assess prediction accuracy while avoiding

; overfitting, we used cross validation (and in particular a leave-one-out cross validation

' procedure).

. The second type of data covered in this chapter was network data. We visualized

K both directed and undirected network data with graphs, where nodes (or vertices)

represent units, and edges (or ties) between nodes represent the relationships between

them. We showed how to compute various centrality measures in order to identify

influential nodes within a given network. These measures include degree, closeness,

and betweenness. We also introduced a popular iterative algorithm called PageRank,

which forms the basis of the Google website ranking algorithm, as another way to

measure centrality. These methods were illustrated through the classic example of the

Florentine marriage network and a modern example of the Twitter-following network

among politicians.
Finally, we considered spatial and spatial—temporal data. The spatial dimension

splits into two types: spatial point and spatial polygon data. We showed how maps

can visualize spatial patterns effectively using John Snow’s famous study of a cholera

outbreak in 19th century London. Snow utilized a natural experiment to uncover
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Table 5.6. Constitution Preamble Data.
 

 

Variable Description

country country name with words separated by underscores
year year the constitution was created
preamble raw text of the preamble to the constitution
 

Note: The data set contains raw textual information about the preambles of
constitutions around the world.

the primary cause of the outbreak. We also used maps to visualize the outcome of
the US presidential election and the diffusion of Walmart stores over time. Like the
analysis of texts and networks, visualization plays a central role in spatial data analysis.
To investigate how spatial patterns change over time, we created an animation that
sequentially displayed a series of maps. This visualization effectively demonstrated the
expansion ofWalmart stores in the United States over the last several decades.

5.5.1 ANALYZING THE PREAMBLES OF CONSTITUTIONS
Some scholars argue that over the last few centuries, the US Constitution has

emerged, either verbatim or paraphrased, in numerous founding documents across
the globe.10 Will this trend continue, and how might one even measure constitutional
influence, anyway? One way is to see which constitutional rights (such as free speech)
are shared across the founding documents of different countries, and observe how
this commonality changes over time. An alternative approach, which we take in
this exercise, is to examine textual similarity among constitutions. We focus on
the preamble of each constitution, which typically states the guiding purpose and
principles of the rest ofthe constitution. Table 5.6 presents the names and descriptions
of the constitution preambles in constitution . csv.

1. First, let us visualize the data to better understand how constitutional docu-
ments differ. Start by importing the preamble data into a data frame, and then
preprocess the text. Before preprocessing, use the VectorSource ( ) function
inside the Corpus () function. Create two data matrices for both the regular
document-term frequency, and for the tf—idf weighted term frequency. In both
cases, visualize the preamble to the US Constitution with a word cloud. How do
the results differ between the two methods? Note that we must normalize the tf—
idf weights by document size so that lengthy constitutions do not receive greater
weights.

‘0 This exercise is in part based on David S. Law and Mile Versteeg (2012) “The declining influence of the
United States Constitution." New York University Law Review, vol. 87, no. 3, pp. 762—858 and Zachary Elkins,
Tom Ginsburg, and James Melton (2012) “Comments on law and Versteeg's the declining influence of the United
States Constitution." New York University Law Review, vol. 87, no. 6, pp. 2088—2101.
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5.5 Exercises —

6

Figure 5.6. Cosine Similarity of Two Vectors. Two two-dimensional vectors a and b have

a positive (negative) value of cosine similarity in the left (right) plot.

2. We next apply the k-means algorithm to the rows ofthe tf—idf matrix and identify

clusters of similar constitution preambles. Set the number of clusters to 5 and

describe the results. To make each row comparable, divide it by a constant such

that each row represents a vector of unit length. Note that the length of a vector

a = (a1, (12,... , an) is givenby ||u|| = x/af + 11% + - - - + afi.

. We will next see whether new foreign constitutions are more similar to the US I

Constitution preamble than the existing ones. In the document-term matrix,

each document is represented as a vector of term frequencies. To compare two

documents, we define cosine similarity as the cosine of the angle 9 between

the two corresponding n-dimensional vectors a = (a1, a2, . . . , an) and b =

(b1, b2, . . . , b"). Formally, the measure is defined as

a . b ELI aibi
cosine similarity = c030 = = .

Ilall x llbll ‘/—_Zf=la§‘/—__Zf=lb§

The numerator represents the so-called dot product of a and 17, while the

denominator is the product of the lengths of the two vectors. The measure

ranges from —1 (when the two vectors go in opposite directions) to 1 (when

they completely overlap). As illustrated in figure 5.6, two vectors have a positive

(negative) value of cosine similarity when they point in similar (different)

directions. The measure is zero when they are perpendicular to each other.

Below is a function that takes a vector a, alongside a collection ofvectors or a

matrix b, and computes the cosine similarity between a and each row of b.
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Table 5.7. International Trade Data.
 

Variable Description
 

countryl country name of exporter
countryz country name of importer
year year

exports total value of exports (in tens of millions of dollars)
 

Note: The data are given for 1900, 1920, 1940, 1955, 1980, 2000, and 2009.

Apply this function to identify the 5 constitutions whose preambles most resem-
ble that of the US Constitution.

4. We examine the influence of the US Constitution on other constitutions over
time. We focus on the postwar period. Sort the constitutions chronologically and
calculate, for every 10 years from 1960 until 2010, the average of cosine similarity
between the US Constitution and the constitutions that were created during the
previous decade. Plot the result. Each of these averages computed over time is
called a moving average. Does similarity tend to increase, decrease, or remain the
same over time? Comment on the pattern you observe.

5. We next construct directed, weighted network data based on the cosine similarity
of constitutions. Specifically, create an adjacency matrix whose (i, j)th entry
represents the cosine similarity between the ith and jth constitution preambles,
where the ith constitution was created in the same year or after the jth con-
stitution. This entry is zero if the ith constitution was created before the jth
constitution. Apply the PageRank algorithm to this adjacency matrix. Briefly
comment on the result.

5.5.2 INTERNATIONAL TRADE NETWORK

The size and structure ofinternational trade flows vary significantly over time.11 The
volume of goods traded between countries has grown rapidly over the past century, as
technological advances have lowered the cost of shipping and countries have adopted
more liberal trade policies. At times, however, trade flows have decreased due to
disruptive events such as major wars and the adoption of protectionist trade policies.
In this exercise, we will explore some of these changes by examining the network
of international trade over several time periods. The data file trade . csv contains
the value of exports from one country to another in a given year. The names and
descriptions ofvariables in this data set are given in table 5.7.

11 This exercise is based in part on Luca De Benedictis and Lucia Tajoli (2011) “The world trade network” The
World Economy, vol. 34, no. 8, pp. 1417—1454. The trade data are from Katherine Barbieri and Omar Keshk (2012)
Correlates of War Project Trade Data Set, version 3.0. Available at http: / /corre1atesofwar . org.
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1. We begin by analyzing international trade as an unweighted, directed network.

For every year in the data set, create an adjacency matrix whose entry (1' , j) equals

1 if country i exports to country j . If this export is zero, then the entry equals 0.

We assume that missing data, indicated by NA, represents zero trade. Plot the

network density, which is defined over time as

, number of edges
network densuty =

 

number of potential edges'

The graph . dens i ty ( ) function can compute this measure given an adjacency

matrix. Interpret the result.

2. For the years 1900, 1955, and 2009, compute the measures of centrality based

on degree, betweenness, and closeness (based on total degree) for each year. For

each year, list the 5 countries that have the largest values ofeach ofthese centrality

measures. How do the countries on the lists change over time? Briefly comment

on the results.

3. We now analyze the international trade network as a weighted, directed network

in which each edge has a nonnegative weight proportional to its corresponding

trade volume. Create an adjacency matrix for such network data. For the years

1900, 1955, and 2009, compute the centrality measures from above for the

weighted trade network. Instead of degree, however, compute the graph strength,

which in this case equals the sum of imports and exports with all adjacent

nodes. The graph . strength ( ) function can be used to compute this weighted

version of degree. For betweenness and closeness, we use the same function as

before, i.e., closeness ( ) and betweenness ( ) , which can handle weighted

graphs appropriately. Do the results differ from those ofthe unweighted network?

Examine the top 5 countries. Can you think of another way to calculate centrality

in this network that accounts for the value of exports from each country? Briefly

discuss.

4. Apply the PageRank algorithm to the weighted trade network, separately for

each year. For each year, identify the 5 most influential countries according

to this algorithm. In addition, examine how the ranking of PageRank values

has changed over time for each of the following 5 countries—United States,

United Kingdom, Russia, Japan, and China. Briefly comment on the patterns you

observe.

5.5.3 MAPPING US PRESIDENTIAL ELECTION RESULTS OVER TIME

The partisan identities of many states have been stable over time. For example,

Massachusetts is a solidly “blue” state, having pledged its electoral votes to the

Democratic candidate in 8 out of the last 10 presidential elections. On the other

extreme, Arizona’s electoral votes went to the Republican candidate in 9 ofthe same 10

elections. Still, geography can occasionally be a poor predictor ofpresidential elections.
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Table 5.8. County-Level US Presidential Election Data.
 

Variable Description

 

state full name of the 48 states (excluding Alaska, Hawaii, and
the District of Columbia)

county county name

year election year
rep popular votes for the Republican candidate
dem popular votes for the Democratic candidate
other popular votes for other candidates
 

For instance, in 2008, typically red states—including North Carolina, Indiana, and
Virginia—helped elect Barack Obama to the presidency.

In this exercise, we will again map the US presidential election results for 48 states.
However, our data will be more detailed in two respects. First, we will analyze data
from 14 presidential elections from 1960 to 2012, allowing us to visualize how the
geography of party choice has changed over time. Second, we will examine election
results at the county level, allowing us to explore the spatial distribution ofDemocratic
and Republican voters within states. The data file is available in CSV format as
elections . csv. Each row of the data set represents the distribution ofvotes in that
year’s presidential election from each county in the United States. Table 5.8 presents
the names and descriptions ofvariables in this data set.

1. We begin by visualizing the outcome of the 2008 US presidential election at the
county level. Begin with Massachusetts and Arizona and visualize the county-
level outcome by coloring counties based on the two-party vote share as done in
section 5.3.4. The color should range from pure blue (100% Democratic) to pure
red (100% Republican) using the RGB color scheme. Use the county database in
the maps package. The regions argument of the map ( ) function enables us to
specify the state and county. The argument accepts a character vector, each entry
ofwhich has the syntax state , county. Provide a briefcomment.

2. Next, using a loop, visualize the 2008 county-level election results across the
United States as a whole. Briefly comment on what you observe.

3. We now examine how the geographical distribution of US presidential election
results has changed over time at the county level. Starting with the 1960 presi-
dential election, which saw Democratic candidate John F. Kennedy prevail over
Republican candidate Richard Nixon, use animation to visualize the county-Ievel
election returns for each presidential election up to 2012. Base your code on what
you programmed to answer the previous question.

4. In this exercise, we quantify the degree ofpartisan segregation for each state. We
consider a state to be politically segregated if Democrats and Republicans tend
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Probability

Probability is the very guide of life.

—Cicero, De Natura

Until now, we have studied how to identify patterns in data. While some patterns are
indisputably clear, in many cases we must figure out ways to distinguish systematic

patterns from noise. Noise, also known as random error, is the irrelevant variation that

occurs in every real—world data set. Quantifying the degree of statistical uncertainty of

empirical findings is the topic for the next chapter, but this requires an understanding

of probability. Probability is a set of mathematical tools that measure and model

randomness in the world. As such, this chapter introduces the derivation of the

fundamental rules of probability, with the use of mathematical notation. In the social
sciences, we use probability to model the randomly determined nature ofvarious real-

world events, and even human behavior and beliefs. Randomness does not necessarily

imply complete unpredictability. Rather, our task is to identify systematic patterns

from noisy data.

We use probability as a measure of uncertainty. Probability is based on a set ofthree

simple axioms, from which a countless number of useful theorems have been derived.
In this section, we show how to define, interpret, and compute probability.

6.1.1 FREQUENTIST VERSUS BAYESIAN

In everyday life, we often hear statements such as “the probability of winning a

coin toss is 50%” and “the probability of Obama winning the 2008 US presidential
election is 80%.” What do we mean by “probability”? There are at least two different

interpretations. One interpretation, which is called theflequentist interpretation, states

that probability represents the limit of relative frequency, defined as the ratio between

the number of times the event occurs and the number of trials, in repeated trials

under the same conditions. For example, the above statement about coin tosses can be

interpreted as follows: ifa coin toss is repeatedly conducted under the same conditions,
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to live in different counties. A common way to quantify the degree of residential
segregation is to use the dissimilarity index given by

di Ti
N

1
dissimilarit index = — .y 2; D R  

In the formula, di (r;) is the number of Democratic (Republican) votes in the
ith county and D (R) is the total number of Democratic (Republican) votes iff
the state. N represents the number of counties. This index measures the extent
to which Democratic and Republican votes are evenly distributed within states.
It can be interpreted as the percentage of one group that would need to move
in order for its distribution to match that of the other group. Using data on
Democratic and Republican votes from the 2008 presidential election, calculate
the dissimilarity index for each state. Which states are among the most (least)
segregated according to this measure? Visualize the result as a map. Briefly
comment on what you observe.

. Another way to compare political segregation across states is to assess whether

counties within a state are highly unequal in terms of how many Democrats or

Republicans they have. For example, a state would be considered segregated if
it had many counties filled with Democrats and many with no Democrats at
all. In chapter 3, we considered the Gini coefficient as a measure of inequality

(see section 3.6.2). Calculate the Gini coefficient for each state based on the

percentage of Democratic votes in each county. Give each county the same
weight, disregarding its population size. Which states have the greatest (or lowest)
value of the index? Visualize the result using a map. What is the correlation
between the Gini index and the dissimilarity index you calculated above? How

are the two measures conceptually and empirically different? Briefly comment

on what you observe and explain the differences between the two indexes. To
compute the Gini index, use the ineq ( ) function in the ineq package by setting
its argument type to "Gini ".

. Lastly, we examine how the degree of political segregation has changed in each
state over time. Use animation to visualize these changes. Briefly comment on the
patterns you observe.
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Figure 6.1. Reverend Thomas Bayes (1701—1761).

the fraction of times a coin lands on heads approaches 0.5 as the number of coin
tosses increases. Here, the mathematical term, “limit,” represents the value to which a

sequence of relative frequencies converges as the number of (hypothetically) repeated

experiments approaches infinity.
The frequentist interpretation of probability faces several difficulties. First, it is un-

clear what we mean by “the same conditions.” In the case of coin flips, such conditions

may include initial angle and velocity as well as air pressure and temperature. However,

if all conditions are identical, then the laws of physics imply that a coin flip will always

yield the same outcome. Second, in practice, we can never conduct experiments like

coin flips under the exact same conditions infinitely many times. This means that

probability may be unable to describe the randomness of many events in the real

world. In fact, coin flips may be among the easiest experiments to repeat under nearly

identical conditions. Many other events covered in this book happen in dynamic social

environments that are constantly changing.
How should we think about the probability of Obama winning the 2008 US

presidential election from the frequentist perspective? Since the 2008 US presidential

election occurs only once, it is strange to consider a hypothetical scenario in which

this particular election occurs repeatedly under the same conditions. In addition, since

Obama either wins the election or not, the probability of his victory should be either

0 or 1. Here, what is random is the election forecast (due to sampling variability etc.)

not the actual election outcome.
An alternative framework is the Bayesian interpretation of probability, named after

an 18th century English mathematician and minister, Thomas Bayes (see figure 6.1).

According to this paradigm, probability is a measure of one’s subjective belief about
the likelihood of an event occurring. A probability of 0 means that an individual

thinks an event is impossible, whereas a probability of 1 implies that the individual
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thinks the event is sure to happen. Any probability value between 0 and 1 indicates
the degree to which one feels uncertain about the occurrence of the event. In contrast
to the frequentist perspective, the Bayesian framework makes it easy to interpret the
statement, “the probability ofObama winning the 2008 US presidential election is x%,”
because x simply reflects the speaker’s subjective beliefabout the likelihood ofObama’s
victory.

Critics of Bayesian interpretation argue that if scientists have identical sets of

empirical evidence, they should arrive at the same conclusion rather than reporting
different probabilities of the same event. Such subjectivity may hinder scientific
progress because under the Bayesian framework, probability simply becomes a tool

to describe one’s belief system. In contrast, Bayesians contend that human beings,
including scientists, are inherently subjective, so they should explicitly recognize the

role of their subjective beliefs in scientific research.
Regardless of the ongoing controversy about its interpretation, probability was

established as a mathematical theory by Soviet mathematician Andrey Kolmogorov
in the early 20th century. Since both frequentists and Bayesians use this mathematical
theory, the disagreement is about interpretation and is not mathematical.

 

There are two dominant ways to interpret probability. According to the frequen-
tist framework, probability represents the limit of the relative frequency with

which an event ofinterest occurs when the number ofexperiments repeatedly con-

ducted under the same conditions approaches infinity. The Bayesian framework,
in contrast, interprets probability as one’s subjective belief about the likelihood of

event occurrence.   
 

6.1.2 DEFINITION AND AXIOMS

We define probability using the following three concepts: experimen t, sample space,
and even t.

 

The definition of probability requires the following concepts:

1. experiment: an action or a set of actions that produce stochastic events

of interest

2. sample space: a set of all possible outcomes of the experiment, typically
denoted by S2

3. event: a subset of the sample space   
 

We can briefly illustrate each concept using the aforementioned two examples.

Flipping a coin or holding an election would be the experiment, while the sample space

would be given by {lands on heads, lands on tails} or {Obama wins, McCain wins,
athird-party candidate wins}. The mathematical term set refers to a collection of

distinct objects. An event represents any subset of sample space, and hence it may

include multiple outcomes. In fact, the entire sample space that contains all outcomes

is also an event. Moreover, an event is said to occur if the set that defines the event
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includes an actual outcome of the experiment. In the election example, events include

{Obama wins, McCain wins}, which contains two outcomes and can be understood in

English as “either Obama or McCain wins.” Since Obama won the election, this event

did occur in 2008.
As another example, consider a voter’s decision in the 2008 US presidential

election as an experiment. The idea is that a voter’s decision can be modeled

as a stochastic, rather than deterministic, event. By considering all four possible
outcomes, we can define the sample space of this experiment as S2 = {abstain,

vote for Obama, vote for McCain, vote for a third-party candidate}. Within this

sample space, we may consider the occurrence of various events including

{vote for Obama, vote for McCain, vote for a third-party candidate} (i.e., “do not

abstain”) and {abstain, vote for McCain, vote for a third-party candidate} (i.e., “do not

vote for Obama”).
We now discuss how to compute probability, starting with the simplest case in

which all outcomes are equally likely to occur. In this case, the probability of event A

occurring, denoted by P(A), can be computed as the ratio of the number of elements

in the corresponding set A to that in the entire sample space 82:

number of elements in A
P(A) = (6-1)

number of elements in S2.

To illustrate this, consider an experiment of tossing a fair coin 3 times. In this
experiment, if we denote {lands on heads} and {lands on tails} as H and T, re—

spectively, then the sample space is equal to the set of 8 outcomes, 8'2 =
{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.We can then compute the

probability of, for example, landing on heads at least twice by counting the number

of elements in the relevant set, A = {HHH, HHT, HTH, THH}. In this case,

therefore, using the formula above we obtain P (A) = 4/8 = 0.5.

Having defined probability, we next consider its basic rules or axioms. Modern

probability theory rests on the following three simple axioms. Remarkably, from these

axioms, the entire theory of probability, including all the existing rules and theorems,

can be derived.

 

The probability axioms are given by the following three rules:

1. The probability ofany event A is nonnegative:

P (A) z 0.

3. The probability that one ofthe outcomes in the sample space occurs is 1:

P (S2) = 1.

3. (Addition rule) If events A and B are mutually exclusive, then

P(A or B) = P(A) + P(B). (6.2)  
 

The first two axioms together imply that probability ranges from 0 to 1. To under-

stand the last axiom, recall the previous example in which the 2008 US presidential
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(a) Mutually exclusive events (b) Not mutually exclusive events

Figure 6.2. Venn Diagram. Two events, A and B, can be mutually exclusive, having two

disjoint sets of outcomes (left plot) or not mutually exclusive, sharing some outcomes

(right plot). The rectangular box represents the sample space S2. Source: Adapted from

example by Uwe Ziegenhagen, http://texamp|e.net.

election is considered as an experiment. “Mutually exclusive” in the last axiom means

that two events, A and B, do not share an outcome. As illustrated by the Venn diagram

(named after John Venn, an English philosopher) in figure 6.2a, mutually exclusive
events imply two disjoint sets, meaning that they do not share any element. Consider

two events: A = Obama wins and B = McCain wins. C1early,these two events are mu-

tually exclusive in that both Obama and McCain cannot win at the same time. Hence,

we can apply the addition rule to conclude that P({Obama wins} or {McCain winsl) =
P(Obama wins) + P(McCain wins).

Now, consider two events that are not mutually exclusive because they share
an outcome: A = Obama loses and B = McCain loses. In this case, the ad-

dition rule does not apply because both A and B contain the same outcome:

a third-party candidate wins. For events that are not mutually exclusive, we can apply

the following general addition rule.

 

For any given events A and B, the addition rule is given by

P(Aor B): P(A)+P(B)-—P(Aand B). (6.3) 
 

Applying this to the current example, we have P({Obama loses}or {McCain

loses}) = P(Obama loses) + P(McCain loses) — P({Obama loses} and {McCain

loses}).
This result can be immediately seen from the Venn diagram shown in figure 6.2b.

In the diagram, we observe that the event, {A or B}, can be decomposed into three

mutually exclusive events, {A and 3‘} (white region), {B and AC} (dark blue region),

and {A and B} (overlapped light blue region). The superscript c represents the

complement of a set, which consists of all elements in the sample space except those

in the set. For example, Ac represents the collection of all outcomes in the sample

space that do not belong to A. The notation {A and BC} translates to “all outcomes
of A that do not belong to B.” Since any outcome in the sample space belongs either to

A or A“, in general, we have

P(A°)= 1— P(A). (6.4)
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The equation directly follows from the probability axioms since events A and Ac are

mutually exclusive and together they constitute the entire sample space.

Using the third probability axiom, given in equation (6.2), we have

P(A or B) = P(A and BC) + P(B and A“) + P(A and B). (6.5)

When A and B are mutually exclusive, P(A and B C) and P(B and AC) reduce to P(A)

and P(B), respectively (see figure 6.2a). In addition, we have P(A and B) = 0 in this

mutually exclusive case.

Finally, notice that event A can be decomposed as two mutually exclusive events,

{A and B } (overlapped light blue region) and {A and BC} (nonoverlapped white

region). This is called the law of total probability.

 

For any given events A and B, the law of total probability is given by

P(A) = P(A and B) + P(A and BC). (6.6) 
 

According to the law of total probability, we can write P(A and B‘) = P(A) —

P(A and B) by subtracting P(A and B) from both sides of equation (6.6). Similarly,

the law of total probability can be applied to event B, yielding P(B and AC) =
P(B) — P(A and B). Substituting these results into equation (6.5) and simplifying the

expression leads to the general addition rule given in equation (6.3). We emphasize

that this result is obtained by using the probability axioms alone. In addition, readers

are encouraged to confirm the results shown in equations (6.3)—(6.6) using the Venn

diagram of figure 6.2.

6.1.3 PERMUTATIONS

When each outcome is equally likely, in order to compute the probability ofevent A,

we need to count the number of elements in event A as well as the total number of

elements in the sample space S2 (see equation (6.1)). We introduce a useful counting

technique, called permutations. Permutations refer to the number of ways in which

objects can be arranged. For example, consider three unique objects A, B, and C . There

are 6 unique ways to arrange them: {ABC, ACB, BAC, BCA, CAB , CBA}.

How can we compute the number of permutations without enumerating every

arrangement, especially when the number of objects is large? It turns out that there
is an easy way to do this. Let’s consider the above example of arranging three objects,
A, B , and C . First, there are three ways to choose the first object: A, B, or C . Once
the first object is selected, there are two ways to choose the second object. Finally,

the third object remains, leaving us only one way to choose this last object. We can

conceptualize this process as a tree shown in figure 6.3, where the total number of

leaves equals the number of permutations. Thus, to compute the number of leaves,

we only need to sequentially multiply the number of branches at each level, i.e.,
3 x 2 x 1.
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.22
Figure 6.3. A Tree Diagram for Permutations. There are 6 ways to arrange 3 unique

objects. Source: Adapted from example by Madit, http://texamp|e.net.

Generalizing this idea, we can compute the number of permutations of k objects out

of a set of n unique objects, denoted by n Pk where k 5 n, using the following formula.

 

The number ofpermutations when arranging k objects out of n unique objects is

given by

n.
"Pk=nx(n—l)x---x(n—k+2)><(n—k+1)=———. (6.7)

(n — k)!

In this equation, ! represents the factorial operator. When n is a nonnegative

integer, n! = n x (n — 1) x x 2 x 1.Note that 0! is defined as 1.  
 

In the previous example, n = 3 and k = 3. Therefore,

_3!_3x2x1_
P_—_
33 0! 1

6.

As another example, compute the number ofways in which you can arrange 4 cards out

of 13 unique cards. This can be computed by setting n = 13 and k = 4 in equation (6.7):

13!
P =——=13X12x11x10=17160.

‘3 4 (13—4)!

The birthday problem is a well—known counterintuitive example of permutations.
The problem asks how many people one needs in order for the probability that at least
two people have the same birthday to exceed 0.5, assuming that each birthday is equally

likely. What is surprising about this problem is that the answer is only 23 people, which
is much lower than what most people guess. To solve this problem using permutations,

first notice the following relationship:

P(at least two people have the same birthday)

= 1 — P(nobody has the same birthday). (6.8)
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This equality holds because the event {nobody has the same birthday} is the comple-
ment of the event {at least two people have the same birthday} (see equation (6.4)).
This means that we only need to compute the probability that nobody has the same
birthday.

Let k be the number ofpeople. To compute the probability that nobody has the same
birthday, we count the number ofways in which k people can have different birthdays.
Since each birthday is assumed to be equally likely, we can use permutations to count
the number of ways in which k unique birthdays can be arranged out of 365 days.

This is given by 365 Pk = 365!/(365 — k)!. Applying equation (6.1), we then divide this
number by the total number of elements in the sample space. The latter is equal to the

total number ofways to select k possibly nonunique birthdays out of365 days. The first

person could have any of 365 days as his/her birthday, and so could any other person.

Hence, the denominator is equal to 365 x 365 x - -- x 365 = 365*. Therefore, we have

P(nobody has the same birthday)

# of ways in which k unique birthdays can be arranged

# of ways in which k possibly nonunique birthdays can be arranged

355 Pk 365!

365k -m “'9’
Together with equation (6.8), the solution to the birthday problem is l — 365!/
{365k(365 — k)!}.

Computing equation (6.9) is not easy even for a moderate value ofk because both the

denominator and numerator can take extremely large values. In such cases, it is often
convenient to use the natural logarithmic transformation (see section 3.4.1). For the
natural logarithm, eA = B implies A = log B. In addition, the basic rules oflogarithms
we use here are

 

log AB = logA + log B, log; = logA — log B, and log AB = B log A.

Applying these rules, we have

log P(nobody has the same birthday) = log 365! — k log 365 — log(365 — k)!.

After computing this probability on a logarithmic scale, we then take the exponential
transformation of it to obtain the desired probability. In R, we use the l factorial ( )

function to compute the logarithm of a factorial instead of the factorial ( )
function, which computes a factorial without the logarithmic transformation. We now

create a new function called birthday, which computes the probability that at least

two people have the same birthday given k. The function is written so that it takes a
vector ofk values. We plot the results.
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We observe that when the number ofpeople equals 23, the probability of at least two

people having the same birthday exceeds 0.5. When the number ofpeople is more than

50, this probability is close to 1.

6.1.4 SAMPLING WITH AND WITHOUT REPLACEMENT ‘

While we derived an exact analytical solution to the birthday problem above, we can

also produce an approximate solution using a Monte Carlo simulation method. The

name originates from the Monte Carlo Casino in Monaco, but we may also simply call

it a simulation method. The Monte Carlo simulation method refers to a general class

of stochastic (as opposed to deterministic) methods that can be used to approximately

solve analytical problems by randomly generating quantities of interest.
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For the birthday problem, we sample k possibly nonunique birthdays out of365 days
and check whether or not the sampled k birthdays are all different. We use sampling
with replacement because for each of k draws, every one of 365 days is equally likely to
be sampled regardless of which dates were sampled before. In other words, the fact that
one person is born on a certain day of the year should not exclude someone else from
being born on the same day. After repeating this sampling procedure many times, we
compute the fraction of simulation trials where at least two birthdays are the same, and
this fraction serves as an estimate of the corresponding probability. This simulation

procedure is intuitive because it emulates the data-generating process, or the actual

process in which the data are generated, as described in the birthday problem.
In R, we can use the sample ( ) function to implement sampling with or without

replacement by setting the replace argument to either TRUE or FALSE. While
unused in the birthday problem, sampling without replacement means that once an
element is sampled, it will not be available for subsequent draws. For example, in the
discussion of sample surveys in section 3.4.1, we introduced simple random sampling

(SRS) as a method to randomly choose a representative sample of respondents from a
population. SRS is an example of sampling without replacement because we typically
do not interview the same individual multiple times. For sampling with replacement,
the basic syntax is sample (x, size = k, replace = TRUE), where x is a

vector of elements to sample from, and size is the number of elements to choose.
In addition, we can feed a vector of probability weights into the prob argument if
unequal probabilities should be used to sample each element.

k <— 23 # number of people

Sims <— 1000 # number of simulations

event <- 0 # counter

{01' (i iti‘: lzsims) (

days <— sampie(l:365, k, replace = TRUE)

days.unique <- um que(days) # unique birthdays

## if there are duplicates, the number of unique birthdays

## will be less than the number of birthdays, which is “k”

if (innqrh(days.unique) < k) {

event <- event + l

}

## fraction of trials where at least two bdays are the same

answer <- event / Sims

answer

## [1] 0.509

While our simulation estimate is close to the analytical solution, which is 0.507, they

are not identical. This difference is called the Monte Carlo error, but is the inevitable
consequence ofthe simulation approach. The size ofthe Monte Carlo error depends on
the nature of the problem and it differs from one simulation to another. It is difficult

to eliminate such an error but it is possible to reduce it. To obtain a more accurate

estimate, we increase the number of simulations. In the above code, we set the number
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of simulations to 1000. Next, we run the same code with the number of simulations set

to one million and obtain an estimate of 0.508, which is closer to the true answer.

 

The Monte Carlo simulation method refers to a general class ofrepeated random
sampling procedures used to approximately solve analytical problems. Commonly

used procedures include sampling with replacement, in which the same unit can

be repeatedly sampled, and sampling without replacement, in which each unit
can be sampled at most once.  
 

6.1.5 COMBINATIONS

We introduce another useful counting method called combinations. Combinations

are similar to permutations, but the former ignores ordering while the latter does

not. That is, combinations are ways to choose k distinct elements out of n elements

without regard to their order. This means that when choosing 2 elements, two different

permutations, AB and BA, represent one identical combination. Since the order in

which the elements are arranged does not matter, the number of combinations is never

greater than the number ofpermutations. For example, ifwe choose 2 distinct elements

out of 3 elements, A, B, and C , the number of permutations is 3P2 = 6 (AB, BA, AC,

C A, BC, C B), whereas the number of combinations is 3 (AB, AC, BC ).

In fact, to compute combinations, we first calculate permutations ,, Pk and then di-

vide by k!. This is because given k sampled elements, there are k! ways to arrange them

in a different order, and yet all these arrangements are counted as a single combination.

In the above example, for every set of two sampled elements (e.g., A and B), we have

2!(= 2 x 1 = 2) ways of arranging them (i.e., AB and BA) but these two permutations

count as one combination. Here, we obtain the number of combinations through the

division of 3P2 by 2!. In general, the formula for combinations is given as follows.

 

The number ofcombinations when choosing k distinct elements from n elements

is denoted by either "Ck or (Z) and is computed as

_ n _&_ n!
an—(k) — k! ————‘k!(n_k)!. (6.10)    

Suppose that we are creating a committee of 5 out of 20 people (10 men and 10

women). Assume that each person is equally likely to be assigned to the committee.

What is the probability that at least 2 women are on the committee? To compute this

probability, we first note the following equality:

P(at least 2 women are on the committee)

= 1 — P(no woman is on the committee)

— P(exactly 1 woman is on the committee).

To compute the two probabilities on the right—hand side of this equation, we count

the total number of ways we can assign 5 people to the committee out of 20 people

regardless of their gender. This is given by 20C5 = 15,504. Similarly, the number of
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To the Members of the California State Assembly:

I am returning Assembly Bill 1176 without my signature.

For some time now I have lamented the fact that major issues are overlooked while many
unnecessary bills come to me for consideration. Water reform, prison reform, and health
care are major issues my Administration has brought to the table, but the Legislaturejust
kicks the can down the alley.

Yet another legislative year has come and gone with out the major reforms Californians
overwhelmingly deserve. In light of this, and after careful consideration, I believe it is
unnecessary to sign this measure at this time.

Sincerely,

Arnold Schwarzenegger

Figure 6.4. California Governor Arnold Schwarzenegger’s Veto Message in 2009.

ways in which we can have no woman on the committee is given by IOCO x lacs 2 252

because there is 10C0 way to choose no woman and there are 10C5 ways to choose 5 out

of 10 men. Thus, the probability of having no woman is 0.016. The number ofways in

which we can have exactly 1 woman on the committee is 10C1 X 10C4 = 2100, giving

a probability of 0.135. Altogether, the probability of having at least 2 women on the

committee equals 0.85 z 1 — 252/15504 -— 2100/15504.

As a more complex example of combinations, we discuss an incident that occurred

in 2009 when California Governor Arnold Schwarzenegger wrote a message to the

state assembly regarding his veto of Assembly Bill 1176.1 This message is displayed
in figure 6.4. When the message was released, many observed that the first letters of

each line in the main text, starting with “F” and ending with “u,” constitute a sentence
of profanity. Asked whether this was intentional, Schwarzenegger’s spokesman replied,

“My goodness. What a coincidence. I suppose when you do so many vetoes, something

like this is bound to happen.” Below, we consider the probability of this acrostic
happening by chance.

For the sake of simplicity, suppose that the Governor gave his veto message to his

secretary who then typed it in her computer but hit the return key at random. That is,

the 85 words (“For” to “time”) were divided by (random) line breaks into 71ines, each

with at least one word. We further assume that there are no broken words, every way

of breaking the lines was equally likely, and the total number of lines is fixed at seven.

Under this scenario, what is the probability of the coincidence happening?

To compute this probability using equation (6.1), we first consider the number

of ways in which the 85 words can be divided into 7 lines. Note that to end up

with 7 lines, 6 line breaks must be inserted. A line break may be inserted before the

second word, before the third word, ..., or before the 85th word. There are thus 84

places into which 6 line breaks must be inserted. How many ways can we insert line

breaks into 6 out of these 84 places? To compute this number, we use combinations

rather than permutations because the order in which 6 line breaks are inserted does

not matter. (Of course, the words in the acrostic must be ordered in a particular

way to generate the profanity.) Therefore, the application of combinations leads to

“Ca = 84! / (6!78!) equally likely partitions. To compute combinations in R, we use the

1 This section is based on Philip B. Stark (2009) “Null and vetoed: Chance coincidence?” Chance, vol. 23,

no. 4, pp. 43—46. Although there are a total of 86 words from For to time, we follow the original article and use 85.
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choose ( ) function. When the number is large, we may use the lchoose ( ) function
so that combinations are calculated on the logarithmic scale.

 

Therefore, there are more than 400 million ways to insert 6 line breaks. However,
(6”

there are only 12 ways to produce this particular acrostic. The break to produce u at

the beginning of the second line can be in only one place (“unnecessary”). The break
it )3to produce c at the beginning ofthe third line can happen in any of 3 places (“come,”

“consideration,” “care”). The break for the “k” can be in only one place (“kic ”). The

break for the “y” can be in any of two places (“Yet,” “year”). The break for the “0” can

be in any of two places (“overwhelmingly,” “of”). The break for the “u” can be in only
one place (“unnecessary”). These scenarios lead to 12 = 1 x 3 X 1 x 2 x 2 x 1.Hence,

the probability that this randomization scheme would produce the acrostic is 12/34C6,
or about one in 34 million. The analysis suggests that according to this probabilistic
model, the “coincidence” is a highly unlikely event.

We next introduce conditional probability, which concerns how the probability
of an event changes after we observe other events. Conditional probability follows

the rules of probability described in section 6.1. The difference is that conditional
probability enables us to take into account observed evidence.

6.2.1 CONDITIONAL, MARGINAL, AND JOINT PROBABILITIES

We begin by defining the conditional probability of event A occurring, given
the information that event B has occurred. This conditional probability, denoted as
P (A | B ), has the following definition.

 

The conditional probability of event A occurring given that event B occurred is

defined as

P(A and B)

P(B)

In this equation, P(A and B) is the joint probability of both events occurring,
whereas P(B) is the marginal probability of event B. By rearranging, we obtain

the multiplication rule

P(A and B) = P(A l B)P(B) = P(B | A)P(A). (6.12)

P(Al B) = (6.11)

Using this rule, we can derive an alternative form of the law of total probability
introduced in equation (6.6):

P(A) = P(AI B)P(B) + P(A | B‘)P(Bc). (6.13)    
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To see the importance ofconditioning, consider two couples who are both expecting

twins. One couple had an ultrasound exam, but the technician was able to determine

only that one ofthe two was a boy. The other couple did not find out the genders oftheir
twins until the delivery when they saw the first baby was a boy. What is the probability
that both babies are boys? Is this probability different between the two couples? We

begin by noting that there are four outcomes in the sample space. Denoting the baby

gender by “G” for girl and “B ” for boy, respectively, we can represent the sample space

by S2 = {GG, G B, B G, B B}. For example, GB means that the elder twin is a girl and

the younger one is a boy.
Then, for the first couple, the probability of interest is

P(BB and {at least one is a boy})
P(BB I at least one is a boy) = ,

P(at least one IS a boy)
 

_ P(BB and {BB or BC or GED

_ P(BB or BG orGB)
 

P(BB) _ 1/_4 _1
P(BB orBG orGB) ‘ 3/4 _ 3‘

The third equality follows from the fact that event BB is a subset of event
{at least one is a boy}, i.e., BB and {BB or BC or GB} = BB.

In contrast, for the second couple, we have

P(BB and {the elder twin is a boy})

P(elder twin is a boy)
 P(BB |e|der twin is a boy) =

_ P(BB and {BB or BG})

’ P(BB or BG)

P(BB) _fi_1
P(BB or BG),_ 1/2 _ 2'

Therefore, this example illustrates that the information upon which we condi-

tion matters. Knowing that the first baby is a boy, as opposed to knowing

that at least one is a boy, gives a different conditional probability of the same
event.

Probability and conditional probability can also be used to describe the character-

istics of a population. For example, if 10% of a population of voters are black, then
we may write P(black) = 0.1. We can interpret this probability as stating that if we

randomly sample a voter from this population there is a 10% chance this voter is black.

Similarly, P(black l hispanic or black) represents the population proportion of blacks
among minority (i.e., black and Hispanic) voters.

As an illustration, we will use a random sample of 10,000 registered voters from
Florida contained in the CSV file FLVoters . csv. Table 6.1 shows the names and

descriptions of variables in this sample list of registered voters. To begin, we load

the data and remove those voters who contain a missing value using the na . omit ( )
function.
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Table 6.1. Florida Registered Voter List Sample.
 

 

Variable Description

surname surname

county county ID of the voter’s residence

VTD voting district ID of the voter’s residence

age age

gender gender: m = male and f = female

race self—reported race
 

FLVoters <- read.csv("FLVoters.csv")

dim(FLVoters) # before removal of missing data

## [1] 10000 6

FLVoters <- na.cmit(FLVoters)

dim(FLVoters) # after removal

## [1] 9113 6

For the sake of illustration, we will treat this sample of 9113 voters as a population

of interest. To compute the marginal probability for each racial category, we can use

the table() and prop.tab1e () functions (see section 2.5.2) and calculate the

proportion of voters who belong to each racial group in this population.

margin.race <— prop.table(tabl@(FLVoters$race))

margin. race

##

## asian black hispanic native other

## 0.019203336 0.131021617 0.130802151 0.003182267 0.034017338

## white '

## 0.681773291

The result shows, for example, that P (black) = 0.13 and P (white) = 0.68. Similarly,

we can obtain the marginal probabilities ofgender as follows.

margin.gender <— prop . tablewable (FLVoterssgender) )

margin . gender

##

## f m

## 0.5358279 0.4641721
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Therefore, we have P(female) = 0.54 and P(male) = 0.46. Next, to compute the

conditionalprobability ofrace given gender, we can look at the proportion ofeach racial

group among female voters and among male voters, separately.

‘t(743‘~(FLVoterssrace[FLVoters$gender == "f"]))

##

## asian black hispanic native other

## 0.016997747 0.138849068 0.136391563 0.003481466 0.032357157

## white

## 0.671922998

The result suggests, for example, P(black | female) = 0.14 and P(white | female) =

0.67. Lastly, thejointprobability of race and gender can be computed by calculating the

proportion ofvoters who belong to specific racial and gender groups.

joint.p <— y m.\ ~‘r(¥ h3~(race = FLVoterssrace, gender = FLVoters$gender))

joint.p

## gender

## race f m

.009107868

.074399210 .056622408

## hispanic .073082410 .057719741

0 0.010095468

0 0

0 0

## native 0.001865467 0.001316800

0 0

0 0

## asian

## black

## other .017337869 .016679469

## white .360035115 .321738176

This joint probability table gives, for example, P(black and female) = 0.07 and
P(white and male) = 0.32. From this joint probability, we can compute the marginal

and conditional probability. First, to obtain the marginal probability, we apply the

law of total probability given in equation (6.6). For example, we can compute the

probability of being a black voter by

P(black) = P(black and female) + P(black and male).

Thus, summing over columns for each row results in the marginal probability of race.

This operation yields results identical to those obtained above.

WJWN”3(jOint.p)

## asian black hispanic native other

## 0.019203336 0.131021617 0.130802151 0.003182267 0.034017338

## white

## 0.681773291
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Similarly, we can obtain the marginal probability of gender from the joint probabil-
ity table by summing over racial categories. Since we have a total of six racial categories,
we will extend the law of total probability given in equation (6.6) to

N

P(A) =Z P(A and 13,-), (6.14)
i=1

where B1, . . . , BN is a set of mutually exclusive events which together cover the entire

sample space. In the current setting, for example, since racial categories are mutually
exclusive, we have

P(female) = P(female and asian) + P(female and black)

+ P(female and hispanic) + P(female and native)

+ P (female and other) + P(female and white).

Therefore, the marginal probability of gender is obtained by summing over rows for
each column of the joint probability table.

 

Finally, the conditionalprobability can be obtained as the ratio ofjoint probability to

the marginal probability (see equation (6.11)). For example, the conditional probability
ofbeing black among female voters is calculated as

P(black and female) ~ 0.074

P(female) 0.536
 P(black I female) = N 0.139,

which, as expected, is equal to what we computed earlier.

The results of this example are summarized in table 6.2. From the joint probability,
both marginal and conditional probabilities can be obtained. To compute marginal
probability, we sum over either rows or columns. Once marginal probability is obtained
in this way, we can divide joint probability by marginal probability in order to calculate

the desired conditional probability.
We can extend the definition of conditional probability to settings with more

than two types of events. For events A, B, and C, the joint probability is defined as
P(A and B and C), whereas there are three marginal probabilities P(A), P(B), and

P (C). In this case, there are two types ofconditional probabilities: the joint probability
of two events conditional on the remaining event (e.g., P(A and B | C )) and the
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Table 6.2. An Example of a Joint Probability Table.
 

 

 

 

Gender

Racialgroups Female Male Marginal prob.

Asian 0.009 0.010 0.019

Black 0.074 0.057 0.131

Hispanic 0.073 0.058 0.13 1

Native 0.002 0.001 0.003

White 0.360 0.322 0.682

Other 0.017 0.017 0.034

Marginal prob. 0.536 0.464 1
 

Note: The table is based on Florida voter registration data. The marginal
probability of gender (far right column) and that of race (bottom row) can

be obtained by summing the joint probabilities over columns and over rows,
respectively.

conditional probability ofone event given the other'two (e.g., P(A l B and C )). These

conditional probabilities can be defined analogously to the two-event case as

P(A and B and C)

 

P(A and B | C) = P(C) , (6.15)

_ P(A and B and C) _ P(A and B | C)
P(A | B and C) — P(B and C) _ P(B I C) (6.16)

The second equality in equation (6.16) follows from the equality P(A and B and C) =

P(A and B I C)P(C ), which is obtained by rearranging the terms in equation (6.15).
To illustrate the above conditional probabilities, we create a new age . group

variable indicating four age groups: 20 and below, 21—40, 41—60, and above 60.

 

The joint probability ofage group, race, and gender can be calculated as a three-way
table. Below, this three-way table is displayed as two separate two-way tables: one two-
way (race and age group) table for female voters and the other two-way table for male
voters.
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joint3

## , , gender = f

##

## age.group

## race 1 2 3

## asian 0.0001097333 0.0026336004 0.0041698672

## black 0.0016460002 0.0280917371 0.0257873368

## hispanic 0.0015362669 0.0260068035 0.0273236036

## native 0.0001097333 0.0004389334 0.0006584001

## other 0.0003292000 0.0062548008 0.0058158674

## white 0.0059256008 0.0796664106 0.1260836168

## age.group

## race 4

## asian 0.0021946670

## black 0.0188741358

## hispanic 0.0182157358

## native 0.0006584001

## other 0.0049380007

## white 0.1483594864

##

## , gender = m

##

# # age - group

## race 1 2 3

## asian 0.0002194667 0.0028530670 0.0051574674

## black 0.0016460002 0.0228245364 0.0189838692

## hispanic 0.0016460002 0.0197520026 0.0221661363

## native 0.0000000000 0.0004389334 0.0003292000

## other 0.0004389334 0.0069132009 0.0055964007

## white 0.0040601339 0.0750576100 0.1184022825

## age.group

## race 4

## asian 0.0018654669

## black 0.0131680018

## hispanic 0.0141556019

## native 0.0005486667

## other 0.0037309338

## white 0.1242181499

For example, the proportion of black female voters who are above 60 or

P (black and above 60 and female) is equal to 0.019. Suppose that we wish to obtain the

conditional probability ofbeing black and female given that a voter is above 60 years old

or P(black and female I above 60). Using equation (6.15), we can compute this condi-

tional probability by dividing the joint probability by the marginal probability of being

above 60 or P (above 60). To extract a specific joint probability from the above three-

way table, we specify the corresponding value for each demographic characteristic.
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## marginal probabilities for age groups

margin.age <— ;»wrv (a \(znuéw(FLVoters$age.group))

margin.age

##

## l 2 3 4

## 0.01766707 0.27093164 0.36047405 0.35092725

## P(black and female / above 60)

joint3[“black", 4, “f"] / margin.age[4]

## 4

## 0.05378361

According to equation (6.16), the conditional probability ofbeing black given that a

voter is female and above 60 years old or P(black | female and above 60) can be com-

puted by dividing the three-way joint probability P(black and above 60 and female)

by the two-way joint probability P (above 60 and female). To obtain this two-way joint

probability, we can create a two-way joint probability table for age group and gender.

## two-way joint probability table for age group and gender

jointZ <- vay.rw*3 ( «uv'(age.group = FLVoters$age.group,

gender = FLVoters$gender))

joint2

## gender

## age.group f m

## 1 0.009656535 0.008010534

## 2 0.143092286 0.127839350

## 3 0.189838692 0.170635356

## 4 0.193240426 0.157686821

joint2[4, "f"] # P(above 60 and female)

## [1] 0.1932404

## P(black / female and above 60)

joint3["black", 4, "f"] / joint2[4, “f"]

## [l] 0.09767178

522 EN; PENDENCE

Having defined conditional probability, we can now formally discuss the concept of

independence. Intuitively, the independence of two events implies that the knowledge

of one event does not give us any additional information about the occurrence of the
other event. That is, if events A and B are independent of each other, the conditional
probability of A given B does not differ from the marginal probability of A. Similarly,

the conditional probability of B given A does not depend on A:

P(A | B) = P(A) and P(B | A) = P(B). (6.17)
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Together with equation (6.12), this equality implies the following formal definition of
independence between events A and B.

 

Events A and B are independent ifand only if the joint probability is equal to the
product of the marginal probabilities:

P(A and B) = P(A)P(B). (6.18)  
 

We investigate whether race and gender are independent of each other in the

sample of Florida registered voters analyzed earlier. Although we do not expect
this relationship to be exactly independent, we examine whether the proportion of

female voters, for example, is greater than expected in some racial groups. Note
that if independence holds, we should have, for example, P(black and female) =

P(black)P(female), P(white and male) = P(white)P(male), and so on. We compare
the products of marginal probabilities for race and female with their joint probabilities

using a scatter plot. We use the c ( ) function, which combines its inputs into a vector,
to coerce a table format into a vector so that its elements can be used in the plot ( )

function.
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The scatter plot shows that the points fall neatly along the 45-degree line, implying
that P(race)P(fema|e) (horizontal axis) and P(race and female) (vertical axis) are

approximately equal. This means that race and gender are approximately independent

in this sample of registered voters. That is, the knowledge of a voter’s gender does not
help us predict her race. Similarly, one’s race does not predict gender either.

The notion of independence extends to situations with more than two events. For

example, if we have three events A, B , and C , the joint independence among these

events implies that the joint probability can be written as the product of marginal

probabilities:

P(A and B and C) = P(A)P(B)P(C). (6.19)

Furthermore, we can define the independence between two events conditional on

another event. The conditional independence of events A and B given event C implies

that the joint probability of A and B given C is equal to the product oftwo conditional

probabilities:

P(A and B | C) = P(A | C)P(B | C). (6.20)

Joint independence given in equation (6.19) implies pairwise independence given in

equation (6.18). This result can be obtained by applying the law of total probability:

P(A and B) = P(A and B and C) + P(A and B and CC)

P(A)P(B)P(C) + P(A)P(B)P(Cc)

P(A)P(B)(P(C) + P(C°)) = P(A)P(B).

In addition, joint independence implies conditional independence, defined in

equation (6.20), but the converse is not necessarily true. This result is based on the

definition of conditional probability given in equation (6.15):

P(A and B and C) _ P(A)P(B)P(C)
P(AandB |C)= P(C) _ P(C) = P(A | C)P(B | C).

The last equality follows from the fact that joint independence implies pairwise
independence (and hence equation (6.17) holds for A and C as well as B and C).

To examine joint independence among our sample of registered Florida voters,
we compare the elements of the three-way proportion table joint3 with the cor-

responding product of marginal probabilities, margin.race, margin.age, and

margin . gender. As an illustration, we set the age group to the above 60 category and

examine female voters. We also examine conditional independence between race

and gender, given age. For this, we again set the age and gender groups to the above

60 and female categories, respectively. The results show that both joint (left-hand

plot) and conditional (right-hand plot) independence relationships approximately

hold, despite small deviations.
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## joint independence

plot(c(joint3[, 4, “f"J), # joint probability

margin.race * margin.age[4] * margin.gender["f"], # product of marginals

xlim = c(o, 0.3), ylim = c(O, 0.3), main = "Joint independence",

xlab = "P(race and above 60 and female)",

_ ylab = "P(race) * P(above 60) * P(female)“)

abiinew, 1)
## conditional independence given female

plot(c(joint3[, 4, "f"]) / margin.gender['f"], # joint prob. given female

## product of marginals

(joint.p[I "f“l / margin.gender["f"]) *

(joint2[4, "f"] / margin.gender["f"]),

xlim = c(O, 0.3), ylim = c(O, 0.3), main = "Marginal independence",

xlab = "P(race and above 60 | female)",

ylab = "P(race I female) * P(above 60 | female)")

abline(0, 1)
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Finally, the well-known Monty Hall problem illustrates how tricky conditional
probability and independence can be. The problem goes as follows. You are on a game

show and must choose one of three doors, where one conceals a new car and two

conceal old goats. After you randomly choose one door, the host of the game show,

Monty, opens a different door, which does not conceal a car. Then, Monty asks you
if you would like to switch to the (unopened) third door. You will win the new car

if it is behind the door of your final choice. Should you switch, or stay with your

original choice? Does switching make a difference? Most people think switching makes
no difference because after Monty reveals one door with a goat, the two remaining

doors have a goat or a car behind them. Therefore, the chance ofwinning a car is 50%.
However, it turns out that this seemingly sensible reasoning is incorrect.

Let’s think about this problem carefully. Consider the strategy of not switching. In
this case, your initial choice determines the outcome regardless of what Monty does.
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Therefore, the probability of winning the car is 1/3. Now, consider the strategy of

switching. There are two scenarios. First, suppose that you initially choose a door with
the car. The probability of this event is 1 /3. Swapping the door in this scenario is a

bad choice because you will not win the car. Next, suppose that the door you selected

first has a goat. The probability of your initially choosing a door with a goat is 2/3.

Then, since Monty opens another door with a goat, the remaining door to which you

will switch contains a car. Hence, under this scenario, you will always win the car.

Therefore, switching gives you a probability of winning the car that is twice as high as
not switching.
We formalize this logic by applying the rules of probability covered so far. To

compute the probability of winning a car given that you switch, we first apply the law

of total probability in equation (6.13):

P(car) = P(car | car first)P(car first) + P(car | goat first)P(goat first)

2
= P(goat first) = 5

To see why the second equality holds, notice that if you initially select the door with

a car then switching makes you lose the car, i.e., P(car I car first) = 0. In contrast,

if you first pick a door with a goat, then you have a 100% chance of winning a car by

switching, i.e., P(car | goat first) = 1.

This rather counterintuitive problem can also be solved with Monte Carlo simula-

tions. For emulating random choice in R, we use the sample ( ) function. We set the

size argument to 1 in order to randomly choose one element from a vector.

sims <- 1000

doors <— ‘("goat", "goat", “car")

result.switch <- result.noswitch <- «o(NA, sims)

(i 1.: 1:sims) (

## randomly choose the initial door

first <- z u: 1(1:3, size = l)

result.noswitch[i] <— doors[first]

remain <— doors[—first] # remaining two doors

## Monty chooses one door with a goat

(doors[first] == “car") # two goats left

monty <— dufly‘w(l:2, size = l)

i # one goat and one car left

monty <— (1:2)[remain == "goat"]

result.switch[i] <— remain[-monty]

» ‘ (result.noswitch == "car")

## [1] 0.317

(result.switch == "car")

## [1] 0.683
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6.2.3 BAYES’ RU LE

We discussed different interpretations ofprobability at the beginning of this chapter.
One interpretation, proposed by Reverend Thomas Bayes, was that probability mea-
sures one’s subjective belief in an event’s occurrence. From this Bayesian perspective, it
is natural to ask the question ofhow we should update our beliefs after observing some
data. Bayes’ rule shows how updating beliefs can be done in a mathematically coherent
manner.

 

Bayes’ rule is given by

P(B | A)P(A) _ P(B | A)P(A)
PWB): P(B) ‘P(BIA)P<A)+P(BIA°>P<A“>'
 (6.21)

In this equation, P(A) is called the prior probability and reflects one’s initial

belief about the likelihood of event A occurring. After observing the data,
represented as event B, we update our beliefand obtain P (A I B), which is called
the posterior probability.   
Regardless of whether we interpret probability as subjective belief, Bayes’ rule

shows mathematically how the knowledge of P(A) (prior probability), P(B | A), and

P(B | AC) yields that of P(A | B) (posteriorprobability). Bayes’ rule is simply the result

of rewriting the definition of conditional probability given in equation (6.11) using the

law of total probability shown in equation (6.13):

P(A and B) _ P(B | A)P(A)
P(A I B) = P(B) _ P(B) 

A well-known application of Bayes’ rule is the interpretation of medical diagnostic

tests, which can have false positives and false negatives (defined in section 4.1.3).

Consider the following first-trimester screening test problem. A 35-year-old pregnant
woman is told that 1 in 378 women of her age will have a baby with Down syndrome
(DS). A first-trimester ultrasound screening procedure indicates that she is in a high-
risk category. Of 100 cases of DS, 86 mothers will receive a high-risk result and 14
cases of D8 will be missed. Also, there is a 1 in 20 chance for a normal pregnancy
to be diagnosed as high risk. Given the result of the screening procedure, what is the
probability that her baby has DS? What would the probability be if the result had been
negative?

To solve this problem, we first specify the prior probability. Without any testing,

the probability that a baby has DS, P(DS), is equal to 1/378 or approximately 0.003.

The ultrasound screening procedure gives a high-risk result 86% of times when a baby

actually has DS. This is called the true positive rate of the test and can be expressed
as P(HR | DS) = 0.86, where HR denotes a high-risk result. However, the screening
procedure also produces a false positive rate of 5%, which can be formally written as

P (HR | not DS) = 0.05. Using this information, we can apply Bayes’ rule to obtain the

posterior probability that the baby has DS, given that the woman received a high-risk
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result, or the positive predictive value of the test:

P (HR | DS)P (DS)
 PDS HR =( ' ) P(HRIDS)P(DS)+P(HR]notDS)P(notDS)

0%x—L
=-———7——ifi—jfi-~004
0%xfi+0mxfi

Similarly, if the woman received a normal pregnancy result, the posterior

probability becomes

P(not HR | DS)P(DS)

P(not HR | DS)P(DS) + P(not HR [ not DS)P(not DS)
 P(DS | not HR) =

0.14 x —1—
= ——378— x 0.0004.1 377

0.14 x m +0.95 x W

We see that even when the woman receives a high-risk result, the posterior probability

of having a baby with DS is small. This is because DS is a relatively rare disease, as
reflected by a small prior probability. As expected, if the woman receives a normal

pregnancy result, then the posterior probability becomes even smaller than the prior

probability.

We can use Bayes’ rule to solve the Monty Hall problem introduced in section 6.2.2.
Let A represent the event that the first door has a car behind it. Define B and C similarly
for the second and third doors, respectively. Since each door is equally likely to have a

car behind it, the prior probabilities are P(A) = P(B) = P(C) = 1/3. Suppose that

we choose the first door and let MC represent the event that Monty opens the third
door. We want to know whether switching to the second door increases the chance of

winning the car, i.e., P(B | MC) > P(A | MC). We apply Bayes’ rule after noting

that P(MC | A) = 1/2 (Monty chooses between the second and third door with equal

probability), P(MC | B) = 1 (Monty has no option but to open the third door, which

has a goat), and P(MC l C) = 0 (Monty cannot open the third door, which has a car):

P(MC | A)P(A)
 

 

= %X% =1
%X%+1x§+0x§ 3’

P(B IMC) = P(MC I B)P(B)
P(MC | A)P(A)+ P(MC | B)P(B) + P(MC I C)P(C)

1x; 2
1 1 1 1—_'
§X§+1X§+0X§ 3

Thus, switching doors will give a probability of winning a car that is twice as great as

staying with the initial choice.
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6.2.4 PREDICTING RACE USING SURNAME AND RESIDENCE LOCATION

This section contains an advanced application of conditional probability and Bayes’

rule in the social sciences. Readers may skip this section without affecting their ability
to understand the materials in the remainder of the book.

It is often of interest to infer certain unknown attributes of individuals from their
known characteristics. We consider the problem of predicting individual race using

surname and residence location.2 Accurate prediction of individual race is useful, for
example, when studying turnout rates among racial groups.

The US Census Bureau releases a list of common surnames with their frequency.
For example, the most common surname was “Smith” with 2,376,206 occurrences,

followed by “Johnson” and “Williams” with 1,857,160 and 1,534,042, respectively. This
data set is quite comprehensive, including a total of more than 150,000 surnames that

occurred at least 100 times. In addition, the census provides the relative frequen-

cies of individual race within each surname, using a six-category self-reported race

measure: non-Hispanic white, non-Hispanic black, non-Hispanic Asian and Pacific
Islander, Hispanic origin, non-Hispanic American Indian and Alaskan Native, and

non-Hispanic of two or more races. We will combine the last two categories into a
single category of non—Hispanic others, so that we have five categories in total. The

aggregate information, which can be written as P(race l surname), enables us to
predict race given an individual’s surname.

Note that P(race), P(race | surname), and P(race and surname) are examples

of general ways to represent the marginal, conditional, and joint probabilities, re-

spectively. For example, P(race) represents a collection of marginal probabilities,
i.e., P(white), P(black), P(asian), P(hispanic), and P(others). Similarly, P(race |

surname) can be evaluated for any given racial group and surname, for example,
P(black | Smith). To illustrate the convenience of this general notation, we apply the
law of total probability in equation (6.14) to the joint probability of race and surname:

P(surname) =Z P(race and surname),

race

where the summation is taken over all racial categories (i.e., white, black, asian,

hispanic, and others. In terms of the notation used in equation (6.14), A represents

any given surname while B,- is a racial category. This equality applies to any surname
of interest, and the summation is taken over all five racial categories.

This census name list is contained in the CSV data file names . csv. Table 6.3 lists
the names and descriptions ofvariables in this census surname list data set.3

2 This section is in part based on Kosuke Imai and Kabir Khanna (2016) “Improving ecological inference
by predicting individual ethnicity from voter registration records.” Political Analysis, vol. 24, no. 2 (Spring),

pp. 263—272.
3 To protect anonymity, the Census Bureau does not reveal small race percentages for given surnames. For

the sake of simplicity, we impute these missing values by assuming that residual values will be equally allocated to

the racial categories with missing values. That is, for each last name, we subtract the sum of the percentages of all

races without missing values from 100% and divide the remaining percentage equally among those races that do

have missing values.
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Table 6.3. US Census Bureau Surname List Data.
 

 

Variable Description

surname surname
count number of individuals with a specific surname

pctwhite percentage of non-Hispanic whites among those who

have a specific surname
pctblack percentage of non-Hispanic blacks among those who

have a specific surname
pctapi percentage of non-Hispanic Asians and Pacific Islanders

among those who have a specific surname

pcthispanic percentage of Hispanic origin among those who have a

specific surname

pctothers percentage of the other racial groups among those who

have a specific surname ‘
 

 

The total number of surnames contained in this data set is 151,671. For these

surnames, the data set gives the probability of belonging to a particular racial group
given a voter’s surname, i.e., P(race | surname). We begin by using this conditional

probability to classify the race of individual voters. To validate the accuracy of our
prediction ofindividual race, we use the sample of 10,000 registered voters from Florida
analyzed earlier (see table 6.1). In some Southern states including Florida, voters are
asked to self-report their race when registering. This makes the Florida data an ideal
validation data set. If the accuracy of a prediction method is empirically validated in
Florida, we may use the method to predict individual race in other states where such
information is not available.

For matching names between the voter file and census name data, we use the
match () function. This function takes the syntax of match (x, y) and returns a

vector ofindices ofvector y’s correspondence to each element ofvector x. The function

returns NA ifthere is no match found in y for an element ofx. Here is a simple example
illustrating the use ofthe match ( ) function.
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Going back to the problem of predicting individual racial groups, we remove voters
whose surnames do not appear in the census surname list. To do so, we utilize the fact
that the syntax match (x, y) returns NA if the corresponding element of x is not
matched with any element of y.

 

The syntax ! is . na ( ) represents “not NA,” where ! indicates negation, so that only
the matched elements are retained. Thus, we focus on the resulting 80% of the original
sample. We first compute the proportion of voters whose race is correctly classified in
each racial category. Race is considered correctly classified if the racial category with
the greatest conditional probability P(race | surname) is identical to the self-reported
race. These represent true positives of classification (see table 4.3).

We calculate the true positive rate for each racial group, which represents, for
example, the proportion of white voters who are correctly predicted as white. To
compute this, we first subset white voters from the Florida voter file and then

match the surname of each voter with the same surname in the census surname
data.

 

The outputted row index w. indx contains, for each observation in the whites
data frame, the number of the row with the same surname in the cnames data frame.

For example, the second observation in the whites data frame has the surname
Lynch. This surname appears in the 237th row of the cnames data set. Accordingly,
the second value in w. indx is 237. More specifically, for each surname belonging
to a white voter in Florida, we use apply (cnames [w. indx, vars] , 1 , max)

to compare the predicted probabilities across the five racial categories in the vector

vars, and extract the highest predicted probability. We then checkwhether the highest

predicted probability for that voter is the same as the predicted probability of their

being white. If these two numbers are identical, the classification is correct. Finally, we
compute the mean of the resulting binary vector to obtain the proportion of correct

classifications, the true positive rate.
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## relevant variables

vars <— c("pctwhite", “pctblack”, "pctapi", “pcthispanic”, "pctothers")

mean(apply(cnames[w.indx, vars], 1, max) == cnames$pctwhite[w.indx])

## [1] 0.950218

The result shows that 95% of white voters are correctly predicted as whites. We

repeat the same analysis for black, Hispanic, and Asian voters.

   

 

## black

blacks <- :5) s:(FLVoters, subset = (race == “black“))

b.indx <- m ‘h(blacks$surname, cnamesssurname)

moan(appjy(cnames[b.indx, vars], 1, max) == cnamesSpctblacklb.indx])

## [1] 0.1604824

## Hispanic

hispanics <— cv‘;er(FLVoters, subset = (race == "hispanic"))

h.indx <- ma

ream(app1y(cnames[h.indx, vars], 1, max) == cnames$pcthispanic[h.indx])

  
  ;L(hispanics$surname, cnamesssurname)

## [1] 0.8465298

## Asian

asians <— 3 ‘ eL(FLVoters, subset = (race == “asian“))

 

a.indx <— match(asians$surname, cnamesssurname)

moan(epply(cnames[a.indx, vars], 1, max) == cnames$pctapi[a.indx])

## [1] 0.5642857

We find that surname alone can correctly classify 85% of Hispanic voters as

Hispanic. In contrast, classification of Asian and black voters is much worse. In

particular, only 16% of black voters are correctly classified as African—Americans. The

high true positive rate for whites may simply arise from the fact that they far outnumber

voters from other racial categories.
We next look at false positives. Below, we calculate the false discovery rate for each

racial group, which, for example, represents the proportion of voters who are not

white among those classified as white. We use the same indexing trick as above and
compute the proportion of white voters among those classified as whites. Subtracting

the resulting value from 1 yields the false discovery rate for whites.

indx <- mathFLVotersssurname, cnames$surname)

## white false discovery rate

1 — mean(FLVotersSrace[apply(cnames[indx, vars], 1, max) ==

cnames$pctwhite[indx]] == "white")

## [1] 0.1973603
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Table 6.4. Florida Census Data at the Voting District Level.
 

 

Variable Description

county county census ID of the voting district

VTD voting district census ID (only unique within the county)
total .pop total population of the voting district

white proportion ofnon-Hispanic whites in the voting district

black proportion ofnon-Hispanic blacks in the voting district

api proportion of non-Hispanic Asians and Pacific Islanders

in the voting district

hispanic proportion of voters of Hispanic origin in the

voting district

others proportion ofthe other racial groups in the voting district
 

 

The results show that the false discovery rate is the highest for Asian and black
voters, while it is much lower for whites and Hispanics.

Next, we attempt to improve the above prediction by taking into account where
voters live. This approach should be helpful to the extent that there exists residential

segregation based on race. In the United States, voter files contain voters’ addresses.
Using this information, our data set also provides the voting district where each voter

lives. In addition, we will utilize the Florida census data, which contains the racial
composition of each voting district. The names and descriptions of variables in this

census data set, FLCensusVTD . csv, are given in table 6.4.
How does the knowledge ofresidence location improve the prediction ofindividual

race? Whereas the census name data set contains information about the conditional

probability P(race | surname), the Florida census data set provides additional

information about P(race | residence) (proportion of each racial category among
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residents in a given voting district) and P(residence) (proportion of residents who

live in a given voting district). We wish to combine them and compute the desired

conditional probability P(race | surname and residence). Recall that these are general

ways to represent marginal, conditional, and joint probabilities. Each expression can

be evaluated using a specific racial group, surname, and residential location.

Computing P(race | surname and residence) requires Bayes’ rule. So far, we have

employed Bayes’ rule for one event A conditional on an event B, but now we need to

use Bayes’ rule conditional on both B and another event C :

P(B I A and C)P(A l C)
P A B , C =——-—,( | ) P (B l C)

where every probability on the right-hand side is defined conditional on another event

C (see equation (6.21)). Applying this rule yields

P(race | surname and residence)

_ P(surname | race and residence)P(race | residence) (6 22)

_ P(surname | residence) ' '
 

In this equation, while P(race l residence) is available from the Florida census

data, the other two conditional probabilities, P(surname | race and residence) and

P(surname | residence), are not directly given either in the census name data set or

the Florida census data set.
To overcome this difficulty, we make an additional assumption that a voter’s

surname and residence location are independent of each other, given race. This

conditional independence assumption implies that once we know a voter’s race, their

residence location does not give us any additional information about their surname. So

long as there is no strong geographical concentration of certain surnames in Florida

within a racial category, this assumption is reasonable. The assumption is violated,

for example, if Hispanic Cubans tend to have distinct names and are concentrated in

certain neighborhoods. Unfortunately, our data cannot tell us whether this assumption
is appropriate, but we will proceed assuming it is. Applying equation (6.20), the

assumption can be written as

P(surname and race | residence)
 P(surname 1 race and residence) = _

P(race | reSIdence)

P(surname | residence)P(race | residence)
 

P(race | residence)

= P(surname | race). (6.23)

The first equality follows from the definition of conditional probability, whereas the

second equality is due to the application of equation (6.20).

The assumption transforms equation (6.22) into

 

_ P(surname | race)P(race I residence)
P(race | surname and reSIdence) = . .

P(surname | reSIdence)
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We should keep this key version of the equation in mind as the one we will ultimately
use.

Note that applying the law of total probability defined in equation (6.14) and then
invoking the assumption given in equation (6.23), the denominator of equation (6.22)

can be written as the following equation, which sums over all racial categories:

P(surname | residence) = Z P(surname I race and residence)P(race | residence)
race

= Z P(surname | race)P(race l residence). (6.24)

race

In the above equations, we use Ema to indicate summation over all categories of the
race variable (i.e., black, white, Asian, Hispanic, and others).

While the census surname list gives P(race | surname), the prediction of individual

race based on equation (6.22) requires the computation of P(surname | race),

which is included in both the numerator and the denominator (see equation (6.24)).

Fortunately, we can use Bayes’ rule to obtain

P(race l surname)P(surname)

P (race) (6'25)
 P(surname I race) =

The two terms in the numerator of equation (6.25) can be computed using the census

name list. We compute P(race), which is not included in that data, from the Florida
census data by using the law of total probability:

P(race) = z P(race I residence)P(residence). (6.26)
residence

In this equation, 2 indicates summation over all values of the residenceresidence

variable (i.e., all voting districts in the data).

To implement this prediction methodology in R, we first compute P(race) using
equation (6.26). We do so by calculating a weighted average of percentages for each

racial category across voting districts with the population of the voting district, which

is proportional to P(residence), as the weight. The weighted . mean ( ) function can
be used to compute weighted averages, in which the weights argument takes a vector
ofweights.

 



6.2 Conditional Probability

We can now compute P(surname | race) using equation (6.25) and the census

name list.

total.count <- sum(cnames$count)

## P(surname / race) = P(race / surname) * P(surname) / P(race)

cnamesSname.white <— (cnamesSpctwhite / 100) *

(cnamesscount / total.count) / race.prop["white"]

cnames$name.b1ack <— (cnamesspctblack / 100) *

(cnames$count / total.count) / race.prop[“black"]

cnamesSname.hispanic <— (cnamesSpcthispanic / 100) *

(cnamesScount / total.count) / race.prop["hispanic"]

cnames$name.asian <— (cnamesspctapi / 100) *

(cnamesscount / total.count) / race.prop["api"]

cnames$name.others <- (cnames$pctothers / 100) *

(cnamesscount / total.count) / race.prop["others"]

Next, we compute the denominator of equation (6.22), P(surname | residence),

using equation (6.24). To do this, we merge the census data into the voter file data using

the county and VTD variables. In the merge ( ) function, we set the all argument to

FALSE so that nonmatching rows in both data sets will be dropped (see section 4.2.5).
Since the census data includes P (race | residence) as a variable for each racial category,

the merged data set will as well.

FLVoters <— msrgfi(x = FLVoters, y = FLCensus, by = c("county", “VTD“),

a1 1 = FALSE)

## P(surname / residence) = sum_race P(surname / race) P(race / residence)

indx <- watch(FLVoters$surname, cnamesssurname)

FLVotersSname.residence <— cnames$name.white[indx] * FLVotersSwhite +

cnames$name.black[indx] * FLVoterssblack +

cnames$name.hispanic[indx] * FLVotersshispanic +

cnames$name.asian[indx] * FLVoterssapi +

cnamesSname.others[indx] * FLVoterssothers

We have now calculated every quantity contained in our key version of equa-

tion (6.22): P(surname I race), P(race | residence), and P(surname | residence).

Finally, we plug the quantities into the equation to compute the predicted proba—

bility that an individual belongs to a particular race, given his or her surname and

residence.

## P(race / surname, residence) = P(surname / race) * P(race / residence)

## / P(surname / residence)

FLVotersSpre.white <— cnamesSname.white[indx] * FLVotersswhite /

FLVoters$name.residence
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FLVoters$pre.b1ack <- cnames$name.black[indx] * FLVoters$black /

FLVoters$name.residence

FLVoters$pre.hispanic <- cnamesSname.hispanic[indx] * FLVotersShispanic /

FLVotersSname.residence

FLVotersSpre.asian <— cnames$name.asian[indx] * FLVoters$api /

FLVoters$name.residence

FLVoters$pre.others <- 1 - FLVotersSpre.white — FLVoters$pre.b1aCk -

FLVoters$pre.hispanic - FLVoters$pre.asian

We evaluate the accuracy of this prediction methodology and assess how much

improvement knowledge of the voters’ location of residence yields. We begin by

examining true positives for each race using the same programming trick as before.

## relevant variables

varsl <— n("pre.white", "pre.b1ack", "pre.hispanic", "pre.asian“,

"pre.others")

## white

whites <- 31‘ ;'(FLVoters, subset = (race == ”white"))

(LN ‘y(whites[, varsl], 1, max) == whitesSpre.white)

## [1] 0.9371366

## black

blacks <— »H ~ (FLVoters, subset = (race == “black"))

‘(v0p1V(b1acks[, varsl], 1, max) == blacksSpre.b1ack)

## [1] 0.6474954

## Hispanic

hispanics <- ~2Mm:i(FLVoters, subset = (race == "hispanic"))

‘:(vv~1y(hispanics[, varsl], 1, max) == hispanicsSpre.hispanic)

## [1] 0.85826

## Asian

asians <— +t“wi(FLVoters, subset = (race == "asian"))

-H(~HI\\(asians[, varsl], 1, max) == asians$pre.asian)

## [1] 0.6071429

The true positive rate for blacks has jumped from 16% to 65%. Minor improvements
are also made for Hispanic and Asian voters. Since African-Americans tend to live

close to one another in the United States, the location of voters’ residences can

be informative. For example, according to the census data, among people whose

surname is “White,” 27% are black However, once we incorporate the location of their

residence, the predicted probability of such individuals being black ranges from 1%
to 98%. This implies that we predict some voters to be highly likely black and others
highly likely nonblack.
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## proportion of blacks among those with surname "White"

cnames$pctblack[cnames$surname == "WHITE"]

## [1] 27.38

## predicted probability of being black given residence location

‘u2m,Ly(FLVotersspre.black[FLVoters$surname == “WHITE“I)

## Min. lst Qu. Median Mean 3rd Qu. Max.

## 0.005207 0.081150 0.176300 0.264000 0.320000 0.983700

Finally, we compute the false positive rate for each race.

## white

1 - :wr~(FLVoters$race[.n‘1.(FLVoters[, varsl], 1, max)==

FLVoters$pre.white] == “white")

## [1] 0 .1187425

## black

1 — “~~:(FLVoters$race[»vp‘_(FLVoters[, varsl], 1, max ==

FLVoters$pre.blaCk] == "black")

## [1] 0.2346491

## Hispanic

1 — ‘;19(FLVoters$race[rt. (FLVoters[, varsl], 1, max) ==

FLVoters$pre.hispanic] == "hispanic")

## [1] 0.2153709

## Asian

1 - m..:(FLVotersSrace[~rofiv(FLVoters[, varsl], 1, max) ==

FLVoters$pre.asian] == “asian")

## [1] 0.3461538

We find that the false positive rate for whites is significantly reduced. This is in large
part due to the fact that many of the black voters who were incorrectly classified as
whites using surname alone are now predicted to be black. In addition, the false positive

rate for blacks lowered by a similar amount. This example illustrates the powerful use

of conditional probability and Bayes’ rule.

h, 11%.!“ A. v“. “
.4.» i‘tcflxt‘émfli’fl‘z 05M};(9
‘)

 

We have so far considered various events including a coin landing on heads, twins
being both boys, and a voter being African-American. In this section, we introduce the

concept of random variables and their probability distributions, which further widens

the scope of mathematical analyses of these events.
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6.3.1 RANDOM VARIABLES

A random variable assigns a number to each event. For example, two outcomes of
a coin flip can be represented by a binary random variable where 1 indicates landing

on heads and 0 denotes landing on tails. Another example is one’s income measured

in dollars. The values of random variables must represent mutually exclusive and

exhaustive events. That is, different values cannot represent the same event and all

events should be represented by some values. For example, consider a random variable
that represents one’s racial group using five unique integers: black = 1, white = 2,

hispanic = 3, asian = 4, and others = 5. According to this definition, someone who
self—identifies as black and white will be assigned the value of 5 instead of taking the
values of 1 and 2 at the same time.

There are two types of random variables, depending on the type of values they

take. The first is a discrete random variable, which takes a finite (or at most countably
infinite) number of distinct values. Examples include categorical or factor variables

such as racial groups and number ofyears ofeducation. The second type is a continuous
random variable, which takes a value within an interval of the real line. That is,

the variable can assume uncountably many values. Examples of continuous random
variables include height, weight, and gross domestic product (GDP). The use of
random variables, instead of events, facilitates the development of mathematical rules

for probability because a random variable takes numeric values. Once we define a
random variable, we can formalize a probability model using the distribution of the
random variable.

 

A random variable assigns a numeric value to each event of the experiment.

These values represent mutually exclusive and exhaustive events, together forming
the entire sample space. A discrete random variable takes a finite or at most

countably infinite number of distinct values, whereas a continuous random

variable assumes an uncountably infinite number of values.   
 

6.3.2 BERNOULLI AND UNIFORM DISTRIBUTIONS

We first consider the simplest example of a discrete random variable: a coin flip.

For this experiment, we define a binary random variable X, which is equal to 1 if

a coin lands on heads, and 0 otherwise. In general, a random variable that takes
two distinct values is called a Bernoulli random variable. Notice that this setup
applies to any experiment with two distinct events. Examples include {vote, abstain},

{win election, lose election}, and {correct classification, misclassification}. Thus,

whether a voter turns out (X = l) or not (X = 0) can be represented by a Bernoulli

random variable. Generically, we consider the event X = 1 a success and the event

X = 0 a failure. We use p to denote the probability of success.

The distribution of a discrete random variable can be characterized by the proba-
bility mass function (PMF). The PMF f (x) of a random variable X is defined as the

probability that the random variable takes a particular value x, i.e., f(x) = P(X = x).

That is, given the input x, which is a specific value of choice, the PMF f (x) returns as



f(
x)
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Figure 6.5. The Probability Mass and Cumulative Distribution Functions for a Bernoulli

Random Variable. The probability of success is 0.25. The open and solid circles represent

the exclusion and inclusion of the corresponding points, respectively.

the output the probability that a random variable X takes that value x. In the case of a

Bernoulli random variable, the PMF takes the value of p when x = 1 and that of 1 — p

when x = 0. The function is zero at all other values of 3:.
Another important function related to probability distribution is the cumulative

distribution function (CDF). The CDF F(x) represents the cumulative probability

that a random variable X takes a value equal to or less than a specific value x, i.e.,

F (x) = P(X 5 x). The CDF, therefore, represents the sum ofthe PMF f(x) evaluated

at all values up to x. Formally, the relationship between the PMF f (x) and the CDF

F (x) for a discrete random variable can be written as

F(x) = P(X s x) =Z f(k),
ij

where k represents all values the random variable X can take that are less than or equal
to x. That is, the CDF equals the sum of the PMFs. The CDF ranges from 0 to l for

any random variable, whether continuous or discrete. It is a nondecreasing function
because as x increases, more probability will be added.

The CDF F (x) for a Bernoulli random variable is simple. It is zero for all negative
values of x because the random variable never assumes any of those values. The CDF
then takes the value of 1 — p when x = 0, which is the probability that X equals 0.

The function stays flat at 1 — p when 0 5 x < 1 because none of these values will be
realized. At x = 1, the CDF equals 1 because the random variable takes either the

value of 0 or 1, and stays at this value when x z 1 because X does not take any value
greater than 1. Figure 6.5 graphically displays the PMF and CDF of a Bernoulli

random variable when p = 0.25. The open and solid circles represent the exclusion

and inclusion of the corresponding points, respectively.
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Figure 6.6. The Probability Density and Cumulative Distribution Functions for a Uniform

Random Variable. The interval is set to [0, l]. The open and solid circles represent the

exclusion and inclusion of the corresponding points, respectively.

 

The probability mass function (PMF) of a Bernoulli random variable with

success probability p is given by

p ifx = 1,

f(x)= 1—p ifx=0,

0 otherwise,

where f (l) and f (0) represent the probability of success and failure, respectively.

The cumulative distribution function (GDP) is given by

0 ifx<0,

F(x)= l—p if05x<l,

1 ifle.   
 

We now discuss a uniform random variable as a simple example of a continuous
random variable. A uniform random variable takes every value within a given interval

Ia, b] with equal likelihood. The PMF is not defined for a continuous random variable

because this variable assumes an uncountably infinite number of values. Instead, we
use the probability density function (PDF) f(x) (or simply, density function), which

quantifies the likelihood that a continuous random variable X will take a specific value

x. We have already seen the concept of density, which is used to measure the height of
bins in a histogram (see section 3.3.2). The value of the PDF is nonnegative and can be
greater than 1. Moreover, like density in histograms, the area under the PDF must sum
to 1.

Since each value within the interval is equally likely to be realized, the PDF for the

uniform distribution is a flat horizontal line defined by 1/ (b — a). In other words, the

PDF does not depend on x and always equals 1 / (b — a) within the interval. The height
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is determined so that the area below the line equals 1 as required. The left-hand plot of
figure 6.6 graphically displays the PDF for a uniform distribution when the interval is
set to [0, 1].

We can also define the cumulative distribution function (CDF) for a continuous

random variable. The definition of the CDF is the same as the case of discrete random
variables. That is, the CDF F (x) represents the probability that a random variable X
takes a value less than or equal to a specific value x, i.e., P(X 5 x). Graphically, the
CDF corresponds to the area under the probability density function curve up to the
value x (from negative infinity). Mathematically, this notion can be expressed using
integration instead ofsummation: '

F(x) = P(X 5 x) = /" f(t)dt.

Since the entire area under the probability density curve has to sum to l, we have
P (x) = 1 when x = 00. The CDF for the uniform distribution is shown in the right-

hand plot offigure 6.6. In this case, theCDF is a straight line, as shown in the right-hand
plot ofthe figure, because the area under the PDF increases at a constant rate.

 

The probability density function (PDF) of a uniform random variable with

interval [a, b] is given by

1 .
3:; If a S x S b,

f(x) =
0 otherwise.

The cumulative probability function (CDF) is given by

0 ifx<a,

F(x): fl ifasx<b,

l ifxzb.  
 

We can easily compute the PDF and CDF ofa uniform distribution in R. For the PDF
f(x), we use the duni f ( ) function where the main argument is the value x at which

the function is evaluated and the interval is specified using themin andmax arguments.
We can compute the CDF in a similar manner using the puni f ( ) function. The d in
dunif ( ) indicates density, whereas the p in punif ( ) stands for probability.
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The two distributions we have introduced here share a useful connection. We can
use a uniform random variable to generate a Bernoulli random variable. To do this,
notice that under the uniform distribution with unit interval [0, 1], the CDF is given

by the 45-degree line, i.e., F (x) = x. Therefore, the probability that this uniform
random variable X takes a value less than or equal to x is equal to x when 0 S x S 1.

Thus, in order to generate a Bernoulli random variable Y with success probability

p, we can first sample a uniform random variable X and then set Y = 1 when X
is less than 12 (similarly, set Y = 0 if X 2 p) so that Y takes a value of 1 with
probability 1). To do this Monte Carlo simulation in R, we use the runif ( ) function
to generate a uniform random variable by setting the min and max arguments to 0
and 1, respectively.

 

6.3.3 BINOMIAL DISTRIBUTION

The binomial distribution is a generalization of the Bernoulli distribution. Instead
of a single coin flip, we consider an experiment in which the same coin is flipped
independently and multiple times. That is, a binomial random variable can repre-

sent the number of times a coin lands on heads in multiple trials of independent

coin flips.
More generally, a binomial random variable X records the number of successes in

a total of n independent and identical trials with success probability p. In other words,
a binomial random variable is the sum of n independently and identically distributed
(or i.i.d. in short) Bernoulli random variables. Recall that a Bernoulli random variable

equals either 1 or 0 with success probability 12. Thus, X can take an integer value

from 0 to n. Since the binomial distribution is discrete, its PMF can be interpreted
as the probability of X taking a specific value x. The CDF represents the cumulative

probability that a binomial random variable has x or fewer successes out of n trials.
The PMF and CDF ofa binomial random variable are given by the following formulas,

which involve combinations (see equation (6.10)). No simple expression exists for the
CDF, which is written as the sum ofthe PMFs.
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Figure 6.7. The Probability Mass and Cumulative Distribution Functions for a Binomial

Random Variable. The success probability is 0.5 and the total number of trials is 3. The

open and solid circles represent the exclusion and inclusion of the corresponding points,

respectively. Source: Adapted from example by Paul Gaborit, http://texarnple.net.

 

The probability mass function (PMF) ofa binomial random variable with success

probability p and n trials is given by

n
f(x) = P(X = x) = (x)p"(1— p)""‘. (6.27)

The cumulative distribution function (CDF) can be written as

F(x) = P(x 5 x) =Z (2) p*(1 — p)""‘,
k=0

forx=0,1,...,n.  
 

Figure 6.7 shows the PMF and GDP when p = 0.5 and n = 3. For example, we can

compute the probability that we obtain two successes out of three trials, which is the
height ofthe third bar in the left-hand plot of the figure:

_ _ _ 3 2 _ 3—2 _ __3!_ 3 _f(z) _ P(X -2) _ (2) x 0.5 x (1 0.5) _ (34)”! x 0.5 _ 0.375.

Calculating the PMF of a binomial distribution is straightforward. The dbinom( )

function takes the number of successes as the main argument, and the size and prob
arguments specify the number of trials and success probability, respectively.
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The CDF, shown in the right-hand plot of the figure, is a step function where the
function is flat and then jumps at each nonnegative integer value. The size of each
jump equals the height of the PMF at the corresponding integer value. Using the CDF,
we can compute the cumulative probability that we have at most one success out of
three trials:

F(1)= P(X 51): P(X = o) + P(X = 1) = f(0) + f(1) = 0.125 + 0.375 = 0.5.

We can compute the GDP of a binomial distribution in R using the pbinom()
function.

 

An intuitive explanation covers why the PMF of a binomial distribution looks like

equation (6.27). When we flip a coin n times, each unique sequence of n outcomes is

equally likely. For example, if n = 5, then the event that only the last two coin flips
land on tails {HHHTT} is equally as likely as the event that the flips alternate landing
on heads and tails {HTH TH}, where we use H and T to denote the events that a coin

lands on heads and tails, respectively. However, for the binomial distribution only the
number of heads matters. As a result, these two events represent the same outcome.

We use combinations to count the number of ways we can have x successes out of n
trials, which is equal to an = (Z). We multiply this by the probability of x successes,
which is equal to 17" (because each trial is independent), and the probability of n — x
failures, which is given by (l — p)""‘ (again because of independence).

As an application of the binomial distribution, consider the probability that one’s
vote is pivotal in an election. Your vote is pivotal if the election is tied before you
cast your ballot. Suppose that in a large population exactly 50% of voters support an

incumbent while the other half support a challenger. Further, assume that whether
voters turn out or not has nothing to do with their vote choice. Under this scenario,
what is the probability that the election ends up with an exact tie? We compute this

probability when the number of voters who turn out equals 1000, then 10,000, and
then 100,000. To compute this probability, we can evaluate the PMF of the binomial

distribution by setting the success probability to 50% and the size to the total number

ofvoters who turn out. We then evaluate the PMF at exactly half of all voters who turn

out. We find that the probability of a tie is quite small, even when the population of
voters is evenly divided.

 



6.3 Random Variables and Probability Distributions —

Q+Pu; +9-
9339

”4'” +RP+

Figure 6.8. Pascal’s Triangle. Binomial coefficients can be represented as Pascal’s

triangle, where the xth element of the nth row returns the binomial coefficient (2:).

Source: Adapted from example by Paul Gaborit, http://texample.net.
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Where does the name “binomial distribution” come from? The name of this

distribution is based on the following binomial theorem. ~

 

The binomial theorem shows how to compute the coefficient of each term when

expanding the power of a binomial, i.e., (a + b)". That is, the coefficient for the
term a"b""‘ when expanding (a + b)" is equal to (Z).

 

For example, according to the binomial theorem, when n = 4, the coefficient for the

term azb2 when expanding (a + b)4 is equal to (g) = 6. This result is confirmed by
writing out the entire expansion:

(a + b)4 = a4 + 4a3b + 6azb2 + 4:1173 + b4. (6.28)

These binomial coefficients can be organized as Pascal’s triangle, as shown in
figure 6.8. For example, the coefficients for the terms resulting from the expansion

of (a + b)4 in equation (6.28) are shown in the fifth row of Pascal’s triangle. More

generally, in Pascal’s triangle, the xth element of the nth row represents the binomial
coefficient (:1). In addition, as shown in the figure, each element equals the sum of
the two elements just above it, leading to a straightforward sequential computation of

binomial coefficients. This makes sense because, for example, (a + b)‘1 can be written

as the product of (a + b)3 and (a + b),

(a + b)4 = (a3 + 3a2b + 3ab2 + b3)(a + b).

In this example, the coefficient for azb2 is based on the sum of two products, i.e.,
3a2b x b and 3ch2 x a, and hence is equal to 6 = 3 + 3. In general, to obtain x



 

Chapter 6: Probability

  

Probability density function Cumulative distribution function

0'3 ‘ A mean = 1
1‘ ‘| s d. = 0.5

0.6- t I 5‘
Q .' 'l E
5 0.4- mean=0 ' 'u .8
D I 9

II D.

0.2 - |

0.0 -         

 

Figure 6.9. The Probability Density and Cumulative Distribution Functions of the Normal

Distribution.

success combinations out of 11 trials, we consider two scenarios—the last trial ending

in a success or ending in a failure—and add the total number of combinations under
each scenario:

n—1 n—1 _ (n—l)! (n—l)!

x + x—l _x!(n—x——1)!+(x—1)!(n—x)!

= ("—1)!X(n;x)+_x= (n)
x!(n — x)! x

 

The first (second) term corresponds to the scenario where there are x (x — 1) successes

out of (n — 1) trials and the last trial ends in a failure (success).

6.3.4 NORMAL DISTRIBUTION

As another important example of a continuous random variable, we introduce the

normal distribution. This distribution is also called the Gaussian distribution, named

after German mathematician Carl Friedrich Gauss. As implied by its name, the normal
distribution is special because, as section 6.4.2 will explore, the sum of many random
variables from the same distribution tends to follow the normal distribution even when

the original distribution is not normal.
A normal random variable can take any number on the real line (—00, 00). The

normal distribution has two parameters, mean ,u, and standard deviation 0'. If X is
a normal random variable, we may write X ~ N(u, 02), where 02 represents the

variance (the square of standard deviation). The PDF and the GDP of the normal

distribution are given by the following formulas.
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The probability density function (PDF) of a normal random variable is given by

_ 1 _; __ 2f(x)— fl—Wexfi 2020: m},
for any x on the real line. The cumulative probability distribution (CDF) has no

analytically tractable form and is given by v

x x 1 1

F(x) = P(X 5 x) = /_oo f(t)dt= /_°o fig exp{—W(t—M)2}dt,

(6.29)

where X ~ N(u, 02) and exp(-) is the exponential function (see section 3.4.1).

The CDF represents the area under the PDF from negative infinity up to x.

 

 

  
 

Figure 6.9 plots the PDF (left-hand plot) and CDF (right-hand plot) for the normal

distribution, with three different sets of the mean and standard deviation. The PDF of

the normal distribution is bell shaped and centered around its mean, with the standard
deviation controlling the spread of the distribution. When the mean is 0 and standard

deviation is 1, we have the standard normal distribution. The PDF is symmetric around

the mean. Different means shift the PDF and CDF without changing their shape. In

contrast, a larger standard deviation means more variability, yielding a flatter PDF and

a more gradually increasing CDF.
The normal distribution has two important properties. First, adding a constant to

(or subtracting it from) a normal random variable yields a normal random variable

with appropriately shifted mean. Second, multiplying (or dividing) a normal random

variable by a constant also yields another normal random variable with an appropri-

ately scaled mean and standard deviation. Accordingly, the z-score ofa normal random
variable follows the standard normal distribution. We formally state these properties

below.

 

Suppose X is a normal random variable with mean u and standard deviation 0,

i.e., X ~N(u, 02). Let c be an arbitrary constant. Then, the following properties

hold:

1. A random variable defined by Z = X + c also follows a normal
distribution, with 2 ~ N(u + c, 02).
2. A random variable defined by Z = cX also follows a normal distribu-
tion, with Z ~ N(cu, (ca)2).

These properties imply that the z-score of a normal random variable follows the

standard normal distribution, which has zero mean and unit variance:

X _
z—score = —If- ~ N(O, 1).

a   
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Figure 6.10. The Area under the Probability Density Function Curve of the Normal

Distribution. The blue area can be computed as the difference between the cumulative

distribution function (CDF) evaluated at k and —k (i.e., the gray and blue areas minus the

gray area).

In addition, it is important to note that if the data are distributed according to
the normal distribution, about two-thirds are within 1 standard deviation from the
mean and approximately 95% are within 2 standard deviations from the mean. Let us

compute the probability that a normal random variable with mean u and standard

deviation 0 lies within k standard deviations from the mean for a positive constant

k > 0. To simplify the computation, consider the z-score, which has the standard

normal distribution:

P(u—k05X5u+ka)= P(—kaSX—uska)

= p(—kgx'“gk)
0'

P(—k E Z S k),

 

where Z is a standard normal random variable. The first equality holds because we

subtract ,u from each term whereas the second inequality holds since we divide each
term by a positive constant 0'.

Thus, the desired probability equals the probability that a standard normal random
variable lies between —k and k. As illustrated in figure 6.10, this probability can be

written as the difference in the CDF evaluated at k and —k:

P(—k5Z5k)=P(Zsk)——P(ZS—k)=F(k)—F(—k),

where F (k) represents the sum of the blue and gray areas in the figure, whereas F (—k)

equals the gray area. These results can be confirmed in R with the pnorm( ) function,

which evaluates the GDP at its input value. This function takes the mean (mean)
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and standard deviation (sd) as two important arguments. The default is the standard
normal distribution with mean = 0 and sd = 1.

## plus minus 1 standard deviation from the mean

mqt/w(l) — pnmrm(-l)

## [1] 0.6826895

## plus minus 2 standard deviations from the mean

i.§'1'_’,1;]71(2) — glinnwfl-Z)

## [1] 0.9544997

The result suggests that, under the standard normal distribution, approximately

2/3 are within 1 standard deviation from the mean and about 95% are within 2

standard deviations from the mean. We can also directly specify mean and standard

deviation without transforming a variable into a standard normal random variable.

Suppose that the original distribution has a mean of 5 and standard deviation of 2, i.e.,

u = 5 and a = 2. We can compute the same probabilities as above in the following

way.

mu <- 5

sigma <- 2

## plus minus 1 standard deviation from the mean

LW‘ V(mu + sigma, mean = mu, sd = sigma) — ynfi:fl(mu — sigma, mean = mu, sd = sigma)

## [1] 0.6826895

## plus minus 2 standard deviations from the mean

y(mu + 2*sigma, mean = mu, sd = sigma) — flflxifl(mu - 2*sigma, mean = mu, sd = sigma)

## [1] 0.9544997

As an application of the normal distribution, consider the regression towards the

mean phenomenon discussed in section 4.2.4. In that section, we presented evidence

from US presidential elections demonstrating that in states where Obama received a

large share ofvotes in 2008, he was likely to receive a smaller share ofvotes in 2012 (see

section 4.2.5). Recall that our regression model used Obama’s 2008 statewide vote share

to predict his vote share for the same state in the 2012 election. We use the regression

object f itl, as created in section 4.2.5.

## see the page reference above

## “Oban1&2012.z” is Obama’s 2012 standardized vote share

## “Obama2008.z” is Obama’s 2008 standardized vote share

fitl

##

## Call:

## Im(formula = Obama2012.z ~ -1 + Obama2008.z, data = pres)
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##

## Coefficients:

## Obama2008 . z

## 0.9834

We examine the distribution of residuals and compare it with the normal distribu-
tion (see section 4.2.3 for the definition of residuals). We first present a histogram and
overlay the PDF of the normal distribution using the dnorm( ) function. We then use
a quantile-quantile plot (Q-Q plot) to directly compare the distribution of residuals
with the normal distribution. The qqnorm( ) function creates a quantile—quantile plot
using the standard normal distribution, whose mean is 0 and standard deviation is 1. To
make the standard normal distribution and the distribution of residuals comparable,
we use the scale ( ) function to compute the z—score of residuals, or standardized
residuals, whose mean is 0 and standard deviation is 1 (see section 3.7.3). Since residuals
always have a mean of 0 (see section 4.2.3), we need only divide them by their standard
deviation to obtain standardized residuals.

e <— resi.(i(fitl)

## z-score of residuals

e.zscore <— aca1e(e)

## alternatively we can divide residuals by their standard deviation

e.zscore <— e / sd(e)

hist(e.zscore, freq = FALSE, ylim = c(O, 0.4),

xlab = "Standardized residuals",

main = "Distribution of standardized residuals“)

x <— seq(from = —3, to = 3, by = 0.01)

lines(x, dnorm(x)) # overlay the normal density

qqnorm(e.zscore, xlim = c(-3, 3), ylim = c(—3, 3)) # quantile—quantile plot

(:1)? ‘1m9(0, l) # 45-degree line
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Both the histogram and Q—Q plot show that the distribution of standardized

residuals is remarkably close to the standard normal distribution. Now, consider the

following probability model:

Obama’s 2012 standardized vote share

= 0.983 X Obama’s 2008 standardized vote share + 6, (6.30)

where 0.983 is the estimated slope coefficient, and the error term 6 follows a normal

distribution with mean and standard deviation equal to 0 and 0.18, respectively. The

value of standard deviation is obtained as follows.

e.sd <- sd(e)

e.sd

##

CA

CA

##

CA

CA

##

##

##

pm

##

[1] 0.1812239

Thus, this probability model describes a potential data-generating process for

Obama’s 2012 vote share given his vote share in the previous election. Because both
the outcome variable and the predictor are standardized, the intercept is estimated

to be exactly zero and hence is not included in the coef (fitl) object (recall that

the regression line always goes through the means of the outcome variable and the

predictor).
We first analyze California where, in 2008, Obama won 61% of the votes, or a

standardized vote share of 0.87. According to the above model, what is the probability

that Obama wins a greater share of California votes in 2012? Using the pnorm()
function, we can compute the area corresponding to the 2008 vote share under the

normal distribution derived for Obama’s 2012 votes from the probability model given
in equation (6.30). We set the lower . tail argument in the pnorm( ) function to

FALSE in order to compute the probability that Obama wins a greater vote share in

2012 than in 2008.

.2008 <— pres$0bama2008.z[pres$state == "CA"]

.2008

[1] 0.8720631

.mean2012 <- coe£(fit1) * CA.2008

.mean2012

Obama2008.z

0.8576233

area to the right; greater than CA.2008

orm(CA.2008, mean = CA.mean2012, sd = e.sd, lower.tail = FALSE)

[1] 0.4682463

 



— Chapter 6: Probability

Thus, Obama is somewhat unlikely to win a larger share of California votes in 2012
than he won in 2008. In fact, the probability of this event is only 46.8%. Now consider
Texas, where in 2008 Obama received only 44% of the votes, or a standardized vote
share of —0.67. Again, under the probability model specified in equation (6.30), we
compute the probability that Obama wins a greater share of Texas votes in 2012 than
he did in the previous election.

 

In the case of Texas, this probability is 52.4%, which is higher than the probability

for California. This illustrates the regression towards the mean phenomenon under the
probability model based on linear regression with a normally distributed error.

6.3.5 EXPECTATION AND VARIANCE

We have introduced several commonly used random variables by defining their
PDF/PMF and GDP. These functions completely characterize the distribution of a

random variable, but often it is helpful to obtain a more concise summary of a

distribution. Previously, we used means and standard deviations in order to measure
the center and spread of a distribution. We begin by examining the expectation,
or mean, of a random variable. We should not confuse this with the sample mean
discussed earlier in this book. The sample mean refers to the average of a variable in
a particular data set, whereas the expectation or population mean represents the mean

value under a probability distribution. The sample mean fluctuates from one sample to
another, but the expectation of a random variable is of a theoretical nature and is fixed
given a probability model.

Before we examine the formal definition of expectation, a few examples will prove
instructive. Consider a Bernoulli random variable with success probability p (e.g.,
a single coin flip with the probability of landing on heads being p). What is the
expectation? This random variable can take only two values, 0 (tail) and 1 (heads), and

so the expectation can be computed as the weighted average of these two values with
(1—p) and p (i.e., the PMF) as weights, respectively. Let E(X) represent the expectation

of a random variable X . Then, the expectation of a Bernoulli random variable can be
computed as

E(X) = OXP(X = 0)+1XP(X =1): 0Xf(0)+le(l) = 0x(l—p)+lxp = p.

(6.31)
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Similarly, consider a binomial random variable with success probability p and size n

(e.g., the number of heads out of n independent and identical coin flips). This random
variable can take any nonnegative integer up to n (i.e., 0, l, . . . , n). The expectation of

this binomial random variable is also defined as the weighted average of these values
with the weights given by the corresponding values of the PMF:

E(X)=0x f(0)+1x f(l)+---+n x f(n) = 2x x f(x). (6.32)
x=0

While we use the weighted average to define expectation for a discrete random

variable, we need a different way of defining the expectation for a continuous variable.

We still compute the weighted average of each value in which the weights are given

by the PDF. However, the difference is that a continuous random variable can take an

uncountably infinite number of distinct values. This is done through the mathematical

operation called integration. Readers who are not familiar with calculus can skip the
details, but, for example, the expectation of a uniform random variable with interval

[a, b] is calculated as

x2 b a+bb b x

E(X)=/axxf(x)dx=/a b—adx=2(b—a)a= 2 _ (6.33) 

Since each point within the interval is equally likely, the expectation of a uniform

random variable equals the midpoint of the interval.
We now summarize the general definition of expectation for discrete and continu—

ous random variables.

 

The expectation of a random variable is denoted by E(X) and is defined as

E(X) = {Ex x x f(x) if X is discrete, (6.34)

fx x f(x)dx ifX is continuous,

where f(x) is the probability mass function or PMF (probability density function

or PDF) of the discrete (continuous) random variable X .  
 

In the definition of expectation, the summation and integration are taken with
respect to all possible values of X . The set of all possible values that X takes is called

the support of the distribution. We now introduce the basic rules of the expectation
operator 1E.
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Let X and Y be random variables, and a and b be arbitrary constants. The
expectation is a linear operator that satisfies the following equalities:

1. E(a) = a.

2. E(aX) = alE(X).

3. E(aX + b) = aIE(X) + b.

4. E(aX + bY) = alE(X) + b1E(Y).

5. IfX and Y are independent, then E(XY) = E(X)1E(Y). But generally,
E(XY) 9E E(X)IE(Y).  
 

Now, using these rules, we can easily compute the expectation ofa binomial random
variable. Recall that a binomial random variable X with success probability p and size
n is the sum of n independently and identically distributed (i.i.d.) Bernoulli random
variables, Y1, . . . , Y", with the same success probability p. This suggests that we can
obtain the expectation of the binomial random variable as

E(X) = IE (2": Yi) = iEO’J = np.

i=1 i=1

This derivation is much more straightforward than the calculation that would be

required (i.e., the sum of binomial PMFs evaluated at many values) if we used the

definition of expectation given in equation (6.32).

Another useful statistic is the standard deviation and its square, variance, of a

random variable. Both concepts have already been introduced in section 2.6.2. Like

the expectation, it is important to distinguish between the standard deviation of a
particular sample and the theoretical standard deviation of a random variable. Their

interpretations match in that standard deviation is defined as the root mean square
(RMS) of deviation from the mean (see section 2.6.2). In the current context, however,

we use the expectation, rather than the sample average, to represent the mean.

 

The variance of a random variable X is defined as

V(X) = EHX — E(X)}2].

The square root ofV(X) is called the standard deviation.  
 

Using the basic rules of expectation, we can write the variance as the difference

between the expectation ofX2 and the expectation ofX. The expectation ofX2 is called

the second moment, while the expectation ofX , or the mean, is called thefirst moment:

V(X) = 1E[{X — E(X)}2]

= mx2 — 2X]E(X) + {E(X)}2]

= E(XZ) — 2]E(X)1E(X) + {1E(X)}2

= E(Xz) — {E(X)}2. (6.35)
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This alternative expression of variance is useful. For example, the variance of a

Bernoulli random variable can be derived by noting that X = X2 regardless ofwhether

X equals 1 or 0 (because 12 = l and 02 = 0):

V(X) = E(X) — {1E(X)}2 = p(1 — p). (6.36)

This variance is greatest when p = 0.5. This makes intuitive sense because when p is

smaller, for example, a Bernoulli random variable is more likely to equal 0 and hence

has a smaller variance and hence less variation.

Similarly, using equation (6.35), we can also calculate the variance of a uniform

random variable with the interval [a, b], though readers unfamiliar with integration

may ignore the details of the following derivation:

  

b 2

V(X) = E(X2)—{]E(X)}2 =/ :2“ dx- (“+b>

x3 b a+b 2 1 2a—( 2 ) —E(b—a). (6.37)
3(b — a)

 

 

Like expectation, variance can be approximated through Monte Carlo simulation.

Using the set ofBernoulli draws we generated earlier, we compute the sample variance,

which should approximate the population variance.

 

Variance has several important properties. For example, since variance involves the

expectation ofsquared distance from the mean, adding a constant to a random variable

only shifts the variable and its mean by the same amount without altering its variance.

However, the multiplication of a constant and a random variable changes its variance:

V(aX) = 1E[{aX — alE(X)}2] = a2V(X). (6.38)

We summarize these properties below.
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Let X and Y be random variables, and a and b be arbitrary constants. The variance
operator V has the following properties:

1. V(a) = 0.

2. V(aX) = a2V(X).

3. V(X + b) = V(X).

4. V(aX + b) = a2V(X).

5. IfX and Y are independent, V(X + Y) = V(X) + V(Y).   
 

To compute the variance of a binomial random variable X , we use its status as the
sum of n independently and identically distributed (i.i.d.) Bernoulli random variables,
Y1, Y2, . . . , Y", with success probability p:

W) = v (Z x) = Evan) = npu — p).
i=1 i=1

As another example, consider two independent normal random variables X and Y.
Suppose that X has mean ux and variance (7)20 whereas Y has mean fly and variance
032,. We write this setting compactly as X ~ N(ux, 0;) and Y ~ N(uy, 012,). What is
the distribution of Z = aX + bY + c? The discussion in section 6.3.4 implies that Z

is also a normal random variable. Using the rules of expectation and variance, we can
derive the mean and variance as

E(Z) = aE(X) + bE(Y) + c = aux + buy + c,

V(Z) = V(aX + bY + c) = a2V(X) + b2V(Y) = 1120; + 1220;,

respectively. Therefore, we have Z ~N(anx + buy + c, (120% + b203, .

6.3.6 PREDICTING ELECTION OUTCOMES WITH UNCERTAINTY

We next revisit the prediction of election outcomes using preelection polls. In

section 4.1’s introduction of the topic, our prediction did not include a measure

of uncertainty. However, polling has sampling variability because we interview only

a fraction of a large population. Suppose that we conduct a preelection poll un-

der the exact same conditions multiple times. Each time, we obtain a represen-

tative sample of the target population and yet the sample consists of different
voters. This means that the estimated support for a candidate will differ for each
sample.
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To capture this sampling variability, consider the following probability model.

Suppose that the Election Day outcome represents the true proportion of Obama

and McCain supporters in the population of voters within each state. We further

assume that the fraction of voters who support a third-party candidate is negligible.

We therefore focus on the two~party support rate for Obama, pi, and McCain, 1 — pj,

within each state j. The CSV data file, pres 0 8 . csv, contains the 2008 US presidential

election results (see table 4.1). We first compute the two-party support rate for

Obama.

presOS <— :m_d.c- ("presO8.csv")

## two—party vote share

pre508$p <— pre308$0bama / (pre508$0bama + presO8$McCain)

We assume that for each hypothetical sampling, we interview 1000 voters who

are randomly selected from the population. The binomial distribution with success

probability p and size 1000 within each state is our model for Obama’s support

estimate based on a preelection poll. Using Monte Carlo simulation, we estimate

Obama’s support within each state, then allocate that state’s Electoral College votes

to the winning candidate. We will repeat this procedure many times to describe the

uncertainty in preelection polling estimates that is due to sampling variability.

To sample from the binomial distribution in R, we use the rbinom() function.

The prob argument of this function can take a vector of success probabilities. For

each success probability, the function will return a vector of binomial random variable

realizations. That is, given a pj probability of success and n = 1000 voters, R will

generate the number of votes for Obama. If a majority of these 1000 voters support

Obama, we assign the state’s Electoral College votes to Obama. We construct a

histogram of these predicted Electoral College votes for Obama.

n.states <— 1"“,(preSOB) # number of states

n <— 1000 # number of respondents

sims <— 10000 # number of simulations

## Obama’s electoral votes

Obama.ev <— '~w(NA, sims)

2‘ L4 11:?

(i Ev lzsims) (

## samples number of votes for Obama in each state

draws <— "ninnm(n.states, size = n, prob = presO8$p)

## sums state's Electoral College votes if Obama wins the majority

Obama.ev[i] <— sum(pre308$EV[draws > n / 2])

'xu(0bama.ev, freq = FALSE, main = "Prediction of election outcome",

xlab = "Obama’s Electoral College votes")

(v = 364, col = "b1ue") # actual result
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Prediction of election outcome
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We find that all prediction draws are above the winning threshold of 270 votes.
While the highest density of the histogram roughly corresponds to the actual number
of Electoral College votes Obama won, the distribution of predictions is skewed. As a
result, the mean and median values are lower than the actual number ofObama’s votes.

 

We can also analytically compute the expected value of Obama’s Electoral College

votes under this probability model. Let Sj represent the number of respondents
(among a total of 1000 respondents) to a preelection poll who express support for
Obama in state j. We use vi to denote the number ofElectoral College votes for state j.
Then, the expected number of Obama’s Electoral College votes is

51 51
E(Obama’s votes) =Z vj x P(Obama wins state j) =Z 1;; x P(Sj > 500).

(6.39)

To compute this expectation in R, we use the pbinom() function, which evaluates
the GDP of the binomial distribution at its input value. As in dbinom< ) , the function

takes as its arguments size and prob. In addition, we set the lower . tai l argument

to FALSE so that the function can be used to evaluate P(Sj > 500) rather than

P (81- 5 500). The threshold 500 is based on the fact that we predict Obama as a winner

for a state if more than half of 1000 respondents support him.
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As expected, the analytically derived expected value is close to the approximate value

based on Monte Carlo simulations. Similarly, we can compute the variance ofObama’s

electoral votes:

51

V(Obama’s predicted votes) = ZV(vjl{Sj > 500})

i=1

51

= vamsj > 500)(1— P(sj > 500)).
j=l

In this derivation, l{-} represents the indicator function, which returns 1 (0) if the

statement inside the curly braces is true (false). In addition, the first equality follows

from the fact that the variance of the sum of independent random variables equals

the sum of their respective variances. We also used the expression for the variance of

a Bernoulli random variable given in equation (6.36) because we are evaluating the

variance of a Bernoulli random variable 1{S,- > 500}. We compute the variance first

with the theoretical expression above and then with Monte Carlo simulation draws.
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The result implies that with 1000 respondents in each state, our poll-based pre-
diction of Obama’s Electoral College votes varies from one sample to another. The
standard deviation of our prediction is about 16 Electoral College votes. Given that
Obama won the election with a much greater margin, this sampling variation did not
significantly impact the preelection polls’ ability to predict the winner.

As the final topic of this chapter, we introduce two important probabilistic regu-
larities in large samples. In a wide range of probabilistic models, certain patterns will
emerge as the sample size increases. These regularities will quantify the uncertainty
of our data analysis in the next chapter. In this section, we discuss two large sample
theorems (asymptotic theorems): the law oflarge numbers and the central limit theorem.

6.4.1 THE LAW OF LARGE NUMBERS

The law oflarge numbers states that as the sample size increases, the sample average
converges to the expectation or population average.

 

Suppose that we obtain a random sample of 71 independently and identically

distributed (i.i.d.) observations, X1, X2, .. . , X", from a probability distribution

with expectation E(X). The law of large numbers states

_ 1 ”
X" = ;2 xi —+ E(X), (6.40)

i=1

where we use —> as shorthand for convergence.   
In the theorem, X without subscript i represents a generic random variable,

whereas X,- is the random variable for the ith observation. Although the precise

mathematical meaning of convergence, as well as the precise conditions under which
this theorem holds, are beyond the scope of this book, we emphasize that this theorem

is applicable to a wide range of probability distributions. Intuitively speaking, the
law states that the sample average, X", will better approximate the expectation,

E(X), as the sample size increases. The law of large numbers is powerful because

it can be applied in most settings without knowledge of the underlying probability
distribution.

We have already implicitly used the law of large numbers in a variety of contexts.

The law of large numbers justifies the use of random sampling in surveys (see

section 3.4.1). As we increase the number of randomly sampled respondents, the

average response among them becomes closer to the true average of the population.

In preelection polls, so long as the sample size is sufficiently large, the sample fraction

of those who support Obama approximates the population fraction of voters who are
Obama supporters. The law of large numbers enables researchers to talk to a small

fraction of randomly sampled individuals in order to infer the opinion of the entire
population.
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In terms of a probability model, we can think of preelection polling as the sum of

independently and identically distributed (i.i.d.) Bernoulli random variables, where
a respondent is randomly drawn from a population of Obama supporters and non-

supporters. That is, we define X,- as an indicator variable of voter i being an Obama

supporter, i.e., X,- = 1 if voter i is an Obama supporter and X,- = 0 otherwise. The

proportion of Obama supporters in the population is given by p. Then, the law of
large numbers given in equation (6.40) can be directly applied. The sample fraction

of Obama’s supporters approaches the expectation, or the population proportion of

Obama supporters, i.e., E(X) = p.

Similarly, we can rely on the law of large numbers in randomized experiments
when computing the difference-in-means between the (randomly divided) treatment

and control groups to estimate the average treatment effect (see section 2.4.1). If we

consider a population of potential outcomes, as the sizes of the treatment and control

groups increase, the sample average of the observed outcome better approximates the

expected potential outcome. In other words, we can apply the law of large numbers

shown in equation (6.40) by setting X to each potential outcome, Y(l) in the treatment

group and Y(0) in the control group.
The law of large numbers can also justify the use of Monte Carlo simulations.

For example, in the birthday problem described in section 6.1.4, we computed the

fraction of simulation trials where at least two birthdays were the same, in order to

approximate the true probability of the event occurrence. When applying the law

of large numbers shown in equation (6.40), this probability can be written as the

expectation by defining a Bernoulli random variable that equals 1 if at least two

birthdays match and 0 otherwise. We can then think of the fraction of simulation trials

as the sample mean. Similarly, we solved the Monty Hall problem by computing the

fraction of simulation trials in which a contender won a car rather than a goat (see

section 6.2.2).

To illustrate the law of large numbers, we conduct a Monte Carlo simulation. We

randomly sample from a binomial distribution with success probability p = 0.2 and

size n = 10. We then examine, as the number of binomial draws increases, how the

sample mean approaches the expectation, which equals E(X) = np = 2 in this case.

To calculate the sample mean after a single draw, two draws, and so on, all the way up to

1000 draws, we apply the cumsum( ) function. This functioncomputes the cumulative

sum, which combines all values up to and including the current value, for each position

in a vector. For example, for a vector of length 3, (5, 3, 4), the cumsum( ) function will

return another vector oflength 3 that contains the cumulative sum (5, 8, 12). We obtain

the desired average for each sample size (5, 4, 4) by dividing the cumulative sum vector

by a vector that contains the number of elements used for the summation, i.e., (l, 2, 3).

According to the law of large numbers, a large number of draws should produce a

sample mean close to the expectation.
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In addition, we use the uniform distribution as an example of continuous random
variables. The runi f ( ) function generates a random sample from this distribution.

 

Finally, we plot the results. As the sample size increases, the sample mean ap-
proaches the expectation.
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6.4.2 THE CENTRAL LIMIT THEOREM

The law oflarge numbers is useful but cannot quantify how good the approximation

becomes as the sample size increases. For example, in the above figure, convergence
appears to occur more quickly in the case ofthe uniform distribution than the binomial

distribution. In practice, however, we observe only the sample mean and do not know

the expectation. The former is something we compute from the data but the latter is a
theoretical concept. Therefore, we need a different tool to know how well our sample

mean approximates the expectation.
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Figure 6.11. The Ouincunx as a Machine to Illustrate the Central Limit Theorem.

The central limit theorem shows that the distribution ofthe sample mean approaches

the normal distribution as the sample size increases. This is a remarkable result because,
like the law of large numbers, it applies to a wide range of distributions. The result is

useful, as shown in the next chapter, when quantifying the uncertainty of our estimates.

Before we explain the central limit theorem more formally, we discuss the quincunx,

invented by Sir Francis Galton who first demonstrated the regression towards the mean

phenomenon (section 4.2.4), as a machine that illustrates the theorem. Figure 6.11

presents a picture of a quincunx owned by the author. Red balls are dropped, one at

a time, from the tiny hole at the top. The balls, as they fall, bounce off each peg either

to its right or left before settling into one of the slots at the bottom of the machine. As

seen in the figure, the balls will cluster in the middle, forming a bell-shaped curve that

looks like a normal distribution.
Why does the quincunx create a bell-shaped curve? When a ball hits a peg, the ball

has a 50—50 chance of bouncing off to its right or left. Although each path from the
top to the bottom of the quincunx is equally likely, the ball has more ways to fall into

a middle slot than a side slot. More formally, the total number of ways in which a ball

reaches a particular slot can be computed using Pascal’s triangle, as shown in figure 6.8.

As illustrated in the figure, for example, ifthere are 5 lines ofpegs in the quincunx, there

are 20 ways for a ball to fall into the middle two slots.
We can understand the quincunx as a machine that generates a sequence of

independently and identically distributed (i.i.d.) binomial random variables X with
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success probability 0.5 and size n, where n is the number of lines of pegs. Recall that a
binomial random variable is the sum ofn i.i.d. Bernoulli random variables. This means

that if the central limit theorem holds, then we expect the binomial random variable to

approximate the normal random variable as the sample size, or the number of lines of
pegs in this case, increases. Here, the sample size refers to the number of lines of pegs,

not the number of balls. Increasing the latter reduces the Monte Carlo error. In fact,

this is exactly what we observe.
The central limit theorem applies not only to the Bernoulli random variable, but also

to other distributions. This is important because in most practical settings we do not
know the probability distribution that generates the data. We now more formally state

the central limit theorem.

 

Suppose that we obtain a random sample of n independently and identically
distributed (i.i.d.) observations, X1, X2, . . . , X", from a probability distribution

with mean E(X) and variance V(X). Let us denote the sample average by

7,, = 2;] X,- / n. Then, the central limit theorem states

7,, — E(X)
—_ «1-) N(0, 1). (6.41)
«/ V (X 5/ n

In the theorem, w indicates “convergence in distribution” as the sample size n
increases.   
 

While formula (6.41) appears complex at first glance, it has a straightforward

interpretation. The theorem says that the z-score of the sample mean converges in

distribution to the standard normal distribution orN(O, 1) as the sample size increases.

Recall the definition of z-score given in equation (3.1). In order to standardize a

random variable, we subtract its mean from it and then divide it by its standard

deviation. As a result, any z—score has zero mean and unit variance.
To show that the left-hand side offormula (6.41) represents the z-score ofthe sample

mean, we first note that the expectation of the sample mean 7,, is the expectation of
the original random variable X . Using the rules of the expectation operator, we obtain

_ 1 " 1 "
E(Xn) = E (; g; X) = Z 21mm: E(X). (6.42)

We next exploit the fact that the variance oftwo independent random variables equals
the sum of their variances. The variance of the sample mean then is given by

.. 1 " 1 ” 1
V(Xn) = V (5g X) = fl gwxi) = ;V(X). (6.43)

To derive this expression, we also used formula (6.38). This shows that the denom—

inator of the left-hand side of formula (6.41) represents the standard deviation of
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the sample mean. Hence, the entire quantity in the left-hand side of formula (6.41)

corresponds to the z—score of the sample mean.
Monte Carlo simulations can illustrate the central limit theorem. We consider two

distributions as examples: the binomial distribution with success probability p = 0.2

and size n = 10, and the uniform distribution with the range [0, 1]. Recall that

the mean and variance of this binomial distribution are np = 10 x 0.2 = 2 and

np(l — p) = 10 x 0.2 x (l — 0.2) = 1.6, respectively. For this uniform distribution,
the mean and variance are (a + b) /2 = 1/2 and (b —— a)2/12 = 1/ 12, respectively.

We use these results to compute the z-scores and see whether their distributions can be
approximated by the standard normal distribution. (To illustrate the quincunx through

Monte Carlo simulations, we sample from the Bernoulli distribution or equivalently the

Binomial distribution with size n = 1)

## Sims = number of simulations

n.samp <— 1000

z.binom <- z.unif <— :vL(NA, sims)

um: (i in

X

Z.

X

Z.

)

lzsims) {

<— ipjnum(n.samp, p = 0.2, size = 10)

binom[i] <- (moav(x) - 2) / 3C“T(1.6 / n.samp)

<— vun3f(n.samp, min = O, max = l)

unif[i] <- (w?aF(x) - 0.5) / Sqft(1 / (12 * n.samp))

## histograms; nclass specifies the number of bins

1i£t(z.binom, freq = FALSE, nclass = 40, xlim = C(-4, 4), ylim = C(O, 0.6),

xlab = "z—score", main = "Binomia1(0.2, 10)")

x <- “eq(from = —3, to = 3, by = 0.01)

‘ , x, dunrm(x)) # overlay the standard normal PDF

Liwh(z.unif, freq = FALSE, nclass = 40, xlim = C(-4, 4), ylim = c(O, 0.6),

xlab = “z-score", main = “Uniform(0, 1)")

'1 MO}; (x, (:i:1t:7:lT1(x))

Binomial (0.2, 10) Unifo_rm (0, 1)
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The above simulations are based on a sample size of 1000. We see that the standard
normal distribution approximates the distribution of the z-score well. What about for

a smaller sample size? Below, we conduct the same simulation using a sample size of
100 (the code is identical to the one above, aside from the change in sample size, and
therefore omitted).

 
 

       

Binomial (0.2, 10) Uniform (0, 1)

0.6 — 0,5 —
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0.4 - 0.4 - g

a A k
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g i
Y

0-2 ‘ 0.2 — | k

0.1 - . - 4| I‘

n |k
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Z—SCOre z—score

We observe that the approximation is poorer than before for the binomial distrib-

ution, whereas the central limit theorem holds well for the uniform distribution. The

theorem does not tell us how large the sample size must be for a good approximation.

As shown here, the answer to this question depends on the distribution of the original

random variables. Nevertheless, what is incredible about the central limit theorem is

that the z-score of the sample mean converges in distribution to the standard normal

distribution regardless of the distribution of the original random variable.

In this chapter, we studied probability. We first introduced two different interpreta-

tions of probability, frequentist and Bayesian. Despite its competing interpretations,

probability has a unified mathematical foundation with its basic definition and axioms.
We then covered the basic rules of probability, including the law of total probability,

the definition of conditional probability, the concept of independence, and Bayes’
rule. We applied these rules to various problems including the prediction of an

individual’s race from their surname and residence location.

Next, we examined the concepts of random variables and their probability distri-

butions. We introduced basic distributions such as uniform, binomial, and normal
distributions. These distributions can be characterized by the probability density

function and probability mass function for continuous and discrete random vari-

ables, respectively. The cumulative distribution function represents the cumulative
probability that a random variable takes a value less than or equal to a specified value.

Using the probability mass and density functions, we showed how to compute the
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Figure 6.12. The Enigma Machine and its Plugboard. Photographer: Karsten Sperling,

http://spiff.de/photo.

expectation and variance of a random variable. We used these tools to quantify the
sampling uncertainty regarding the polling prediction of election results.

Lastly, we discussed the two fundamental large sample approximation theorems.

The power of these theorems is that they can be applied to the sample mean of

virtually any random variable given a sufficient sample size. The law of large numbers

states that the sample mean approaches the expectation or the population mean as

the sample size increases. This justifies the use of the sample mean as an estimator of

the population mean in survey sampling and randomized experiments. The central

limit theorem states that the z—score of the sample mean is approximately distributed

according to the standard normal distribution. In the next chapter, we will use these

large sample theorems to quantify the degree of uncertainty regarding the empirical

conclusions drawn from our data analyses.

6.6.1 THE MATHEMATICS OF ENIGMA

The Enigma machine is the most famous cipher machine to date. Nazi Germany

used it during World War II to encrypt messages so that enemies could not understand

them. The story of the British cryptanalysts who successfully deciphered Enigma has

become the subject ofmultiple movies (Enigma (2001), The Imitation Game (2014)). In

this exercise, we will focus our attention on a simplified version ofthe Enigma machine,

which we name “Little Enigma.” Like the real Enigma machine shown in the left panel

of figure 6.12, this machine consists of two key components. First, the Little Enigma
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machine has 5 different rotors, each ofwhich comes with 10 pins with numbers ranging
from 0 to 9. Second, as shown in the right panel of figure 6.12, the plugboard contains

26 holes, corresponding to the 26 letters of the alphabet. In addition, 13 cables connect
all possible pairs of letters. Since a cable has two ends, one can connect, for example,

the letter A with any of the other 25 letters present in the plugboard.
To either encode a message or decode an encrypted message, one must provide

the Little Enigma machine with the correct S—digit passcode to align the rotors, and
the correct configuration of the plugboard. The rotors are set up just like many
combination locks. For example, the passcode 9-4—2—4—9 means that the 5 rotors

display the numbers 9, 4, 2, 4, and 9 in that order. In addition, the 13 cables connecting
the letters in the plugboard must be appropriately configured. The purpose of the

plugboard is thus to scramble the letters.. For example, if B is connected to W, the Little

Enigma machine will switch B with W and W with B to encode a message or decode

an encoded message. Thus, a sender types a message on the keyboard, the plugboard

scrambles the letters, and the message is sent in its encrypted form. A receiver decodes
the encrypted message by retyping it on a paired Little Enigma machine that has the
same passcode and plugboard configuration.

1. How many different 5—digit passcodes can be set on the 5 rotors?

2. How many possible configurations does the plugboard provide? In other words,
how many ways can 26 letters be divided into 13 pairs?

3. Based on the previous two questions, what is the total number ofpossible settings

for the Little Enigma machine?

4. Five cryptanalytic machines have been developed to decode 1500 messages
encrypted by the Little Enigma machine. The table below presents information

on the number of messages assigned to each machine and the machine’s failure
rate (i.e., the percentage of messages the machine was unable to decode). Aside
from this information, we do not know anything about the assignment of each

message to a machine or whether the machine was able to correctly decode the

 

 

message.

Machine Number ofmessages Failure rate

Banburismus 300 10%

Bombe 400 5%
Herivel tip 250 15%

Crib 340 17%

Hut 6 210 20%
 

Suppose that we select one message at random from the pool of all 1500 messages
but find out this message was not properly decoded. Which machine is most likely

responsible for this mistake?
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5. Write an R function that randomly configures the plugboard. This function will

take no input but will randomly select a set of 13 pairs of letters. The output object

should be a 2 x 13 matrix for which each column represents a pair of letters.

You may use the built-in R object letters, which contains the 26 letters of the

alphabet as a character vector. Name the function plugboard.

6. Write an R function that encodes and decodes a message given a plugboard

configuration set by the plugboard () function from the previous question.

This function should take as inputs the output of the plugboard ( ) function,

as well as a message to be encoded (decoded), and return an encoded (decoded)

message. You may wish to use the gsub ( ) function, which replaces a pattern in a

character string with another specified pattern. The tolower ( ) function, which

makes characters in a character vector lowercase, and toupper () function,

which capitalizes characters in a character vector, can also help.

6.6.2 A PROBABILITY MODEL FOR BETTING MARKET ELECTION PREDICTION

Earlier in this chapter, we used preelection polls with a probability model to predict

Obama’s electoral vote share in the 2008 US election. In this exercise, we will apply

a similar procedure to the Intrade betting market data analyzed in an exercise in

chapter 4 (see section 4.5.1).4 The 2008 Intrade data are available as intradeO 8 . csv.

The variable names and descriptions of this data set are available in table 4.9. Recall

that each row of the data set represents daily trading information about the contracts

for either the Democratic or Republican Party nominee’s victory in a particular state.

The 2008 election results data are available as presO 8 . csv, with variable names and

descriptions appearing in table 4.1.

1. We analyze the contract of the Democratic Party nominee winning a given state

j. Recall from section 4.5.1 that the data set contains the contract price of the

market for each state on each day i leading up to the election. We will interpret

PriceD as the probability pij that the Democrat would win state j ifthe election

were held on day i . To treat PriceD as a probability, divide it by 100 so it ranges

from 0 to 1. How accurate is this probability? Using only the data from the day

before Election Day (November 4, 2008) within each state, compute the expected

number of electoral votes Obama is predicted to win and compare it with the

actual number of electoral votes Obama won. Briefly interpret the result. Recall

that the actual total number of electoral votes for Obama is 365, not 364, which

is the sum of electoral votes for Obama based on the results data. The total of

365 includes a single electoral vote that Obama garnered from Nebraska’s 2nd

Congressional District. McCain won Nebraska’s 4 other electoral votes because

he won the state overall.

4 This exercise is based on David Rothschild (2009) “Forecasting elections: Comparing prediction markets,

polls, and their biases.” Public Opinion Quarterly, vol. 73, no. 5, pp. 895—916.
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2. Next, using the same set of probabilities used in the previous question, simulate
the total number of electoral votes Obama is predicted to win. Assume that the
election in each state is a Bernoulli trial where the probability of success (Obama
winning) is pij. Display the results using a histogram. Add the actual number of
electoral votes Obama won as a solid line. Briefly interpret the result.

3. In prediction markets, people tend to exaggerate the likelihood that the trailing
or “long shot” candidate will win. This means that candidates with a low (high)
pij have a true probability that is lower (higher) than their predicted pij. Such a
discrepancy could introduce bias into our predictions, so we want to adjust our
probabilities to account for it. We do so by reducing the probability for candidates
who have a less than 0.5 chance of winning, and increasing the probability for
those with a greater than 0.5 chance. We will calculate a new probability pf}. using
the following formula proposed by a researcher: pf]- : ¢(1.64 x ¢‘1(pif )) where
<I>(~) is the CDF of a standard normal random variable and ¢’1(-) is its inverse,
the quantile function. The R functions pnorm( ) and qnorm( ) can be used to
compute <I>(.) and <I>_1(-), respectively. Plot pi}, used in the previous questions,
against pf]- In addition, plot this function itself as a line. Explain the nature ofthe
transformation.

4. Using the new probabilities pf}, repeat questions 1 and 2. Do the new probabilities
improve predictive performance?

5. Compute the expected number of Obama’s electoral votes using the new proba-
bilities p; for each of the last 120 days of the campaign. Display the results as a
time-series plot. Briefly interpret the plot.

6. For each of the last 120 days of the campaign, conduct a simulation as in
question 2, using the new probabilities pfj. Compute the quantiles of Obama’s
electoral votes at 2.5% and 97.5% for each day. Represent the range from 2.5%
to 97.5% for each day as a vertical line, using a loop. Also, add the estimated
total number of Obama’s electoral votes across simulations. Briefly interpret the
result.

6.6.3 ELECTION FRAUD IN RUSSIA

In this exercise, we use the rules of probability to detect election fraud by examining
voting patterns in the 2011 Russian State Duma election.5 The State Duma is the federal
legislature of Russia. The ruling political party, United Russia, won this election, but
to many accusations of election fraud, which the Kremlin, or Russian government,
denied. As shown in figure 6.13, some protesters highlighted irregular patterns of
voting as evidence of election fraud. In particular, the protesters pointed out the

5 This exercise is based on Arturas Rozenas (2016) “Inferring election fraud from distributions of vote-
proportions.” Working paper.
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Figure 6.13. Protesters in the Aftermath of the 2011 State Duma Election. The poster

says, "We don‘t believe Churov! We believe Gauss!” Churov is the head of the Central

Electoral Commission, and Gauss refers to an 18th century German mathematician, Carl

Friedrich Gauss, whom the Gaussian (normal) distribution was named after. Source:

Maxim Borisov, trv-science.ru.

Table 6.5. Russian and Canadian Election Data.
 

 

Variable Description

N total number of voters in a precinct

turnout total turnout in a precinct

votes total number of votes for the winner in a precinct
 

Note: The results of each election are stored in a data frame. The RData file

fraud . RData contains data on four elections: the 2007 and 2011 Russian Duma

elections, the 2012 Russian presidential election, and the 2011 Canadian election.

relatively high frequency of common fractions such as 1 /4, 1 / 3, and 1 /2 in the official

vote shares.

We analyze the official election results, contained in the russiaZOll data frame

in the RData file fraud.RData, to investigate whether’there is any evidence for

election fraud. The RData file can be loaded using the load() function. Besides

russia2 O l l, the RData file contains the election results from the 2003 Russian Duma

election, the 2012 Russian presidential election, and the 2011 Canadian election, as

separate data frames. Table 6.5 presents the names and descriptions of variables used
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in each data frame. Note: Part of this exercise may require computationally intensive
code.

1. To analyze the 2011 Russian election results, first compute United Russia’s
vote share as a proportion of the voters who turned out. Identify the 10 most
frequently occurring fractions for the vote share. Create a histogram that sets
the number of bins to the number of unique fractions, with one bar created for
each uniquely observed fraction, to differentiate between similar fractions like
1 /2 and 51/100. This can be done by using the breaks argument in the his t ( )
function. What does this histogram look like at fractions with low numerators
and denominators such as 1/2 and 2/3?

2. The mere existence of high frequencies at low fractions may not imply election
fraud. Indeed, more numbers are divisible by smaller integers like 2, 3, and 4 than
by larger integers like 22, 23, and 24. To investigate the possibility that the low
fractions arose by chance, assume the following probability model. The turnout
for a precinct has a binomial distribution, whose size equals the number ofvoters
and success probability equals the turnout rate for the precinct. The vote share
for United Russia in this precinct is assumed to follow a binomial distribution,
conditional on the turnout, where the size equals the number of voters who
turned out and the success probability equals the observed vote share in the
precinct. Conduct a Monte Carlo simulation under this alternative assumption
(1000 simulations should be sufficient). What are the 10 most frequent vote
share values? Create a histogram similar to the one in the previous question.
Briefly comment on the results you obtain. Note: This question requires a
computationally intensive code. Write a code with a small number of simulations
first and then run the final code with 1000 simulations.

3. To judge the Monte Carlo simulation results against the actual results of the
2011 Russian election, we compare the observed fraction of observations within
a bin of certain size with its simulated counterpart. To do this, create histograms
showing the distribution ofquestion 2’s four most frequently occurring fractions,
i.e., 1 /2, 1 /3, 3/5, and 2/3, and compare them with the corresponding fractions’
proportion in the actual election. Briefly interpret the results.

4. We now compare the relative frequency of observed fractions with the simulated
ones beyond the four fractions examined in the previous question. To do this, we
choose a bin size of0.01 and compute the proportion ofobservations that fall into
each bin. We then examine whether or not the observed proportion falls within
the 2.5 and 97.5 percentiles of the corresponding simulated proportions. Plot the
result with the horizontal axis as the vote share and vertical axis as the estimated
proportion. This plot will attempt to reproduce the one held by protesters in
figure 6.13. Also, count the number of times that the observed proportions
fall outside the corresponding range of simulated proportions. Interpret the
results.
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5. To put the results of the previous question into perspective, apply the procedure

developed in the previous question to the 2011 Canadian elections and the 2003

Russian election, where no major voting irregularities were reported. In addition,

apply this procedure to the 2012 Russian presidential election, where election

fraud allegations were reported. No plot needs to be produced. Briefly comment

on the results you obtain. Note: This question requires a computationally

intensive code. Write a code with a small number of simulations first and then

run the final code with 1000 simulations.
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Uncertainty

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to
reality.

—Albert Einstein, Geometry and Experience

Thus far, we have studied various data analysis techniques that can extract useful
information from data. We have used these methods to draw causal inferences,
measure quantities of interest, make predictions, and discover patterns in data. One
important remaining question, however, is how certain we can be of our empirical
findings. For example, if in a randomized controlled trial the average outcome differs
between the treatment and control groups, when is this difference large enough for
us to conclude that the treatment of interest affects the outcome, on average? Did
the observed difference result from chance? In this chapter, we consider how to
separate signals from noise in data by quantifying the degree of uncertainty. We do
so by applying the laws of probability introduced in the previous chapter. We cover
several concepts and methodologies to formally quantify the level of uncertainty. These
include bias, standard errors, confidence intervals, and hypothesis'testing. Finally, we
describe ways to make inferences from linear regression models with measures of
uncertainty.

In earlier chapters, we showed how to infer public opinion in a population through
survey sampling (chapter 3) and estimate causal effects through randomized controlled
trials (chapter 2). In these examples, researchers want to estimate the unknown value
of a quantity of interest using observed data. We refer to the quantity of interest as a
parameter and the method to compute its estimate as an estimator. For example, in
the analysis of survey data presented in chapter 3, we are interested in estimating the
proportion of Obama supporters in the population of American voters (parameter)
based on a relatively small number of survey respondents (data). We use the sample
proportion ofObama supporters as our estimator. Similarly, in randomized controlled
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trials, the average outcome difference between the treatment and control groups

represents an estimator for the average causal effect, which is our parameter.

How good is our estimate of the parameter? This is a difficult question to answer

because we do not know the true value of the parameter. However, it turns out

that we can characterize how well the estimator will perform over hypothetically

repeated sampling. This section shows how statistical theory can help us investigate

the performance of the estimators we used in the earlier parts of the book.

7.1.1 UNBIASEDNESS AND CONSISTENCY

Consider a survey for which a certain number of respondents are selected from a

population using the simple random sampling procedure. Simple random sampling

implies that each individual in the population is equally likely to be selected into a
sample. As discussed in chapter 3, such random sampling benefits us by producing a

representative sample of a target population (see section 3.4.1).
To give further context to these ideas, recall the preelection polling example in the

2008 US presidential election (see section 4.1.3). In that example, our parameter was
the proportion of voters in the population of American voters that supported Obama.

We used simple random sampling to obtain a representative sample of n voters from

the population. The survey asked whether each of the respondents supported Obama

or not. We used the sample proportion of those who supported Obama as our estimate

of the population proportion ofObama supporters.
To formalize the content of the previous paragraph, let p denote the population

proportion ofObama supporters. We use a random variable X to represent a response

to the question. If voter i supports (does not support) Obama, then we denote this

observation with X. = 1 (X,- = 0). Since each respondent is sampled independently

from the same population, we can assume that {X 1, X2, . . . , Xn} are independently

and identically distributed (i.i.d.) Bernoulli random variables with success probability

1) (see section 6.3.2). Our estimator is the sample proportion, 7,, = 2L1 X; / n, which
we use to estimate the unknown parameter p. The specific value of this estimator we

obtain from our sample represents the estimate of p.
How good is this estimate? Ideally, we would like to compute the estimation error,

which is defined as the difference between our estimate and the truth:

estimation error = estimate — truth = 7,, — p.

However, the estimation error can never be computed because we do not know p. In

fact, ifwe know the truth, there is no need to estimate the parameter in the first place!

While we never know the size of the estimation error specific to our sample, it is

sometimes possible to compute the average magnitude of the estimation error. To do

this, we consider the hypothetical scenario of conducting the same preelection poll

infinitely many times in exactly the same manner. This scenario is purely hypothetical

because in reality we obtain only one sample and can never conduct sampling in an

identical manner multiple times. Under this scenario, each hypothetical poll would

draw a different set of n voters from the sample population and yield a different

proportion of sampled voters who express support for Obama. This means that the
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sample proportion, represented by a random variable 7", would take a different value
for each poll. As a result, the estimation error would also differ from one poll to another
and hence is a random variable.

More formally, the sample proportion can be considered as a random variable
that has its own distribution over the repeated use of simple random sampling. This
distribution is called the sampling distribution of the estimator. In this particular
example, each hypothetical sample is drawn independently from the same population.
Therefore, the sample proportion, 7", is a binomial random variable, divided by n,
with success probability p and size n where n represents the number of respondents
in a poll (recall from section 6.3.3 that the sum of i.i.d. Bernoulli random variables is a
binomial random variable).

We now compute the average estimation error or bias over this repeated simple
random sampling procedure using the concept ofexpectation (see section 6.3.5). Under

the binomial model, the success probability equals p. Therefore, we can show that the

bias, or the average estimation error, of the sample mean is zero:

bias = E(estimation error) = E(estimate — truth) = E(Yn) — p = p — p = 0.

This result implies that the sample proportion under simple random sampling
is an unbiased estimator for the population proportion. That is, while the sample
proportion based on a specific sample may deviate from the population proportion,

it gives, on average, the right answer. More precisely, if we were to conduct the

same preelection poll infinitely many times under identical conditions, the average

of the sample proportions of Obama supporters would exactly equal their population

proportion. Thus, unbiasedness refers to the accuracy of the average estimate over
repeated sampling rather than the accuracy ofan estimate based on the observed data.

Similar logic applies to nonbinary variables. We can show that the expectation of

the sample mean equals the population average so long as each survey respondent is
randomly sampled from a large population. An example ofa nonindependent sampling

procedure is respondent-driven sampling, in which one respondent introduces another

respondent to the interviewer. Using the fact that expectation is a linear operator (see
section 6.3.5), we obtain the following general result for the sample mean:

M") = % 21M) = mm. (7.1)
i=1

The final equality follows because each ofthe n observations is randomly sampled from
the same population whose mean is denoted by E(X). Therefore, regardless of the

distribution of a variable, random sampling provides a way to use the sample average

as an unbiased estimator of the population mean. In other words, equation (7.1) shows
that random sampling eliminates bias.

In general, random sampling plays an essential role in obtaining an unbiased
estimate. In the absence of random sampling or other ways to obtain a representative

sample, it is difficult to estimate a population characteristic without bias. For example,

item and unit nonresponse, discussed in section 3.4.2, can yield biased estimates.
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In section 6.4.1, we introduced the law oflarge numbers, which states that as sample
size increases, the sample mean converges to the population mean. In the current

context, this implies that the estimation error, which is the difference between the

sample mean and the population mean, becomes smaller as the sample size increases.

The estimator is said to be consistent if it converges to the parameter as the sample

size goes to infinity. Thus, the discussion so far implies that the sample mean is a good

estimator for the population mean because it is an unbiased and consistent estimator

of the population mean. That is, the sample mean on average correctly estimates the

population mean, and the estimation error decreases as the sample size increases.

 

An estimator is said to be unbiased if its expectation equals the parameter. An

estimator is said to be consistent if it converges to the parameter as the sample

size increases. For example, the sample average 7,, = 2L1 X;/ n is unbiased and

consistent for the population mean lE(X) under simple random sampling:

E(Yn)=lE(X) and Y" —> E(X).  
 

We next show that the difference—in—means estimator used to analyze randomized
controlled trials (see section 2.4) is unbiased for the average treatment effect. Suppose

that we have a sample of n units for which we conduct a randomized experiment. This
experiment features a single binary treatment 7} which equals 1 if unit i receives the

treatment and 0 if the unit is assigned to the control group. We randomly choose m

units out of this sample and assign them to the treatment group, and the remaining

n — n1 units belong to the control group. This treatment assignment procedure is

called complete randomization, which fixes a priori the total number of units that
receive the treatment. In contrast, simple randomization randomly assigns treatment

to each unit independently, and so the total number of treated units will vary from one

randomization to another. Thus, under complete randomization, there exists a total

of (:1) ways of assigning n1 units to the treatment group and the remaining units to

the control group (see section 6.1.5 for the definition of combinations). Each of these

treatment assignment combinations is equally likely but only one of them is realized.

The first parameter we consider, the sample average treatment eflect (SATE), is

defined in equation (2.1) and reproduced here:

1 n

SATE = Z ;{n(1)— Y:(0)}.

In this equation, Y;(l) and Y;(0) are the potential outcomes under the treatment and

control conditions for unit 1', respectively. As discussed in section 2.3, Y,-(1) (Yi(0))

represents the outcome that would be observed for unit i if it were assigned to the

treatment (control) condition. Since Y;(1) — Y}(0) represents the treatment effect for

unit i, the SATE is the average of this treatment effect across all units in the sample. But

because only one potential outcome can be observed for each unit, we cannot observe

the treatment effect for any unit, so the SATE is unknown.
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In section 2.4, we learned that randomization of treatment assignment makes
the treatment and control groups identical on average. As a result, we can use the

diflerence-in-means estimator to estimate average treatment effect. Let’s formalize this

argument here. The difference-in-means estimator S/Afii can be written as

SA/T\E = average of the treated — average of the untreated

1 " 1 "
=—E T-Y-———————E 1—T-Y-. 7.2n1i=1 1 l n_ "1 i=1( 1) l ( )

Recall that n1 represents the number of units in the treatment group and hence n — n1

is the size of the control group. The expression 2L1 Ti Y“ for example, gives the sum

ofthe observed outcome variable across all treated units because the treatment variable

T,- is 1 when unit i is treated and 0 if it belongs to the control group. This means
that TiYi = Y; and (1 — Ti)Y,- = 0 when observation i is in the treatment group,

and TiYi = 0 and (1 — Ti)Y,- = Y,- when it is in the control group.

We now show that the difference—in-means estimator is unbiased for the SATE. As

discussed earlier, in survey sampling, the unbiasedness ofan estimator means that over

repeated sampling the average value of the estimator is identical to the unknown true

value of the parameter. In randomized controlled trials, we consider how an estimator

behaves over the repeated randomization of treatment assignment. That is, suppose
that using a sample of the same 11 units, a researcher conducts a randomized control
trial (infinitely) many times by randomizing the treatment assignment. A given unit
will receive the treatment in some ofthese trials while in others it will be assigned to the
control group. Each time, a researcher will compute the difference-in-means estimator

after randomizing the treatment assignment and observing the outcome. Throughout
the hypothetical repeated experiments, the potential outcomes remain fixed and only

the treatment assignment changes. Thus, unbiasedness implies that the average value
of the difference-in—means estimator over repeated trials is equal to the true value of

the SATE.

To show the unbiasedness more formally, we can take the expectation of the

difference-in—means estimator with respect to T,- since in this framework the ran—

domized treatment assignment Ti is the only random variable. Since T;- is a Bernoulli

random variable, its expectation equals P (T.- = 1), which is the proportion of subjects

who are treated, or n1 / n in this case:

A 1’l 1 “
lESATE =IE —§1}Y,-1——§1—7}Y,-0( ) "11:1 () "‘"1i=1( )()>

1" 1 "
=_ ]ET,-Y,- —— 1E1—T,~Y,~0"121:1: < ) (1) "H112; ( ) <>

1 n n 1 ’1 n1 1_— _ —Yil _ E (1__>Y.0

n1 i=1 1’1 () n—nl n l()

 

%Z{m1)— 14(0)} = SATE. (7.3)
i=1
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The first equality follows because for a treated unit, the potential outcome under the

treatment condition is observed, i.e., Y,- = Yi(1), while a control unit reveals the other

potential outcome, i.e., Yi = Y; (0). The second equality holds because the expectation

is a linear operator and is taken with respect to the treatment assignment. That is, the

potential outcomes are treated as fixed constants. The derivation above shows that the

difference—in-means estimator is unbiased for the SATE.

We can combine the advantage of the above random treatment assignment with
that of random sampling. Suppose that we first randomly sample n individuals from a

large population of interest. Within this sample, we randomly assign the treatment to

n, individuals and measure the outcome for each one. This two-step procedure ensures

the experimental results are generalizable to the population because the experiment’s

sample is representative ofthe population. To see this formally, consider the population

average treatment effect or PATE, which represents the average of the treatment effect

among all individuals in the population. Here, we use the expectation to represent the

population average:

PATE = E(Y(1) — Y(O)). (7.4)

Recall that the sample is representative of the population because of random
sampling. This means that while the SATE is unobservable, its expectation equals the

PATE. Since the difference-in-means estimator is unbiased for the SATE, the estimator

is also unbiased for the PATE. It is also clear from equation (7.3) that the difference-in-

means estimator is consistent for the PATE. This result emerges from applying the
law of large numbers to the sample average of the treatment group and that of the

control group, separately. In sum, the combination of random sampling and random

assignment enables us to make causal inferences about a target population.

 

In randomized controlled trials, the average outcome difference between the

treatment and control groups is an unbiased estimator of the sample average

treatment effect (SATE). The estimator is also unbiased and consistent for the

population average treatment effect (PATE).  
 

A Monte Carlo simulation can illustrate the idea of unbiasedness. Suppose that the
potential outcome under the control condition Yi(0) is distributed according to the

standard normal distribution in a population (i.e., a normal distribution with zero

mean and unit variance). We further assume that in the population the individual—

level treatment effect follows another normal distribution with both mean and variance

equal to l. Formally, we can write this hypothetical data-generating process as

Yi(0) ~ N(O, 1) and Y1(1) ~N(1, l). (7.5)

The treatment assignment is randomized, where a randomly selected half ofthe sample

receives the treatment and the other half does not. Finally, we can define the treatment

effect for unit i as t; = Y;(1) —— 16(0). For each unit, we observe the potential outcome

under the realized treatment condition. Under this model, we can analytically compute
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The average estimation error is close to zero, reflecting the unbiasedness. The
variability is greater than in the case ofthe SATE because random sampling adds more
noise.

7.1.2 STANDARD ERROR

We have focused on the mean of the estimation error, but an unbiased estimator
with a large degree of variability is of little use in practice. In the above simulation
example, the difference-in-means estimator was unbiased but its estimation error was
sometimes large. We can plot the sampling distribution of the difference-in-means
estimator. The histogram shows that while the estimator is accurate on average, it varies
significantly from one randomized treatment assignment to another.

Sampling distribution

 

       
  0.0 | |

0.5 1.0 1.5

Difference—in—means estimator

How much would an estimator vary over the hypothetically repeated data-
generating process? We have used the standard deviation to characterize the spread

of distribution in earlier parts of the book, and we can do the same here. In the above

simulation example, this amounts to calculating the standard deviation ofthe sampling
distribution of the difference-in-means estimator.

,.
..
__
..
._
t.
..
..
.~
,_
..
..

.
..

..
,
«
n
n
-
d
.
..

,.
..

i—
..

..
.i

..
.
m
u
.
”
W.

..
"

.
,

..
.
”
”
4
4
;

e



M
u
n
”
,

 

4
n
v
n
u
u
,

i
n
v
r
-
y

’4
'?
"
g
v
-
"
(
V
V
-
u

7.1 Estimation _

 

The result implies that in this example, the difference-in-means estimator is on
average 0.2 points away from its mean. This mean equals the true value of the SATE,
since the difference-in-means estimator is unbiased for the SATE. Accordingly, the
mean ofthe sampling distribution equals the true value of the SATE. implying that the

standard deviation of the sampling distribution (i.e., the deviation from the mean) in

this case is equal to the root-mean-squared error (RMSE; i.e., the deviation from the
truth) (see section 4.1.3 for the definition of RMSE). In our simulation example, we

can compute the RMSE as follows.

The result implies that the estimator is on average 0.206 points away from the true
value of the SATE. The small difference between the standard deviation and the RMSE

reflects the Monte Carlo error in which the sample average differs from its expectation
by a small amount.

However, if an estimator is biased, then the standard deviation of its sampling

distribution will differ from the RMSE. Formally, we can show that the mean-squared
error (MSE), which is the square of the RMSE, equals the sum of the variance

and squared bias. Let 0 be a parameter and 9 be its estimator. We can derive this

decomposition as follows:

MSE = IE{(é - (9)2}

= E[{(9 — E(9))+(1E(9) — 9)}2]

= E[{9 — E(9)}21+{E(é)— 0}:

= variance + biasz.

The second equality follows because we simply added and subtracted E(é). The third

equality is based on the fact that the cross-product term obtained by expanding the

square, i.e., 21E{(9 — E(é))(IE(9) —— 0)}, can be shown to equal zero.l
The decomposition implies that when assessing the accuracy of an estimator, we

care about variance as well as bias. An unbiased estimator can have a greater MSE than
a biased estimator if the variance of the former is sufficiently larger than that of the
latter.

The above discussion suggests thatwe can characterize the variability ofan estimator
by computing the standard deviation of the sampling distribution. Unfortunately, this

1 Specifically, using the rules ofexpectation, we have E((é — E(9))(E((9) — 0)} = E[91E(9) — 90 — {13(9)}2 +

E(9)9] = {15(9)}2 — E(éw — {15(9)}2 + E(9)9 = o.
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The middle probability term, {E(X) — 7”}/standard error, equals the negative z-score

of the sample mean, which has the same sampling distribution as the z-score because

of symmetry. The central limit theorem implies that the z—score of the sample mean
follows the standard normal distribution when the sample size is sufficiently large:

7,. — E(X) ~ 7,, — E(X)
J V(Xi/n standard error

Therefore, the probability in equation (7.14) equals the blue area of figure 7.1.

We now summarize the standard procedure for constructing asymptotic confidence

intervals based on the central limit theorem. The procedure applies to any estimator

so long as its asymptotic sampling distribution can be approximated by the normal

distribution. Such a normal approximation holds for many cases of interest including

almost all the examples in this book.

 ~ N(0,1). (7.15)

 

The confidence interval of an estimate 9 can be obtained by using the following

procedure:

1. Choose the desired level ofconfidence (1 —- 0:) x 100% by specifying a

value ofa between 0 and 1: the most common choice is a = 0.05, which

gives a 95% confidence level.
2. Derive the sampling distribution of the estimator by computing its

mean and variance: in the case of the sample mean, this is given by
equation (7.12).

3. Compute the standard error based on this sampling distribution.
4. Compute the critical value za/z as the (1 — a/2) x 100 percentile value

of the standard normal distribution: see table 7.1.

5. Compute the lower and upper confidence limits as

19 — za/z x standard error andé + za/z x standard error,

respectively.

The resulting confidence interval covers the true parameter value 0 over a   hypothetically repeated data-generating process (1 — a) x 100% of the time.
 

Several applications ofthis procedure will be given throughout this section. Here, we
conduct Monte Carlo simulations to further illustrate the idea of confidence intervals.

First we revisit the PATE simulation shown in section 7.1.2. Given the estimates and

standard errors we computed, we can obtain the 90% and 95% confidence intervals for
each of the 5000 simulations.
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If these confidence intervals are valid, then they should contain the true value of
the PATE, which is equal to 1 in this simulation, approximately 95% and 90% of time,
respectively. That is exactly what we find below.

 

As another illustration, we use the polling example described earlier. Again, over

repeated random sampling, 95% of the 95% confidence intervals should contain
the true parameter value. As the sample size increases, we should observe that the

approximation improves with the coverage probability approaching its nominal rate.

In the code chunk below, we use a double loop. The outer loop is defined for

different sample sizes and the inner loop conducts a simulation and examines, for each

simulation, whether the confidence interval contains the truth.
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est.regu1ar <— mean(STAR$g4reading[STARSclasstype == 2], na.rm = TRUE)

se.regular <— 5d(STAR$g4reading[STARsclasstype == 2], na.rm = TRUE) /

aq:L(n.regular)

est.regular

## [1] 719.89

se.regular

## [1] 1.83885

How should one construct a confidence interval for each estimate? As before, we

can rely on the central limit theorem and obtain an approximate confidence interval

for each estimate.

alpha <— 0.05

## 95% confidence intervals for small class

ci.small <— c(est.small — qmnrr(l — alpha / 2) * se.small,

 

est.sma11 + quuxm(1 - alpha / 2) * se.small)

ci.small

## [1] 719.6417 727.1406

## 95% confidence intervals for regular class

ci.regular <- c(est.regular — quv:m(1 — alpha / 2) * se.regular,

est.regular + unnrm(1 — alpha / 2) * se.regular)

ci.regu1ar

## [1] 716.2859 723.4940

These confidence intervals overlap with each other. Does this mean that the

estimated average difference between the two groups, or the estimated PATE of small

class size, is not statistically significant? An estimated effect is statistically significant

if it reflects true patterns in the population, rather than arising from mere chance. To

find out the answer to this question, it would be best to compute the confidence interval

directly for the estimated average difference. Recall the standard error ofthe difference-

in-means estimator given in equation (7.10). Using this standard error formula, we can

compute the 95% confidence interval for the estimated PATE.

## difference-in-means estimator

ate.est <— est.small — est.regular

ate.est

## [1] 3.501232

## standard error and 95% confidence interval

ate.se <— sqrt(se.small“2 + se.regularAZ)
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We find that the average treatment effect of small class size on the fourth-grade

reading score is estimated to be 3.50 with a standard error of 2.65. The 95% confidence

interval is [—1.70, 8.70], containing zero. This finding suggests that although the

estimated average treatment effect is positive, it features a considerable degree of

uncertainty.

7.1.6 ANALYSIS BASED ON STUDENT’S t-DISTRIBUTION

The calculation of confidence intervals has so far relied upon the central limit

theorem. This is why we used the quantiles of the stande normal distribution when

computing confidence intervals, assuming that we have a large enough sample to

invoke the central limit theorem. This assumption is useful because the central limit

theorem applies to a wide variety of distributions. Given that we often do not know the

distribution ofan outcome variable, the procedure ofconstructing confidence intervals

described earlier is quite general.

Here, we consider an alternative assumption, that the outcome variable (rather

than its sample mean) is generated from a normal distribution. As an illustration,

we apply this assumption to the STAR experiment just analyzed in section 7.1.5. We

assume that the test scores for each group follow a normal distribution, with possibly

different means and variances. While the histograms shown earlier suggest that the

distribution of test scores for each group may not satisfy this assumption, the inference

resulting from this assumption proves more conservative than the asymptotic inference

we have been using based on the central limit theorem. Because many researchers

prefer conservative inferences, they often use confidence intervals under this normally

distributed outcome assumption even when the assumption is not justifiable.

When a random variable is normally distributed, we can obtain an exact confidence

interval for the sample mean using Student’s t-distribution, also simply called the

t-distribution. The name of the distribution originates from the fact that its British

creator William Gossett, a researcher at beer producer Guinness, published the

paper introducing it under the pseudonym “Student.” We use tv to represent the

t-distribution with v degrees offreedom. Specifically, the z-score ofthe sample mean is

called the t-statistic and is distributed according to the t-distribution with n — 1 degrees

offreedom. Roughly, the degrees of freedom represent the number of independent

observations used for estimation minus the number ofparameters to be estimated (see

section 4.3.2). The current case involves one parameter to estimate: we use the standard

error to estimate the standard deviation of the sampling distribution. This result holds

exactly so we do not resort to asymptotic approximation.



 

Chapter 7: Uncertainty

t.ci <— t.tog:(STAR$g4reading[STAR$classtype == 1],

STAR$g4reading[STARsclasstype == 2])

t.ci

##

## Welch Two Sample t—test

##

## data:STAR$g4reading[STARsclasstype==l] and STAR$g4reading[STARsclasstype == 2]

## t = 1.3195, df = 1541.2, p-Value = 0.1872

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## —l.703591 8.706055

## sample estimates:

## mean of x mean of y

## 723.3912 719.8900

The degrees of freedom are calculated as 1541.2. Because the size of our sample is
not too small, the resulting confidence interval is only slightly wider than the one based

on the normal approximation reported above.

7.2 Hypothesis Testing

In section 6.1.5, we presented an analysis of Arnold Schwarzenegger’s 2009 veto
message to the California legislature, and showed that the particular order of words

in his message was highly unlikely to be a consequence of coincidence alone. This

was done by examining the likelihood of observing the event that actually happened

under a particular probability model. In section 6.6.3, a similar method was used to

detect election fraud in Russia, where we generated hypothetical election results and

compared them with the actual election outcome to investigate whether the latter was

anomalous. In this section, we formalize this logic and introduce a general principle

of statistical hypothesis testing that underlies such analysis. This principle enables us
to determine whether or not the occurrence of an observed event is likely to be due to

chance alone.

7.2.1 TEA—TASTING EXPERIMENT

In his classic book The Design of Experiments, Ronald Fisher introduced the idea

of a statistical hypothesis test. During an afternoon tea party at the University of

Cambridge, a lady declared that tea tastes different depending on whether the tea is

poured into the milk or the milk is poured into the tea. Fisher examined this claim

by using a randomized experiment in which 8 identical cups were prepared and 4 were

randomly selected for milk to be poured into the tea. For the remaining 4 cups, the milk
was poured first. The lady was then asked to identify, for each cup, whether the tea or
the milk had been poured first. To everyone’s surprise, the lady correctly classified all

the cups. Did this happen by luck or did the lady actually possess the ability to detect
the order, as she claimed?
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Table 7.2. Tea-Tasting Experiment.
 

 

 

Cups Lady’s guess Actual order Scenarios

1 M M T T T

2 T T T T M

3 T T T T M

4 M M T M M

5 M M M M T

6 T T M M T

7 T T M T M

8 M M M M T

Number of correct guesses 8 4 6 2
 

Note: “M” and “T” represent two scenarios, “milk is poured first” and “tea is poured first," respectively.
Under the hypothesis that the lady has no ability to distinguish the order in which milk and tea were
poured into each cup, her guess will be identical regardless of which cups had milk/tea poured first.

To analyze this randomized experiment, we draw on potential outcomes as ex-

plained in chapter 2. For each of the 8 cups, we consider two potential guesses

given by the lady, which may or may not depend on whether milk or tea was

actually poured into the cup first. If we hypothesize that the lady had no ability to

distinguish whether milk or tea was poured into the cup first, then her guess should
not depend on the actual order in which milk and tea were poured. In other words,

under this hypothesis, the two potential outcomes should be identical. Recall the

fundamentalproblem ofcausal inference, which states that only one of the two potential

outcomes can be observed. Here, the hypothesis that the lady possesses no ability to

distinguish the two types of tea with milk reveals her responses under counterfactual

scenarios.
Fisher’s analysis proceeds under this hypothesis and involves computing the

number of correctly guessed cups under every possible assignment combination. As

discussed in section 7.1.1, this experiment is an example of complete randomization,

where the number of observations assigned to each condition is fixed a priori. In

contrast, simple randomization would randomize each cup independently without such
a constraint. Table 7.2 illustrates Fisher’s method. The second column of the table

shows the lady’s actual guess for each cup, which is identical to the true order (third
column) in which milk and tea were poured into the cup. In the remaining columns, we

show three arbitrarily selected combinations of assigning 4 cups to “milk first” and the
other 4 to “tea first.” Although these counterfactual assignment combinations did not

occur in the actual experiment, we can compute the number of correctly guessed cups

under each scenario with the aforementioned hypothesis that the lady lacks the ability

to distinguish between the two types oftea with milk and thus different assignments do

not affect the lady’s guess. This is done by simply comparing the lady’s guess (second

column), which is assumed to remain unchanged, with each counterfactual assignment.

For example, if the cups had received the assignments in the fifth column of the table,

then the number of correctly classified cups would have been 6.
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The major advantage of Fisher’s analysis is that the inference is solely based on
the randomization of treatment assignment. Such inference is called randomization
inference. Methods based on randomization inference typically do not require a

strong assumption about the data-generating process because researchers control

the randomization of treatment assignment, which alone serves as the basis of
inference.

7.2.2 THE GENERAL FRAMEWORK

The tea-tasting experiment described above illustrates a general framework called

statistical hypothesis testing. Statistical hypothesis testing is based on probabilistic
proof by contradiction. Proof by contradiction is a general strategy of mathematical

proof in which one demonstrates that assuming the contrary of what we would like

to prove leads to a logical contradiction. For example, consider the proposition that

there is no smallest positive rational number. To prove this proposition, we assume

that the conclusion is false. That is, suppose that there exists a smallest positive rational
number a. Recall that any rational number can be expressed as the fraction of two

integers: a = p/q > 0 where both the numerator p and the nonzero denominator q

are positive integers. But, for example, b = a/2 is smaller than a, and yet b is also a

rational number. This contradicts the hypothesis that a is the smallest positive rational

number.

In the case of statistical hypothesis testing, we can never reject a hypothesis with

100% certainty. Consequently, we use a probabilistic version ofproofby contradiction.

We begin by assuming a hypothesis we would like to eventually refute. This hypothesis

is called a null hypothesis, often denoted by Ho. In the current application, the null

hypothesis is that the lady has no ability to tell whether milk or tea is poured first into a

cup. This is an example ofsharp null hypothesis because all potential outcomes for each

observation are determined, and therefore known, under this hypothesis. In contrast,

we will later consider a nonsharp null hypothesis, which fixes the average potential

outcome rather than every potential outcome.
Second, we choose a test statistic, which is some function of observed data. For

the tea-tasting experiment, the test statistic is the number of correctly specified cups.

Next, under the null hypothesis, we derive the sampling distribution ofthe test statistic,

which is given in figure 7.2 for our application. This distribution is also called the

reference distribution. Finally, we ask whether the observed value of the test statistic
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Tab|e7.3. Type | and Type II Errors in Hypothesis Testing.

 

Reject Ho Retain H0

H0 is true type I error correct

H0 is false correct type II error  
Note: Ho represents the null hypothesis.

is likely to occur under the reference distribution. In the current experiment, the

number of correctly classified cups is observed to be 8. If 8 is likely under the reference

distribution, we retain the null hypothesis. If it is unlikely, then we reject the null

hypothesis.

In this textbook, we prefer to use phrases such as “fail to reject the null hypothesis”

and “retain the null hypothesis” instead of “accept the null hypothesis.” Philosophical
views on this issue differ, but we adopt a perspective that failure to reject the null

hypothesis is evidence for some degree of consistency between the data and the

hypothesis, but does not necessarily indicate the correctness of the null hypothesis.

Others, however, argue that the failure to reject the null hypothesis implies acceptance

of the hypothesis. Regardless of one’s stance on this issue, statistical hypothesis testing

provides empirical support for scientific theories.
How should we quantify the degree to which the observed value of the test statistic

is unlikely to occur under the null hypothesis? We use the p-value for this purpose.

The p-value can be understood as the probability that under the null hypothesis, we
observe a value of the test statistic at least as extreme as the one we actually observed.

A smaller p-value provides stronger evidence against the null hypothesis. Importantly,

the p-value does not represent the probability that the null hypothesis is true. This

probability is actually either 1 or 0 because the null hypothesis is either true or false,

though researchers do not know which.
In order to decide whether or not to reject the null hypothesis, we must specify

the level of test a (as explained later, this a is the same as the confidence level a for

confidence intervals discussed earlier). If the p-value is less than or equal to a, then we

reject the null hypothesis. The level of test represents the probability of false rejection

if the null hypothesis is true. This error is called type I error. Typically, we would like

the level of test to be low. Commonly used values ofa are 0.05 and 0.01.
Table 7.3 shows two types of errors in hypothesis testing. While researchers can

specify the degree of type I error by choosing the level of test a, it is not possible

to directly control type II error, which results when researchers retain a false null

hypothesis. Notably, there is a clear trade-off between type I and type II errors in

that minimizing type I error usually increases the risk of type 11 error. As an extreme

example, suppose that we never reject the null hypothesis. Under this scenario, the
probability of type I error is 0 if the null hypothesis is true, but the probability of type 11

error is 1 if the null hypothesis is false.
In the case of the tea-tasting experiment, the test statistic is the number of correctly

classified cups. Since the observed value of this test statistic was 8, which is the most
extreme value, the p-value equals the probability that the number of correct guesses is

8 or 1/70 x 0.014. If the lady correctly classified 6 cups instead of 8, two values are at
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double one of the areas to obtain the two-sided p-value. Note that this may not work
in other cases where the reference distribution is not symmetric.

 

If, on the other hand, our alternative hypothesis is p > 0.5 rather than p 7E 0.5,
then we must compute the one-sided p-value. In this case, there is no need to consider
the possibility of an extremely small value because the alternative hypothesis specifies
p to be greater than the null value. Hence, the one-sided p-value is given by the blue
area under the curve above the observed value in the figure.

 

Regardless ofwhether we use the one-sided or two-sided p-value, we reject the null
hypothesis that Obama’s support in the population is exactly 50%. We conclude that
the 4 percentage point difference we observe is unlikely to arise due to chance alone.
When using the normal distribution as the reference distribution, researchers

often use the z—score to standardize the test statistic by subtracting its mean and
dividing it by its standard deviation. Once this transformation is made, the reference
distribution becomes the standard normal distribution. That is, ifwe use #0 to denote

the hypothesized mean under the null hypothesis, we have the following result so long
as the sample size is sufficiently large (due to the central limit theorem):

7 _
————"”0 _ ~ N(o,1). (7.19)
standard error of X"

Note that this transformation does not change the outcome of the hypothesis testing
conducted above. In fact, the p-value will be identical with or without this transfor-
mation. However, one can easily compare the z-score with the critical values shown in
table 7.1 in order to determine whether to reject the null hypothesis without computing
the p-value. For example, under the two-sided alternative hypothesis, if the z—score is

greater than 1.96, then we reject the null hypothesis. We now show, using the current

example, that we obtain the same p-value as above.
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This test, which is based on the z-score ofthe sample mean, is called the one-sample
z-test. Although we used this test for a Bernoulli random variable in this example, the

test can be applied to a wide range ofnonbinary random variables so long as the sample
size is sufficiently large and the central limit theorem is applicable. For nonbinary

random variables, we will use the sample variance to estimate the standard error. If

the random variable X is distributed according to the normal distribution, then the
same test statistic, i.e., the z-score of the sample mean, follows the t-distribution with

n — 1 degrees offreedom instead of the standard normal distribution. This one—sample
t-test is more conservative than the one-sample z-test, meaning that the former gives

a greater p-value than the latter. Some researchers prefer conservative inference and

hence use the one-sample t-test rather than the one-sample z-test.

 

Suppose that {X 1, X2, . . . , Xn} are n independently and identically distributed

random variables with mean u. and variance 02. The one-sample z—test consists

ofthe following components:

1. Null hypothesis that the population mean u is equal to a prespecified

value Mo: Ho : u = #0
2. Alternative hypothesis: H1 : u, 79 #0 (two-sided), H1 : p, > Mo

(one-sided), or H; : u < [1,0 (one-sided)

3. Test statistic (z-statistic): Z,l = (in — #0)/«62/ n, where
7,. = £2121 X,- (sample mean)

4. Reference distribution: Zn ~ N(O, 1) when n is large

5. Variance: (32 = "—1—1 22:1(Xi — 7,02 (sample variance) or
o‘r2 = ,uo(1 — #0) ifX is a Bernoulli random variable

6. p-value: <I>(—|Z,,|) (one-sided) and 2<I>(—|Z,,|) (two-sided), where <I>(-)

is the cumulative distribution function (GDP) of the stande

normal distribution

IfX is normally distributed, the same test statistic Z, is called the t-statistic and

follows the t-distribution with n — 1 degrees offreedom. The p-value will be based
on the cumulative distribution ofthis t-distribution. This is called the one-sample

t-test, which is more conservative than the one-sample z—test.  
 

There exists a general one-to-one relationship between confidence intervals and
hypothesis tests. Compare equation (7.19) with equation (7.15). The difference is that

the unknown population mean E(X) in the former is replaced with the hypothesized
population mean #0 in the latter. Note that under a null hypothesis the hypothesized
mean [1.0 represents the actual population mean. This suggests that we reject a null
hypothesis Ho : p, = #0 using the a-level two-sided test ifand only ifthe (l —a) x 100%
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confidence interval does not contain ,uo. We can confirm this result using the current
example by checking that 0.5 is contained in the 99% confidence interval (we fail to
reject the null hypothesis when a = 0.01) but not in the 95% confidence interval (we
reject the null when at = 0.05).

99% confidence interval contains 0.5

c(x.bar — quutm(0.995) * se, x.bar + qmorm(0.995) * se)

## [1] 0.4999093 0.5806408

## 95% confidence interval does not contain 0.5

c(x.bar — qnorm(0.975) * se, x.bar + qnorm(0.975) * se)

## [1] 0.5095605 0.5709896

It turns out that this one-to-one relationship between confidence intervals and

hypothesis testing holds in general. Many researchers, however, prefer to report

confidence intervals rather than p-values because the former also contain information

about the magnitude of effects, quantifying scientific significance as well as statistical
significance.

We conducted the one-sample z-test for sample proportion “by hand” above in

order to illustrate the underlying idea. However, R has the prop . test ( ) function,

which enables us to conduct this test in a single line of R code. For the one-sample test

of sample proportion like the one above, the function takes the number of successes

as the main argument x and the number of trials as the argument n. In addition,

one can specify the success probability under the null hypothesis as p, as well as the

alternative hypothesis (" two . sided" for the two-sided alternative hypothesis, and

either " less " or "greater" for the one—sided alternative hypothesis). The default

confidence level is 95%, which we can change with the conf . level argument.

Finally, the correct argument determines whether a continuity correction should

be applied in order to improve the approximation (the default is TRUE). This correction

is generally recommended, especially when the sample size is small because the

binomial distribution, which is a discrete distribution, is approximated by a continuous

distribution, i.e., the normal distribution. We first show that prop . test ( ) without a

continuity correction gives a result identical to the one obtained earlier. We then show
the result based on the continuity correction.

## no continuity correction to get the same p-value as above

propiEESt(550, n = n, p = 0.5, correct = FALSE)

##

##

##

##

##

##

##

1-sample proportions test without continuity

correction

data: 550 out of n, null probability 0.5

X—squared = 6.6051, df = 1, p-value = 0.01017

alternative hypothesis: true p is not equal to 0.5
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The prop. test () function also conveniently yields confidence intervals. Note
that the standard error used for confidence intervals is different from the standard
error used for hypothesis testing. This is because the latter standard error is derived
under the null hypothesisW, whereas the standard error for confidence
intervals is computed using the estimated proportion, V X"(1 — Y")/ n. To illustrate a

~.. different level ofconfidence intervals, we can compute 99% confidence intervals using

the conf . level argument.
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As another example, we revisit the analysis of the STAR project given in

section 7.1.5. We first conduct a one-sample t-test just for illustration. Suppose that we

test the null hypothesis that the population mean test score is 710, i.e., Ho : [.L = 710.
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We use the t . test () function where we specify the null value no using the mu
axgument. The other arguments such as alternative and conf . level work in
the exact same way as for the prop. test () function. We use the reading test

score for our analysis and conduct a two-sided one-sample t-test. As the result below
shows, we retain, at the 0.05 level, the null hypothesis that the population mean of
test score is 710. The resulting p-value is small, leading to the rejection of the null
hypothesis.

 

7.2.4 TWO-SAMPLE TESTS

We now move to a more realistic analysis of the STAR project. When analyzing
randomized controlled trials like this, researchers often conduct a statistical hypothesis
test with the null hypothesis that the population average treatment effect (PATE) is
zero, i.e., Ho : E(Y;(l) — Y,-(0)) = 0 with a two-sided alternative hypothesis given by

H; : E(Yi(1) — Y;(0)) # 0. Ifwe assume that the PATE cannot be negative, then we

employ a one-sided alternative hypothesis, H1 : E(K-(l) — Yi(0)) > 0. In contrast, if

we assume that the PATE cannot be positive, we set H1 : E(Y; (1) — Y,- (0)) < 0. In this

application, we would like to test whether or not the PATE of small class size on the
grade-four reading score (relative to regular class size) is zero.

To test this null hypothesis, we use the difference-in-means estimator as a test sta-

tistic. More generally, beyond randomized controlled trials, we can use the two-sample
tests based on the difference—in-means estimator to investigate the null hypothesis that
the means are equal between these two populations. What is the reference distribution
of this test statistic? We can approximate it by appealing to the central limit theorem

as in section 7.1.5. The theorem implies that the sample means of the treatment and

control groups have a normal distribution. Therefore, under the null hypothesis of
equal means between the two populations, the difference between these two sample
means is also normally distributed with mean zero. Furthermore, the z-score of the
difference in sample means follows the standard normal distribution. We can use this

fact to conduct the two-sample z-test (see equation (7.18) for the expression ofstandard

error, which serves as the denominator ofthe test statistic). As in the one-sample tests,
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if the outcomes are assumed to be normally distributed, the two-sample t-test can be

used, which yields a more conservative inference.

 

Suppose that {X1, X2, . . . , Xno} represent no independently and identically

distributed random variables with mean #0 and variance 02. Similarly,

{Y1, Y2, . . . , Ym} represent n1 independently and identically distributed random

variables with meanm and variance (712. The two-sample z-test of sample means

consists ofthe following components:

1. Null hypothesis that two populations have the same mean: Ho : Mo = m

2. Alternative hypothesis: H1 : [1,0 aé [1,1 (two-sided), H1 : #0 > m

(one-sided), or H1 : #0 < [1,! (one-sided)

3. Test statistic (z-statistic): Z, = (Ym —- 70/1 / "$1612 + $6}?

4. Reference distribution: Zn ~ N((fi 1) when no and m are large _

5. Variancezéoz = 1 2,314);- — Xm)2 and 612 = 1 "I (Y.- — Y,.,)2
"0‘1 nl—l i=1

(sample variances) or 602 = 612 = p(l — [1) with

= ”7:97;an + fifiYm ifX and Y are Bernoulli random variables

6. p-value: ¢(—|Z,,|) (one-sided) and 2¢(—|Z,,|) (two-sided), where <I>(-)

is the cumulative distribution function (CDF) of the standard normal

distribution

 

 

If X and Y are normally distributed, the same test statistic Z,, is called the

t-statistic and follows the t-distribution. The p-value will be based on the cumu-

lative distribution of this t-distribution. This is called the two—sample t-test,

which is more conservative than the one-sample z-test.   
 

Recall from section 7.1.5 that the estimated PATE is stored as an R object ate . est

whereas its standard error is given by the R object ate . se. Using these objects, we

compute the one-sided and two-sided p-values as follows.

 

Since this p-value is much greater than the typical threshold of5%, we cannot reject

the hypothesis that the average treatment effect of small class size on the fourth-grade

reading test score is zero.

The hypothesis test conducted above is based on the large sample approximation

because we relied upon the central limit theorem to derive the reference distribution.

Similar to the discussion in section 7.1.5, if we assume that the outcome variable
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is normally distributed, then we could use the t-distribution instead of the normal
distribution to conduct a hypothesis test. As a test statistic, we use the z-score for the
difference-in-means estimator, which is called the t-statistic in the case of this two—
sample t-test. Unlike the one-sample example discussed in section 7.1.5, however, the
degrees of freedom must be approximated for the two-sample t-test. Because the
t-distribution generally has heavier tails than the normal distribution, the t-test is more
conservative and hence is often preferred even when the outcome variable may not be
normally distributed.

In R, we can conduct a two-sample t-test using the t . test ( ) function as we did for
a one-sample t-test. For the two—sample t-test, the function takes two vectors, each of
which contains data for one of the two groups. We can specify the difference between
the means ofthe two groups, or the PATE in this application, under the null hypothesis
via the mu argument. The default value for this argument is zero, which is what we
would like to use in the current example.

## testing the null of zero average treatment effect

t.test(STARSg4reading[STARsclasstype == 1],

##

##

##

##

##

##

##

##

##

##

##

STAR$g4reading[STAR$classtype == 2])

Welch Two Sample t—test

datastAR$g4reading[STAR$c1asstype==1] and STAR$g4reading[STAR$classtype == 2]

1.3195, df = 1541.2, p—value = 0.1872

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

—1.703591 8.706055

sample estimates:

mean of x mean of y

723.3912 719.8900

The output displays the value of the t-statistic as well as the p-value and the degrees
of freedom for Student’s t-distribution used for the test. Since the p-value is greater
than the standard threshold of a = 0.05, we fail to reject the null hypothesis that
the average treatment effect of small class size on the fourth-grade reading score is
zero. As in the case ofprop . test ( ) , the output of the t . test ( ) function contains
the confidence interval for the corresponding level. As expected from the use of the
t-distribution, this confidence interval is slightly wider than the confidence interval
based on the normal approximation we obtained in section 7.1.5. The confidence

interval also contains zero, which is consistent with the fact that we fail to reject the
null hypothesis of zero average treatment effect.

As another application of hypothesis tests, we reanalyze the labor market discrim-
ination experiment described in section 2.1. In this experiment, fictitious résumés
of job applicants were sent to potential employers. Researchers randomly assigned

stereotypically African-American or Caucasian names to each résumé and examined

whether or not the callback rate depended on the race of the applicant. The data set

we analyze is contained in the CSV file resume . csv. The names and descriptions
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of variables in this data set are given in table 2.1. The outcome variable of interest is

call, which indicates whether or not each résumé received a callback. The treatment

variable is the race of the applicant, race, and we focus on the comparison between

black—sounding and white—sounding names.

We test the null hypothesis that the probability of receiving a callback is the same

between résumés with black-sounding names and those with white-sounding names.

We use the prop . test ( ) function to implement the two-sample z—test. The input is a

table whose columns represent the counts of successes and failures and rows represent

the two groups to be compared. We will use a one—sided test because résumés with

black-sounding names are hypothesized to receive fewer callbacks.

sume <— :vt‘mid . csav ( " resume . csV“)

organize the data in tables

x <— tab]e(resume$race, resumescall)

X

##

##

##

##

##

12> :

##

##

##

##

##

##

##

##

##

##

##

##

0 1

black 2278 157

white 2200 235

one-sided test

Qp.tcst(x, alternative = "greater")

2—sample test for equality of proportions with

continuity correction

data: x

X-squared = 16.449, df = l, p—value = 2.499e—05

alternative hypothesis: greater

95 percent confidence interval:

0.01881967 1.00000000

sample estimates:

prop l prop 2

0.9355236 0.9034908

Thus, the result supports the alternative hypothesis that résumés with white-

sounding names are more likely to receive callbacks than those with black-

sounding names. It is instructive to directly compute this p-value without using the

prop . test ( ) function. Under the null hypothesis of equal proportions between the

two groups, i.e., H0 : Mo = m, the standard error of the difference—in-means (or more

accurately difference-in-proportions) estimator can be computed as

wx>+vm = p(l—iv)+p(1—1>) =
n0 n1 n0 n1
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where X and Y are the outcome variables for the résumés with black-sounding
and white-sounding names, respectively, no and 111 are sample sizes, and p =

1 (2:11 X,- + 2?; Y;) is the overall sample proportion. We use the same estimate
 

no+n1

p(l — p) for the variances ofX and Y because under the null hypothesis of identical
proportions, their variances, which are based on the proportions, are also identical.

 
The exact same p-value can be obtained using the prop . test ( ) function without

a continuity correction.
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Figure 7.4. The Distribution of p-Values for Hypothesis Tests Published in Two Leading

Political Science Journals.

 

7.2.5 PITFALLS OF HYPOTHESIS TESTING

Since Fisher’s tea-tasting experiment, hypothesis testing has been extensively used

in the scientific community to determine whether or not empirical findings are

statistically significant. Statistical hypothesis testing represents a rigorous methodology

to draw a conclusion in the presence of uncertainty. However, the prevalent use of

hypothesis testing also leads to publication bias because only statistically significant

results, and especially the ones that are surprising to the scientific community, tend

to be published. In many social science journals, the a-level of 5% is regarded as the

cutoffthat determines whether empirical findings are statistically significant or not. As

a result, researchers tend to submit their papers to journals only when their empirical

results have p-values smaller than this 5% threshold. In addition, journals may also be

more likely to publish statistically significant results than nonsignificant results. This is

problematic because even if the null hypothesis is true, researchers have a 5% chance

of obtaining a p-value less than 5%.
In one study, two researchers examined more than 100 articles published in the two

leading political science journals over a decade or so.2 The researchers collected the

p-values for the hypotheses tested in those articles. Figure 7.4 shows that a majority

of reported findings have p-values less than or equal to the 5% threshold, which is

2 Alan Gerber and Neil Malhotra (2008) “Do statistical reporting standards affect what is published?

Publication bias in two leading political science journals.” Quarterly Journal of Political Science, vol. 3, no. 3,

pp. 313-326.
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(a) Paul the Octopus (b) Mani the Parakeet

 

Figure 7.5. Two Animal Oracles that Correctly Predicted the Outcomes of Soccer
Matches. Sources: (a) Reuters/Wolfgang Rattay. (b) AP Images/Joan Leong.

indicated by the blue vertical line. In addition, there appears to be a discontinuous
jump at the threshold, suggesting that journals are publishing more empirical results
that are just below the threshold than results just above it.

Another important pitfall regarding hypothesis testing is multiple testing. Recall
that statistical hypothesis testing is probabilistic. We never know with 100% certainty
whether the null hypothesis is true. Instead, as explained earlier, we typically have type I
and type II errors when conducting hypothesis tests (see table 7.3). Multiple testing
problems refer to the possibility offalse discoveries when testing multiple hypotheses.

To see this, suppose that a researcher tests 10 hypotheses when, unbeknown to the
researcher, all of these hypotheses are in fact false. What is the probability that the
researcher rejects at least one null hypothesis using 5% as the threshold? If we assume
independence among these hypotheses tests, we can compute this probability as

P(reject at least one hypothesis) = 1 — P(reject no hypothesis)

= 1 — 0.9510 z 0.40.

The second equality follows because the probability of not rejecting the null hypothesis
when the null hypothesis is true is 1 — at = 0.95 and we assume independence among
these 10 hypothesis tests. Thus, the researcher has a 40% chance ofmaking at least one
false discovery. The lesson here is that if we conduct many hypothesis tests, we are
likely to falsely find statistically significant results.

To illustrate the multiple testing problem, consider “Paul the Octopus” shown in
figure 7.5a. This octopus in a German aquarium attracted media attention during the
2010 World Cup soccer tournament by correctly predicting all seven matches involving
Germany, as well as the outcome of the final match between the Netherlands and
Spain. Paul predicted by choosing to enter one of two containers with a country flag
as shown in the figure. Given this data, we can conduct a hypothesis test with the null
hypothesis that Paul does not possess any ability to predict soccer matches. Under this
null hypothesis, Paul randomly guesses a winner out oftwo countries in question. What
is the probability that Paul correctly predicts the outcomes of all 8 matches? Since Paul
has a 50% chance of correctly predicting each match, this one-sided p-value is equal
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to 1/28 z 0.004. This value is well below the usual 5% threshold and hence can be

considered statistically significant.

However, the problem of multiple testing suggests that if we have many animals

predict soccer matches, we are likely to find an animal that appears to be prophetic.

During the same world cup, another animal, “Mani the Parakeet” shown in figure 7.5b,

was reported to have a similar oracle ability. The parakeet correctly predicted only

6 out of 8 matches. Each time, he selected one of two pieces of paper with his beak

and flipped it to reveal a winner, without viewing country flags as Paul did. Since no

scientific theory suggests animals can possess such predictive ability, we may conclude

that Paul and Mani represent false discoveries due to the problem of multiple testing.

Although beyond the scope of this book, statisticians have developed various methods

that make appropriate adjustments for multiple testing.

 

The multiple testing problem is that conducting many hypothesis tests is likely

to result in false discoveries, i.e., incorrect rejection of null hypotheses.

 

7.2.6 POWER ANALYSIS

Another problem of hypothesis testing is that null hypotheses are often not inter—

esting. For example, who would believe that the small class in the STAR study has

exactly zero average causal effect on students’ test scores as assumed under the null

hypothesis? The effect size might be small, but it is hard to imagine that it is exactly

zero. A related problem is that failure to reject the null hypothesis does not necessarily

mean that the null hypothesis is true. Failure to reject the null may arise because data

are not informative about the null hypothesis. For example, if the sample size is too

small, then even if the true average treatment effect is not zero, researchers may fail to

reject the null hypothesis of zero average effect because the standard error is too large.

We use power analysis in order to formalize the degree of informativeness of data in

hypothesis tests. The power of a statistical hypothesis test is defined as one minus the

probability of type II error:

power = 1 — P(type || error).

Recall from the discussion in section 7.2.2 that type II error occurs when researchers

retain a false null hypothesis. Therefore, we would like to maximize the power of a

statistical hypothesis test so that we can detect departure from the null hypothesis as

much as possible.

Power analysis is often used to determine the smallest sample size necessary to

estimate the parameter with enough precision that its observed value is distinguishable

from the parameter value assumed under the null hypothesis. This is typically done

as part of research planning in order to inform data collection. In sample surveys, for

example, researchers wish to know the number of people they must interview in order

to reject the null hypothesis ofan exact tie in support level when one candidate is ahead

ofthe other by a prespecified degree (see also the discussion in section 7.1.4). Moreover,

experimentalists use power analysis to compute the number of observations necessary
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Figure 7.6. illustration of Power Analysis. In the left-hand plot, the solid black line
represents the sampling distribution of sample proportion under the null hypothesis
p = 0.5 (vertical dotted line). The blue solid line represents the sampling distribution
of the test statistic under a hypothetical data-generating process, which has mean 0.48.
The sum of the two blue shaded areas equals the power of this statistical test when the
significance level is a = 0.05. The vertical dashed lines represent thresholds, above or
below which the null hypothesis will be rejected. The right-hand plot displays the power
function under the same setting with three different sample sizes.

to reject the null hypothesis of zero average treatment effect when the effect is actually
not zero. As a result, power analysis is often required for research grant applications in
order to justify the budget that researchers are requesting.

Again, we use survey sampling as an example. Suppose that we wish to find out how
many respondents we must interview to be able to reject the null hypothesis that the
support level for Obama, denoted by p, is exactly 50% when the true support level is at
least 2 percentage points away from an exact tie, i.e., 48% or less, or 52% or greater. That
is, 2 percentage points is the smallest deviation from the null hypothesis we would like
to detect with a high probability. Further assume that we will use the sample proportion
as the test statistic, and that the significance level is set to a = 0.05 with a two-sided
alternative hypothesis.

To compute the power, we need to consider two sampling distributions of the test
statistic. The first is the sampling distribution under the null distribution. We have
already derived the large sample approximation of this sampling distribution earlier:
N(p, p(l — p)/n), where p is the null value of the population proportion. In our
application, p = 0.5. The second is the sampling distribution under a hypothetical
data—generating process. In the current case, this distribution is approximated by
N(p*, p*(1 — p*)/n) Via the central limit theorem, where p* is either less than or equal
to 0.48 or greater than or equal to 0.52.

The left-hand plot of figure 7.6 graphically illustrates the mechanics of power
analysis in this case. In the plot, the two sampling distributions of the sample
proportion, one centered around 0.5 under the null hypothesis (black solid line) and
the other centered around 0.48 under a hypothetical data-generating process (blue
solid line), are shown. We choose 0.48 as the mean value under the hypothetical data-
generating process because any distribution with a mean less than this value would
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result in greater statistical power, which is the probability ofcorrectly rejecting the null,

and hence would require a smaller sample size. For the meantime, we set the sample

size n to 250.

Under this setting, we compute the power of the statistical test, which is the

probability of rejecting the null hypothesis. To do this, we first derive the thresholds

that determine the rejection region. As shown in section 7.2.3, the threshold is equal to

the null value p0 plus or minus the product of the standard error and critical value za/z,

i.e., po :1: za/z x standard error, where in the current setting p0 = 0.5 and za/z N 1.96.

In the left-hand plot of the figure, these thresholds are denoted by black dashed lines

and we reject the null hypothesis if an observed value is more extreme than they are.

We use the probability distribution indicated by the blue solid line in the figure

when computing the probability of rejection under the hypothetical data-generating

process. That is, the power of the test equals the sum of the two blue shaded areas in

the figure, one large area below the lower threshold and the other small area above the

upper threshold. Formally, it is given by

power = P(Yn < p —- za/z X standard error) + P65,l > p + za/z x standard error).

In this equation, the sample proportion in is assumed to be approximately distributed

according to N(p*, p*(1 — p*)/ n), where in the current application 19* is set to 0.48.

We can compute the power of a test in R as follows.

## set the parameters

n <— 250

p.star <— 0.48 # data-generating process

p <— 0.5 # null value

alpha <— 0.05

## critical value

cr.value <— w“v‘:(l — alpha / 2)

## standard errors under the hypothetical data—generating process

se.star <— avis(p.star * (1 — p.star) / n)

## standard error under the null

se <— sw.‘(p * (1 — p) / n)

## power

iwew(p — cr.value * se, mean = p.star, sd = se.star) +

\(p + cr.value * se, mean = p.5tar, sd = se.star, lower.tail = FALSE)

## [1] 0.09673114

Under these conditions, the power of the test is only 10%. We can examine how

the power of this test changes as a function of the sample size and hypothetical data-

generating process. The right-hand plot of figure 7.6 presents the powerfunction, where

the horizontal axis represents the population proportion under the hypothetical data-

generating process and each line indicates a different sample size. We observe that the

power of a statistical test increases as the sample size becomes greater and the true

population proportion 17* shifts away from the null value p = 0.5.
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The above specific example illustrates the main principle of power analysis. We
summarize the general procedure below.

 

Power is defined as the probability of rejecting the null hypothesis when the null
hypothesis is false, which is equal to one minus the probability of type 11 error.
Power analysis consists of the following steps:

1. Select the settings of the statistical hypothesis test you plan to use. This
includes the specification of the test statistic, null and alternative
hypotheses, and significance level.

2. Choose the population parameter value under a hypothetical
data-generating process.

3. Compute the probability of rejecting the null hypothesis under this
data-generating process with a given sample size.

One can then vary the sample size to examine how the power of the test changes
to decide the sample size necessary for the desired level of power.   
 

The power analysis can be conducted in a similar manner for two-sample tests. Con-
sider the two-sample test of proportions, which can be used to analyze a randomized
experiment with a binary outcome variable. The test statistic is the difference in sample
proportion between the treatment and control groups, Y,“ — Yno. Under the null
hypothesis that this difference in the population, or the population average treatment
effect (PATE), is equal to zero, the sampling distribution of the test statistic is given
by N(O, p(l — p)(l/n1 + l/no)), where p is the overall population proportion (see
equation (7.20)), which is equal to the weighted average of the proportions in the two
groups, p = (nopo + n1p1)/(no + m). To compute the power of the statistical test in
this case, we must specify the population proportion separately for the treatment and
control groups, pi“ and p3, under a hypothetical data-generating process. Then, the
sampling distribution ofthe test statistic under this data-generating process is given by
N(pf — p3, pf(1— pf)/n1+ p30 — p3)/no). Using this information, we can compute
the probability ofrejecting the null.

As an example, consider the résumé experiment analyzed in section 2.1. Suppose
that we plan to send out 500 résumés with black-sounding names and another 500
résumés with white-sounding names. Further, assume that we expect the callback rate
to be around 5% for black names and 10% for white names.

 

To compute the power of this statistical test, we first compute the overall callback
rate as a weighted average of callback rates of the two groups, where the weights are
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their sample size. We then compute the standard error under the null hypothesis, i.e.,

standard error = ~/p(1 — p)(1/no + l/nl), as well as under the hypothetical data-

generating process, i.e., standard error* = ‘/pf(1 — pf)/n1 + p30 — p3)/no.

overall callback rate as a weighted average

p <— (n1 * p1.star + no * p0.star) / (n1 + n0)

##

se

##

se.

standard error under the null

<— r“:*(p * (1 - p) * (1 / n1 + 1 / n0))

standard error under the hypothetical data—generating process

star <- fiqv'(pl.star * (l — p1.star) / n1 + p0.star * (1 - p0.star) / n0)

We can now compute the power by calculating the probability that the difference

in two proportions, Y" — X", takes a value either less than —za/2 x standard error or

greater than —za/2 >< standard error*, under the hypothetical data-generating process.

wnovm(—cr.value * se, mean = p1.star — p0.star, sd = se.star) +

##

##

##

##

##

##

##

##

##

##

##

 
mmv:m(cr.value * se, mean = p1.star - p0.star,

sd = se.star, lower.tail = FALSE)

[1] 0.85228

While for illustration we computed the power by hand, we can use the

power.prop.test () function available in R. This function, which is applicable

to the two-sample test for proportions, can either compute the power given a set of

parameters or determine a parameter value given a target power level. The arguments

of this function include the sample size per group (:1), population proportions for

two groups (p1.star and p2 . star), significance level (sig. level), and power

(power). Note that the function assumes the two groups have an identical sample size,

i.e., me = r11. To compute the power, we set power = NULL (default). The following

syntax gives a result identical to what we computed above.

>ower.prnfl.icvi(n = 500, p1 = 0.05, p2 = 0.1, sig.level = 0.05)

Two—sample comparison of proportions power calculation

n = 500

p1 = 0.05

p2 = 0.1

sig.level = 0.05

power = 0.8522797

alternative = two.sided

NOTE: n is number in *each* group##
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The power . prop . tes t ( ) function also enables sample size calculation by simply
setting the power argument to a desired level and setting n to NULL (default). For
example, ifwe want to know, under the same conditions as above, the minimum sample
size necessary to obtain a 90% level of power, we use the following R syntax. The result
below implies that we need at least 582 observations per group in order to achieve
this power.

power.prop.test(p1 = 0.05, p2 = 0.1, sig.level = 0.05, power = 0.9)

##

##

##

##

##

##

##

##

##

##

##

Two-sample comparison of proportions power calculation

n = 581.0821

p1 = 0.05

p2 = 0.1

sig.level = 0.05

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

For continuous variables, we can conduct a power analysis based on Student’s
t—test, introduced in section 7.2.4. The logic is exactly the same as that described
above for one-sample and two-sample tests of proportions. The power . t . test ( )
function can perform a power analysis where the type argument specifies a two—
sample ( "two . sample") or one-sample (" one . sample") test. For a one-sample
t-test, we must specify the mean delta and standard deviation sd of a normal
random variable under a hypothetical data-generating process. For a two-sample
t-test, the function assumes that the standard deviation and sample size are identical
for the two groups. We, therefore, specify the true difference-in-means delta under
a hypothetical data-generating process as well as a standard deviation sd. Finally, the
function assumes the null hypothesis that the mean is zero for a one-sample test and
the mean difference is zero for a two-sample test. If the null value is not zero, then one
simply has to adjust the hypothetical data-generating process by subtracting that value
from the true mean (or mean difference).

Below, we present two examples of using the power . t . test ( ) function. The first
is the power calculation for a one-sample test with a true mean of 0.25 and standard
deviation of 1. The sample size is 100. Recall that the assumed mean value under the
null hypothesis is zero.

power.t.test(n = 100, delta = 0.25, sd = 1, type = "one.sample")

##

##

##

One—sample t test power calculation
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Under this setting, the power is calculated to be 70%. What is the sample size we

need to have a power of 0.9 under the same setting? We can answer this question by

specifying the power argument in the power . t . test ( ) function while leaving the

n argument unspecified.

 

The minimum sample size for obtaining a power of0.9 or greater is 171. The second

example is the sample size calculation for a one-sided two-sample test with a true mean

difference of 0.25 and standard deviation of 1. We set the desired power to be 90%.

 
The result shows that we need a minimum of275 observations per group to achieve

a power of90% under this setting.  
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As the final topic of this book, we consider the uncertainty of estimates based
on the linear regression model introduced in chapter 4. In that chapter, we used
the linear regression model mainly as a tool to make predictions. We also showed
that when applied to a randomized controlled trial with binary treatments, the linear
regression model can yield unbiased estimates of average treatment effects. In this
section, we introduce another perspective that portrays the linear regression model
as an approximation of the data-generating process in the real world. Under this
framework, we can quantify the uncertainty ofour estimates over repeated hypothetical
sampling from the specified generative model. Once we view the linear regression
model as a generative model, we can compute the standard errors and confidence
intervals for our quantities of interest and conduct hypothesis testing.

7.3.1 LINEAR REGRESSION AS A GENERATIVE MODEL
Recall that the linear regression model with p predictors (explanatory or indepen-

dent variables) is defined as

Yi =U+51Xi1+132Xi2+'-'+flpxip +6i- (7.21)

In this model, Y represents the outcome or response variable, X7 is the jth predictor,
for j = 1,2, ..., p, and 6,- denotes the unobserved error term for the ith obser-
vation. The model also has a total of (p + 1) coefficients to be estimated, where 01
represents an intercept and ,Bj denotes a coefficient for the jth explanatory variable for
j: l,2,...,p.

According to this model, the outcome variable is generated as a linear function ofthe
explanatory variables and the error term. For example, in section 4.2, we modeled the
relationship between facial impressions and election outcomes using linear regression.
In that application, the election outcome was a linear function of facial impressions
and the error term. The error term contains all determinants of election outcomes that
we do not observe, such as campaign resources, name recognition, and voter
mobilization efforts.

In the model, the only variable we do not directly observe is the error term. As
such, the key assumption of the model concerns the distribution of this random
variable 6i. Specifically, the linear regression model is based on the following exogeneity
assumption.

 

The exogeneity assumption for the linear regression model is defined as
E(E,’ I X1,X2,...,Xp)=]E(€i)=0. (7.22)

The assumption implies that the unobserved determinants ofoutcome, contained
in the error term 6;, are unrelated to all the observed predictors Xij for i =
1,2, . . ., n andj = 1, 2, . . . , p. In this equation, X}- is an n x 1 vector containing
the jth covariate of all observations.   
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The assumption says that the conditional expectation of the error term given the

explanatory variables, which is the first term in equation (7.22), is equal to its marginal

or unconditional expectation, which is the second term in the equation and is equal

to zero. The marginal expectation of the error term can always be assumed to be zero

in the linear regression model so long as an intercept or is included in the model. The

exogeneity assumption implies that the mean of the error term does not depend on

the predictors or explanatory variables included in the model. In other words, the

unobserved determinants of the outcome variable, which are contained in the error

term, should be uncorrelated with all the observed predictors. In the election example,

this implies that other, unobserved determinants of election outcomes should not be

correlated with candidates’ facial impressions.

In general, the conditional expectation of a random variable Y given another

random variable X , denoted by E(Y I X ), is the expectation of Y given a particular

value of X . As such, this conditional expectation is a function of X , i.e., E(Y | X) =

g(X), where g(X) is called the conditional expectation function. All the definitions

and rules of expectation introduced in section 6.3.5 hold for conditional expectation,

except that we treat the variables in the conditioning set as fixed and compute the

expectation with respect to the conditional distribution of Y given X . Thus, under

the exogeneity assumption, the linear regression model assumes that the conditional

expectation function for the outcome variable given the set of predictors is linear:

E(KIXl’-"$Xp)=a+/31Xi
l+"'+fipxip.

When deriving this result, we used the exogeneity assumption as well as the fact that

the conditional expectation of fij Xi,- given X 1, . . . , X p equals itself.

 

The conditional expectation of a random variable Y given another random

variable X is denoted by E(Y | X ) and is defined as

x ( | X) if Y is discrete,1m, | X) = Zyy f y
fy x f(y | X)dy if Y is continuous,

where f(Y | X) is the conditional probability mass function (conditional

probability density function) of the discrete (continuous) random variable Y

given X .    
In randomized controlled trials, a violation of exogeneity does not occur because

treatment assignment is randomized. In the framework of the linear regression model,

this means that the treatment variable, which is represented by X, is statistically

independent of all observed and unobserved pretreatment characteristics, which are

contained in 6. Therefore, the exogeneity assumption is automatically satisfied. Con-

sider the randomized controlled trial about women as policy makers described in

section 4.3.1. In this experiment, the explanatory variable of interest, X , is whether

seats in the local government, Gram Panchayat (GP), are reserved for female leaders.

This variable is randomized and hence statistically independent of all other possible
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determinants ofpolicy outcomes. For example, the number ofnew or repaired drinking
water facilities in the village is likely to be determined not only by the existence
of female leaders but also by numerous other factors such as the population size
and the income level. Fortunately, we do not have to worry about these potential
unobserved confounders because the randomized treatment assignment makes the
treatment variable independent of these factors.

In observational studies, however, the exogeneity assumption may be violated.
Suppose that the reservation ofsome GPs for female leaders is not randomized. Then, it
is possible that villages with high levels of education and liberal ideologies are likely to
elect female leaders for their GPs. Under this scenario, we cannot simply attribute the
difference in the number of new or repaired drinking water facilities between villages
to the gender of their politicians alone. It may be that highly educated villagers want
better drinking water facilities and politicians are simply responding to the demands of
their constituency. That is, both female and male politicians are responding to their
constituencies, but their policy outcomes are different because they have different
constituencies rather than because their genders are different. In observational studies,
the unobserved confounders may be contained in the error term (e.g., education level
of villagers), and if they are correlated with the observed explanatory variables (e.g.,
gender of politicians), the exogeneity assumption will be violated.
How can we address this problem of unobserved confounding in observational

studies? In chapter 2, we learned that one strategy is to compare the treated units with
similar control units. Ideally, we would like to find units that did not receive treatment
and yet are similar to the treated units in terms of many observed characteristics. In
the study on the minimum wage and employment described in section 2.5, researchers
chose fast-food restaurants in Pennsylvania (PA), in which the minimum wage was
not increased, as the control group for the fast-food restaurants in New Jersey (NJ), for
which the minimum wage was raised. The idea was that since these restaurants are quite
similar in their patterns ofemployment, products, and sales, we can use the restaurants
in PA to infer the employment level of the restaurants in N] that would have resulted if
the minimum wage had not been increased. If there exist no unobserved factors, other
than the treatment in N], that influence employment in NI fast-food restaurants (i.e.,
no unobserved confounders), then the average difference in employment between the
restaurants in N] and those in PA can be attributed to the increase in NI’s minimum
wage. The assumption of no unobserved confounding factors has several different
names, including unconfoundedness, selection on observables, and no omitted variables,
but they all mean the same thing.

The assumption of no unobserved confounding factors studied in chapter 2,
therefore, is directly related to the exogeneity assumption under the linear regression
model. Indeed, the exogeneity assumption will be violated whenever unobserved
confounding variables exist. In the linear regression model framework, we can address
this problem by measuring these confounders and including them as additional
predictors in the model in order to adjust for their differences between the treatment
and control groups. Although this strategy assumes a linear relationship between the
outcome and these confounding variables, conceptually it is the same as comparing
treated and control units that have similar characteristics. It can be shown that so
long as all confounding variables are included in the model (and the linear relationship
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between the outcome and all explanatory variables holds), the estimated coefficient for

the treatment variable represents an unbiased estimate of the average treatment effect.

In the minimum-wage example, assume that the only confounding factors between

the fast—food restaurants in N] and those in PA are the fast-food chain to which each

restaurant belongs, its wage, and the proportion of full—time employment before the

minimum wage was increased in NI. Thus, we adjust for these three variables in the

linear model, where the outcome variable is the proportion of full-time employment

after the minimum wage was increased in N] and the treatment variable is whether a

restaurant is located in N]. We use the data set described in table 2.5 and regress the

outcome variable and three confounding variables using the 1m ( ) function. Before we

fit the linear regression, we compute the proportion of full-time employment before

and after the minimum wage was increased in NI. We also create an indicator, or

“dummy” variable, that equals 1 if a restaurant is located in N] and 0 if it is in PA.

minwage <— yead.csv("minwage.csv“)

## compute proportion of full—time employment before minimum wage increase

minwageSfullPropBefore <— minwagesfullBefore /

(minwageSfullBefore + minwagespartBefore)

## same thing after minimum—wage increase

minwage$fullPropAfter <— minwage$fullAfter /

(minwagesfullAfter + minwage$partAfter)

## an indicator for NJ: 1 if it's located in NJ and 0 if in PA

minwage$NJ <— Lie sc(minwage$location 22 “PA", 0, 1)

We now regress the proportion of full-time employment after the minimum—wage

increase on the treatment variable (i.e., whether a restaurant is located in NJ) as

well as on 3 other potential confounding variables. We note that chain is a factor

variable with 4 different chains of fast-food restaurants. When a factor variable is

used in the lm( ) function, as we saw in section 4.3.2, the function will automatically

create the appropriate number of indicator variables for each category. In this case,

since we have an intercept and the factor has 4 categories, the function will create 3

indicator variables. The lm( ) function by default includes an intercept. Ifwe remove

the intercept using the —1 syntax, then it will create 1 indicator variable for each of

the four categories. As explained in section 4.3.2, these two models are equivalent and

yield an identical predicted value given the same values of the explanatory variables

while yielding different estimates of coefficients.

fit.minwage <- lm(fullPropAfter ~ —1 + NJ + fullPropBefore +

wageBefore + chain, data = minwage)

## regression result

fit.minwage

##

## Call:

## lm(formula = fullPropAfter ~ —1 + NJ + fullPropBefore + wageBefore +

 



 

##

##

##

##

##

##

##

##

##
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chain, data = minwage)

Coefficients:

NJ fullPropBefore wageBefore

0.05422 0.16879 0.08133
chainburgerking chainkfc chainroys

—0.11563 —0.15080 —0.20639

chainwendys

-O.22013

The result shows that the minimum-wage increase in N] raised the proportion of
full-time employees by 5.4 percentage points (represented by the estimated coefficient
for the NJ variable) after adjusting for the proportion of full-time employees and wages
before the minimum-wage increase as well as the chains of fast-food restaurants. By
excluding the intercept, we can immediately compare the estimated coefficients across
fast-food restaurant chains. We find that Burger King is predicted to have the highest
proportion of full-time employment after adjusting for the other factors in the model.
If we include an intercept, the estimated coefficients need to be interpreted relative to
the base category, which will be dropped from the regression model. The base category
of a factor variable represents a category to which the other categories of the variable
are compared.

fit.minwagel <— lm(fullPropAfter ~ NJ + fullPropBefore +

wageBefore + chain, data = minwage)
fit.minwage1

##

## Call:

## lm(formula = fullPropAfter ~ NJ + fullPropBefore + wageBefore +
## chain, data = minwage)

##

## Coefficients:

## (Intercept) NJ fullPropBefore
## -0.11563 0.05422 0.16879

## wageBefore chainkfc chainroys
## 0.08133 —0.03517 —0.09076

## chainwendys

## —0.10451

The lm( ) function excluded the indicator variable for Burger King from the re-
gression, which means that the estimated coefficients for all other fast-food restaurant
chains are relative to Burger King. Consistent with the previous result, we find that
all other estimated coefficients are negative, indicating that Burger King is predicted
to have the highest proportion of full-time employment after adjusting for the other
factors in the model. We emphasize that these two models are equivalent, yielding the
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same predicted values. For example, we use the outputs ofthe two regression models to

predict the outcome for the first observation in the data yielding an identical predicted

value.

 

 f—
1 L

Valid inference under the linear model assumes the exogeneity assumption given

in equation (7.22). This assumption will be violated if there exist unobserved

oonfounders. To make the exogeneity assumption more plausible, researchers

can measure confounding variables and include them as additional explanatory

variables in the linear regression model.    
7.3.2 UNBIASEDNESS OF ESTIMATED COEFFICIENTS

How accurately can we estimate the coefficients of the linear regression model?

Under the assumption that the linear regression model actually describes the true

data-generating process, we consider the question of how to quantify the uncertainty

associated with estimated coefficients. For simplicity, let us consider the model with

one predictor only, though the results presented in this section can be generalized to

linear regression with more than one predictor:

Yi = 0! + flXi + 6i- (7-23)

Recall from the discussion given in section 4.2.3 that if the linear regression model

contains only an intercept and one predictor, then the least squares estimates are

given by

a = Y — 335, (7.24)

f‘ Yi — ? X,- — 3?

3 = ElE§L1(xi)—('7)2 ). (7.25)

In this equation, 7(- and 7 represent the sample average of the predictor X,- and the

outcome variable Yi, respectively.

It turns out that under the exogeneity assumption these least squares coefficients,

a and ,3, are unbiased for their corresponding true values, a and fl, respectively.

Formally, we may write E(d) = a and E(fi) = 5. This means that if we generate

the data according to this linear model, the least squares estimates of the coefficients

will equal their true values, on average, across the hypothetically repeated data sets.

Thus, the method of least squares produces unbiased estimates while minimizing the

sum of squared residuals. '
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For those who are mathematically inclined, we show this important result analyt—
ically. Since we assume that the linear regression model is the true data-generating
process, we substitute the linear model expression given in equation (7.23) into
equation (7.24). Noting that the average outcome is given by 7 = a + )3? + E, we
obtain the following expression for the estimated intercept:

d:a+fiY+é—3Y=a+(fl—B)Y+é.

This equation shows that the estimation error 65 — a is given by (,8 — ,3)? + E.
Similarly, we use equation (7.23) to rewrite the estimated slope coefficient given in
equation (7.25) as the sum of the true value )3 and the estimation error ,8 — )3:

ZLAEL291iE
ZF=I(X‘I — Y)2

estimation error

ZELAfiXi + e — I37 — é)<X.- — Y)
E:?=l()(i — Y)2

 8: =fi+ 9

where we used the fact that 2L1 )3Xi = 217:1 ,BY.
We can further simplify the numerator of this estimation error, i.e., the second term

in this equation:

fl

E(e — g)(xi — 3?) = Zeus — Y) - 2am — Y)
(:1 i=1 i=1

= i€{(Xi —Y) —é (iXi — HY)

i=1 i=1

=0

71

= Z€{(Xi — Y).

i=1

Therefore, we obtain the following final expressioh for the estimation error of the
slope coefficient:

2L1 6i(Xi — Y)

fl — [3 = ZLflXi ‘YV'
(7.26)

As discussed in section 7.1.1, to prove the unbiasedness of 3, we must show that
on average 3 equals its true value ,8 over repeated (hypothetical) data—generating
processes. Mathematically, we compute the expectation of B and show it is equal
to )3, i.e., E(fi) = )9. In this case, we first compute the conditional expectation of
,3 given the explanatory variable vector X under the exogeneity assumption given in
equation (7.22), then show E(fl l X ) = ,3. This means that for a given value of X ,
we consider the hypothetical process of repeatedly generating the outcome variable Y
by sampling the error term 6 independent of X and then compute the least squares
estimates (it and ,3. While these estimates differ each time, on average they should equal
the true values a and ,8, respectively.
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We first calculate the conditional expectation of the estimated slope coefficient.

Since the expectation is computed given the predictor vector X , the only random

variable is the error term 6. This means that the other terms can be considered as

constants and taken out of the expectation:

E(fi — a I X) = Ewe,- |X)(X.~ 4?) =0.1

Z:?=l()(i — 35y '_1

The second equality is implied by the exogeneity assumption E(e | X ) = 0. Therefore,

the estimated slope coefficient for X; is unbiased conditional on the predictor. Using

this result, we can also show that the estimated intercept is unbiased conditional on the

predictor vector X :

n

1-

E(d—a|X)=]E(B—fi|X)X+1E(é|X)=0.

The result follows from the fact that E(B — ,3 | X ) = 0 (unbiasedness of 3) and

E(é l X) = £217; E(ei l X) = 0 (exogeneity). Since this means that given any

value of the predictor vector X the estimated coefficients, a and 3, are unbiased,

conditional unbiasedness implies unbiasedness without conditioning, i.e., E(éc) = a

and E(fl) = ,B.

 

[Under the exogeneity assumption, the least squares estimates of the coefficients in]

the linear regression model are unbiased.
 

The argument we just made, that conditional unbiasedness of estimated coefficients

implies (unconditional) unbiasedness, can be made more generally and is called the

law of iterated expectation.

 

The law of iterated expectation states that for any two random variables X

and Y, the following equality holds:

E(Y) = 1E{IE(Y | X)}.

The inner expectation averages over Y given X , yielding a function of X, and the

outer expectation averages this resulting conditional expectation function over X .    
For example, let Y be an individual income and X be the racial group the individual

belongs to. Then, in order to obtain the average income in a population, we could

simply compute the mean of everyone’s income E(Y) or first compute the average

income for each racial category E(Y | X) = g(X) and then obtain the overall

mean income by calculating the weighted average of race-specific means, where the

weight is proportional to the size of racial group E(g(X)). Applying the law of iterated

expectation, we would formally conclude that the estimated coefficients are unbiased:

E(a) = Ema | X)} = E(a) = a,

E(fi) = 1E{1E(5 | X)} = E(fi) = fl-
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7.3.3 STANDARD ERRORS OF ESTIMATED COEFFICIENTS
Now that we have established the unbiasedness of estimated coefficients, we con-

sider their standard errors. The standard error of each estimated coefficient represents
the (estimated) standard deviation of its sampling distribution (see section 7.1.2). The
sampling distribution is produced through a hypothetically repeated sampling process,
yielding different estimated coefficients across samples. The standard error quanti-
fies the average variability of the estimated coefficient over this repeated sampling
procedure.

As in the case of unbiasedness, we consider the linear regression model with one
predictor for the sake of simplicity. We derive the variance of the sampling distribution
ofthe estimated slope coefficient ,3 and then take its square root to obtain the standard
error. As in the case of bias, we first compute the conditional variance given the
predictor X . Recall the discussion in section 6.3.5 that the variance ofa random variable
does not change even if we add a constant to it. Thus, the variance of the estimated
coefficient )3 equals that of the estimation error B — ,3 since f3 is an (albeit unknown)
constant. Using equation (7.26), we obtain

WIX) = V(fi—fiIX)

= V(ZLIGKXi—Y) X)

Zy=l(Xi — Y)2

1 n _
=mil (2:; e,-(X,- — X)'X> . (7.27)

The third equality follows from equation (6.38) and the fact that the denominator is a
function only of the predictor X , which is treated as a constant when computing the
conditional variance given X .

To further simplify the expression in equation (7.27), we assume homoskedasticity of
the error term. That is, we assume that, conditional on the predictor X , the error term
of observation 1' is independent of that of another observation, and that the variance of
the error term does not depend on the predictor X .

 

The assumption of homoskedastic error consists of the following two
components:

1. e; is independent of 6j conditional on X for alli 75 j .
2. The variance of error does not depend on the predictor:

V(Ei I X) = V(Gi)-   
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Under this homoskedasticity assumption, we can further simplify the numerator of

equation (7.27):

V (i €i(Xi —3{_) ‘ X) = iV(€i I XXX '302 = V(ei)i(xi “1—)2- 0-”)

i=1 i=1 i=1

Putting this together with equation (7.27), we arrive at the following variance of the

estimated slope coefficient B under the homoskedasticity and exogeneity assumptions:

V(Ei)

ELK)“ — Y)2 .

Although the above expression represents the conditional variance of B given the

predictor X, we can also compute the unconditional variance of B. The former is

based on the variability of B under the hypothetical scenario of repeated sampling

of Y; given X,- (or equivalently 6,- given X,- because Y,- is a function of X,- and 6;) for

each observation, where Xi is fixed throughout. In contrast, the latter represents the

uncertainty of B under a somewhat more natural data—generating process where Y;

and Xi (or equivalently e,- and X;) are jointly sampled from the population for each

hypothetical realization of the data. To derive the unconditional variance of B , we use

the following law of total variance.

V(B l X) = (7.29)

 

The law of total variance states that for any two random variables X and Y the

following equality holds:

V(Y) = WW” I X)} + E{V(Y I X)}-

The first term represents the variance of conditional expectation and the second

term represents the expectation of conditional variance.    
In words, this law implies that the unconditional variance of random variable Y is

equal to the sum of the variance of the conditional expectation of Y given X and the

expectation ofthe conditional variance of Y given X . Applying the law of total variance,

we can show that the unconditional variance of B can be derived as

V0302} I X))+1E{V(B l X)}

__ V(Gi)

—4W(rmm2)
=0

V(B)

-——lin .. .
Zi=l(Xi — XV

In the above equation, V(B) = 0 because B is a constant. This implies that the

unconditional variance of B is equal to the expected value of the conditional variance

of B , i.e., V(B) = 1E{V(B I X )}. Thus, a good estimate of the conditional variance is

also a good estimate of the unconditional variance.

Given this result, under the assumption of homoskedastic error, we can com-

pute the standard error of B as an estimate of the unconditional variance given in
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equation (7.30). We do this by first estimating V(ei) using the sample variance of
residuals é,- = Y; — d — 3X,~, and then taking the square root of it. That is, if we
denote the estimated conditional variance by V(3), then the standard error of3 is

327:1 éiz

ZLICXI' — XV

When estimating V(ei), we used the fact that the sample mean of residuals is always
zero,3 i.e., % ELIG; — é)2 = £217; 6}.

Finally, the standard errors derived above are based on the assumption of ho-
moskedastic errors. If this assumption is violated, then the calculation of standard
errors needs to be adjusted. For example, in randomized controlled trials, the variance
may differ for the treatment and control groups. In fact, when we computed the
standard error for the difference-in-means estimator, we separately calculated
the variance for each group (see equation (7.18)). If the error variance depends on the
predictor, we say that error is heteroskedastic. Although beyond the scope of this book,
there are various ways to compute the standard errors that account for heteroskedastic
errors. They are called heteroskedasticity—robust standard errors.

  

  standard error of3 = V(3) = (7.31)

7.3.4 INFERENCE ABOUT COEFFICIENTS
Given the standard error derived above, we can compute the confidence intervals

following the procedure described in section 7.1.3. Specifically, using the central limit
theorem, we can show that as the sample size increases, the sampling distribution of3
approaches a normal distribution centered around the mean:

B — fl approx.
~

standard error of 3
z-score of 3 = N(O, 1). (7.32)

Therefore, we can use the critical values based on the standard normal distribution to
construct the (l — a) x 100% level confidence interval below:

Cl(a) = [3 — 201/2 x standard error, 3 + za/z X standard error]. (7.33)

We can also conduct a hypothesis test for the slope coefficient. For example, we
can test the null hypothesis that the slope coefficient is equal to a particular value 30.
Most often, researchers use zero as the true value under the null hypothesis and ask
whether or not the true coefficient for the predictor is equal to zero, i.e., 30 = 0. Under
the general hypothesis-testing framework developed in section 7.2, our null hypothesis
is Ho : 3 = 30. The test statistic is the z-score, i.e., z* = (3 — 30)/standard error,
and the sampling distribution of this test statistic 2* under the null hypothesis is the
standard normal distribution. Therefore, we can compute the p—value using the CDF
of the standard normal distribution. For example, the two-sided p-value is given by
2 x P(Z 5 2*), where Z is a standard normal random variable.

3 Since the expectation of the error term is also zero and hence does not need to be estimated, we divide the
sum of squared residuals by n instead of n — 1 often used for the sample variance calculation (see the discussion
in section 2.6.2).
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Just as for the analysis of randomized experiments, researchers often use a more

conservative confidence interval based on Student’s t-distribution (see section 7.1.5).

Technically, if we make an additional assumption that the error term is normally

distributed with mean zero and homoskedastic variance, then the sampling dis-

tribution of 2*, which is called the t-statistic in this setting, is given by, without

approximation, Student’s t-distribution with n —— 2 degrees of freedom. This contrasts

with the asymptotic approximation based on the standard normal distribution without

assuming a particular distribution for the error term. The degrees of freedom are

n — 2 because two parameters, a and f3, are estimated from the data. Since Student’s

t-distribution has thicker tails than the standard normal distribution, we will have a

greater critical value and as a result, obtain a wider confidence interval and a greater

p-value.

As the first example to illustrate the results described above, we revisit the random-

ized experiment from chapter 4, examining the effects of women as policy makers in

India (see section 4.3.1). The data set we analyze is contained in women . csv and the

variable names and descriptions are given in table 4.7. Recall that after loading the data

set from this study as a data frame women, we regressed the number of drinking water

facilities in a village, water, on a binary variable reserved, indicating whether each

GP is reserved for women. Conveniently, in R, all of the necessary information can be

obtained by applying the summary ( ) function to the output from the 1m ( ) function,

which fits a linear regression model.

women <— read.csv("women.csv")

fi
women)

t.women <— lm(water ~ reserved, data

summary(fit.women)

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

Call:

lm(formula = water ~ reserved, data women)

Residuals:

Min 10 Median 3Q Max

—23.991 —14.738 -7.865 2.262 316.009

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.738 2.286 6.446 4.22e—10 ***

reserved 9.252 3.948 2.344 0.0197 *

Signif. codes:

0 ‘t**' 0.001 ‘**' 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 33.45 on 320 degrees of freedom

Multiple R-squared: 0.01688,Adjusted R—squared: 0.0138

F—statistic: 5.493 on 1 and 320 DF, p-value: 0.0197

381
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We find that the point estimate of the slope coefficient is 9.252 and its standard
error is 3.948. This output uses a conservative confidence interval based on Student’s
t-distribution. The t-statistic for the estimated slope coefficient is, therefore, 2.344.
If the null hypothesis is that the slope coefficient is zero, then the two—sided p-
value can be computed using Student’s t-distribution with 320 degrees of freedom
because the sample size is 322. In the summary output, this p-value is shown to be
0.0197. Therefore, using the a = 0.05 level of statistical significance, we reject the null
hypothesis that the slope coefficient is zero. The asterisks in the summary output
indicate the level of statistical significance. We can compute confidence intervals using
the confint () function, where the default significance level is 0.05. The level of
statistical significance can be changed with the level argument.

i~<(fit.women) # 95% confidence intervals

2.5 % 97.5 %

## (Intercept) 10.240240 19.23640

## reserved 1.485608 17.01924

##

##

##

##

##

##

##

##

##

##

##

##

##

##

The result suggests that having the GP reserved for women is estimated to increase
the number of drinking water facilities by 9.25 facilities with a 95% confidence interval
of [1.49, 17.02]. As expected, we observe that the 95% confidence interval does not
contain zero.

While the mathematical derivation is beyond the scope of this book, we can also
compute the standard error and confidence interval of the estimated coefficients in
a more general setting with multiple predictors. The summary” function can be
applied to the output ofthe 1m ( ) function even with multiple predictors. For example,
we can summarize the results of the linear regression model fitted to the minimum-
wage data earlier in section 7.3.1.

'y(fit.minwage)'HH .t., . Ht. .

Call:

lm(formula = fullPropAfter ~ —1 + NJ + fullPropBefore + wageBefore +

chain, data = minwage)

Residuals:

Min 1Q Median 3Q Max

—O.48617 —0.18135 -0.02809 0.15127 0.75091

Coefficients:

Estimate Std. Error t value Pr(>[t|)

NJ 0.05422 03321 1.633 0.10343

wageBefore 0.08133

chainburgerking —0.11563

03892 2.090 0.03737 *

17888 -O.646 0.51844

0.

fullPropBefore 0.16879 0.05662 2.981 0.00307 **

0.

0.
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## chainkfc -0.15080 0.18310 —O.824 0.41074

## chainroys —0.20639~ 0.18671 -l.105 0.26974

## chainwendys -O.22013 0.18840 —1.168 0.24343

## -——

## Signif. codes:

## 0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Residual standard error: 0.2438 on 351 degrees of freedom

## Multiple R—squared: 0.6349,Adjusted R-squared: 0.6277

## F—statistic: 87.21 on 7 and 351 DF, p—value: < 2.2e—16

The summary output contains the relevant information for each of the estimated

coefficients. In this observational study, we are interested in the average effect of

increasing the minimum wage in N], which corresponds to the coefficient of the NJ

variable. Thus, the average effect of the minimum-wage increase on the proportion of

full-time employees in N] is estimated to be 5.4 percentage points with a standard error

of 3.3 percentage points. According to the result, we fail to reject the null hypothesis

that the average effect ofthe minimum-wage increase is zero. In other words, we cannot

preclude the possibility that the nonzero point estimate we obtained may be due to

the sampling error under the scenario that the minimum-wage increase did not, on

average, change the proportion of full-time employment. The p-values in this case are

based on Student’s t—distribution with 351 degrees of freedom because we have a total

of 358 observations and 7 parameters to be estimated. To obtain the 95% confidence

interval for this estimate, we can use the conf int ( ) function as before.

## confidence interval just for the “NJ” variable

.(fit.minwage)[“NJ", ]

## 2.5 % 97.5 %

## —0.01109295 0.11953297

As expected, the confidence interval contains zero, consistent with the result of the

hypothesis test. However, a large portion of the confidence interval contains positive

values, providing evidence that the minimum-wage increase in N] may not have

decreased the proportion of full-time employment.

The above summary output presents various other statistics. They include the

residual standard error, which is the sample standard deviation of residuals. Since

there are (p + 1) parameters to be estimated, the number of degrees of freedom equals

(n — p — 1) instead of the usual (n — 1) used when computing average. The residual

standard error represents the average magnitude of residuals under the fitted model.

The output also includes R2, or the coefficient of determination, which represents the

proportion of explained variation in the outcome (see section 4.2.6). As explained in

section 4.3.2, the adjusted R2 includes the adjustment due to the number of degrees of

freedom, penalizing models with large numbers of predictors.
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7.3.5 INFERENCE ABOUT PREDICTIONS
As shown in chapter 4, one of the main advantages of regression modeling is its

ability to predict outcomes of interest. In the case of linear regression models, once
we estimate the coefficients, we can use the model to predict an outcome variable
given the values of the predictors in the model. Below, we show how to compute the
standard error and construct confidence intervals for a prediction based on the linear
regression model.

For the sake of simplicity, consider the linear regression model with a single
predictor, i.e., Y,- = a + fiXi + Q. We are interested in obtaining the standard error of
the predicted value from this model when the predictor X takes a particular value x:

?=&+3x.

To derive the variance of the predicted value 3", we must recognize the fact that 6:
and ,3 are possibly correlated with each other. When two random variables, X and
Y, are correlated, the variance of their sum is not equal to the sum of their variances.
Instead, the variance of their sum includes their covariance, defined as follows.

 

Let X and Y be random variables. Their covariance is defined as

C0V(X, Y) = E{(X - E(X))(Y - ]E(Y))}
= ]E(XY) — ]E(X)]E(Y).

The correlation, a standardized version of covariance, is given by

Cov(X, Y)
Cor(X, Y) _W.

Sample correlation, or the correlation of a sample, was introduced in chapter 3
(see section 3.6.2). If the two random variables are independent of each other,
their covariance and correlation are zero. In addition, the general formula for the
variance of the sum of two (possibly dependent) random variables is given as

V(X + Y) = V(X) +V(Y) + 2 Cov(X, Y).

More generally,

V(aX + bY + c) = a2V(X) + b2(Y) + Zab Cov(X, Y)

where a, b, c are constants.   
 

Since 61 and B may not be independent, using the general formula introduced above,
we obtain the following variance of predicted value Y when the predictor X equals a
particular value x:

W?) =m + Bx) = W) + wmxz + 2x COV(d. B).
We can compute the standard error by estimating each component ofthis variance and
then taking the square root of the estimated variance of Y:

 

A

standard error of ’1" = \/V(-a\) + V([Bficz + 2x Cov(d, ,3).
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Once the standard error is calculated, we can apply the central limit theorem to

approximate the sampling distribution of the z—score for the predicted value Y using

the standard normal distribution:

A 17 — a .
z-score of Y = ———(—igix 8‘)on N(O, 1). (7.34)

standard error of Y

From this result, we can obtain a confidence interval and conduct a hypothesis test for

a selected level of statistical significance.

As an example of inference with prediction, we revisit the regression discontinuity

design introduced in section 4.3.4. In that study, we estimated the average effect

of winning an election on a candidate’s wealth in the United Kingdom. Instead of

comparing members of Parliament (MPs) who won an election with those who lost it,

researchers focused on those who narrowly won or narrowly lost an election. The idea

was that if winning an election has a large effect on one’s wealth, we should expect a

substantial gap in the average wealth at the winning threshold, i.e., the winning margin

of zero. Two linear regression models were used to predict the average wealth at this

threshold, one based on narrow winners and the other fitted to narrow losers. Here, we

reproduce the regression analysis conducted in section 4.3.4 separately for the Labour

and Tory Parties.

## load the data and subset them into two parties

MP5 <— read. csv( ”MP3 .Csv")

MPs.1abour <— subset(MPs, subset = (party == "labour'))

MPs.tory <- subset(MPs, subset = (party == 'tory'))

## two regressions for Labour: negative and positive margin

1abour.fit1 <— lm(1n.net ~ margin,

data = MPs.labour[MPs.laboursmargin < O, ])

1abour.fit2 <- lm(1n.net ~ margin,

data = MPs.1abour[MPs.1abour$margin > 0, ])

## two regressions for Tory: negative and positive margin

tory.£it1 <— 1m(1n.net ~ margin, data = MPs.tory[MPs.tory$margin < 0, 1)

tory.fit2 <- lm(1n.net ~ margin, data = MPs.tory[MPs.tory$margin > 0, ])

The average treatment effect of winning an election results from predicting the

average wealth at the winning threshold, Le, a winning margin of zero. The confidence

interval on the predicted value from each regression can be obtained by setting the

interval argument in the predict ( ) function to " confidence " rather than to

"none", which is the default. Note that as in the confint ( ) function, the level of

statistical significance can be selected by setting the level argument to a desired value

(the default is 0.95). We focus on the Tory Party here.

## Tory Party: prediction at the threshold

tory.y0 <— predict(tory.fit1, interval = “confidence",

newdata = data.frame(margin = 0))

385
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tory.yO

## fit lwr upr

## l 12.53812 12.11402 12.96221

tory.yl <— «:MJEwé(tory.fit2, interval = "confidence",

newdata = Ww‘: igufl.(margin = 0))

tory.yl

## fit lwr upr

## 1 13.1878 12.80691 13.56869

In this output, the predicted value is given by fit and the lower and upper
confidence bands are denoted by lwr and upr, respectively. For example, the average
net wealth for non-MPs at the threshold is estimated to be 12.54 log net wealth with a
95% confidence interval of [12.11, 12.96]. Similarly, the average net wealth for MPs at
the threshold is estimated to be 13.19 log net wealth with a 95% confidence interval of
[12.81, 13.57]. The following code chunk plots these two regression lines (solid lines)
with their 95% confidence intervals (dashed lines), using the range of predictor x. To
do this, we first define the two ranges of the electoral margin and then compute the
predictions for each range with 95% confidence intervals.

## range of predictors; min to 0 and 0 to max

yl.range <— x-q(from = 0, to = m‘n(MPs.tory$margin), by = —0.01)

y2.range <— ~1n(from = O, to = mnr(MPs.tory$margin),by = 0.01)

## prediction using all the values

tory.yo <— u;ud1'1(tory.fitl, interval = "confidence",

newdata = A(“.::lw.(margin = yl.range))

tory.yl <- wvrl?w\(tory.fit2, interval = "confidence",

newdata = . :r.:v;mv(margin = y2.range))

Finally, we plot the results where the solid lines represent the predicted values and
the dashed lines represent the confidence intervals.

## plotting the first regression with losers

g/ioi(y1.range, tory.y0[, "fit"], type = “l", xlim = c(-0.5, 0.5),

ylim = <(10, 15), xlab = "Margin of victory", ylab = "log net wealth“)

whiinv(v = 0, lty = "dotted")

iEuwu(y1.range, tory.y0[, "lwr"], lty = "dashed") # lower CI

:inan(y1.range, tory.y0[, "upr“], lty = "dashed") # upper CI

## plotting the second regression with winners

"solid“) # point estimates‘nuw(y2.range, tory.ylE, "fit“ll lty
tiuwn(y2.range, tory.y1[, "lwr"], 1ty = "dashed") # lower CI

Ein~s(y2.range, tory.y1[, “upr"], lty = "dashed") # upper CI
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In the plot, we observe that the width of the confidence interval widens as it moves

away from the mean value of the predictor. While these two confidence intervals

overlap with each other, what we really would like to do is to compute the confidence

interval for the difference between these two predicted values. This is because the .

difference between the two predicted values represents the estimated average treatment

effect at the threshold under the regression discontinuity design. Moreover, these

two predicted values are assumed to be independent because they are based on two

regression models that are fitted to two separate sets of observations. This means that

the variance ofthe difference is the sum ofthe two variances. To compute the standard

error of the difference in the predicted values, we obtain the standard error from each

fitted regression. We then use the following formula to compute the standard error of

the estimated difference:
 

standard error of (?1 — 170) = \/(standard error of ?02 + (standard error of ?OV.

In R, we obtain the standard error of a predicted value by setting the se. fit

argument to TRUE. There are multiple elements in the output list of the predict ( )

function when using this standard error option. Each element can be extracted from

this list by using the symbol $-
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Since in this case the predicted value equals the estimated intercept, the standard
error one obtains through the predict ( ) function is equal to the standard error of
the intercept in the summary output.

 
We can now compute the standard error of the estimated difference in the average

log net wealth between MPs and non-MPs at the winning threshold. Using this
standard error, we compute the confidence interval and conduct a hypothesis test
for which the null hypothesis is that winning an election has zero average effect on
candidates’ net log wealth.



7.4 Summary —

 
We find that even though the confidence intervals of the two estimates overlap

with each other, the difference between these two estimates is statistically significantly

different from zero. Indeed, the average effect of winning an election is estimated
to be 0.65 net log wealth with a 95% confidence interval of [0.09, 1.21], which does

not contain zero. As a result, the two-sided p-value is less than the conventional
statistical significance level, 0.05, allowing us to reject the null hypothesis of zero
average effect. Thus, our analysis suggests that winning an election had a positive

impact on candidates’ net wealth. The overlap of the confidence intervals of the two
estimates does not necessarily imply that the confidence interval of the difference

between the two estimates contains zero.

In this chapter, we introduced a framework for methods of statistical inference that
enables us to quantify the degree of uncertainty regarding our estimates. While we
can never know how close our estimates are to the unknown truth, we can evaluate

the performance of our estimators using a hypothetically repeated randomization of
treatment assignment and/or repeated random sampling. We introduced the concept

of unbiasedness. An unbiased estimator accurately estimates the parameter of interest
on average over a hypothetically repeated data-generating process. Using the law
of large numbers, we can also show that some estimators have the property of

consistency, which implies that as the sample size increases, they converge to the true

parameter values.
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While unbiasedness is an attractive property, we also need to understand the

precision ofan estimator given that we can obtain only one realization ofthe estimator.

We use standard error to quantify how far our estimator is from the true parameter
value on average over a repeated data-generating process. Standard error is an estimate
of the standard deviation of the sampling distribution of an estimator. Based on
standard errors, we can also construct confidence intervals, which will contain the true

parameter values with a prespecified probability, again over a repeated data-generating
process. We also showed how to conduct a statistical hypothesis test by specifying a

null hypothesis and examining whether or not the observed data are consistent with
this hypothesis. We applied these inferential methods to the analysis of randomized
experiments and sample surveys from earlier in this book.

Finally, we introduced model-based inference. We used a linear regression model
as a probabilistic generative model, from which the data are assumed to be drawn.
Under this setting, we can quantify the uncertainty of our estimated coefficients

and predicted values. We showed that the least squares estimates of coefficients are
unbiased and derived their standard errors. Using these results, we also explained
how to construct confidence intervals and conduct hypothesis tests. Similarly, we
showed how to quantify the uncertainty about our predicted values and applied the
methodology to the regression discontinuity design introduced in an earlier chapter.
These statistical methods play an essential role in our inference because they enable us
to separate signals from noise, extracting systematic patterns from data.

7.5.1 SEX RATIO AND THE PRICE OF AGRICULTURAL CROPS IN CHINA

In this exercise, we consider the effect of a change in the price of agricultural goods
whose production and cultivation are dominated by either men or women.4 Our data

come from China, where centrally planned production targets during the Maoist era

led to changes in the prices ofmajor staple crops. We focus here on tea, the production

and cultivation of which required a large female labor force, as well as orchard fruits,
for which the labor force was overwhelmingly male. We use price increases brought on
by government policy change in 1979 as a proxy for increases in sex-specific income,

and ask the following question: Do changes in sex-specific income alter the incentives
for Chinese families to have children of one gender over another? The CSV data file,

chinawomen . csv, contains the variables shown in table 7.4, with each observation
representing a particular Chinese county in a given year. Note that pos t is an indicator
variable that takes the value 1 in a year following the policy change and O in a year
before the policy change.

1. We begin by examining sex ratios in the postreform period (i.e., the period

after 1979) according to whether or not tea crops were sown in the region.

4 This exercise is based on Nancy Qian (2008) “Missing women and the price of tea in China: The effect of

sex-specific earnings on sex imbalance." Quarterly Journal ofEconomics, vol. 123, no. 3, pp. 1251—1285.
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Table 7.4. Chinese Births and Crops Data.
 

 

Variable Description

admin unique county identifier

birpop birth population in a given year

biryr year of cohort (birth year)

cashcrop quantity of cash crops planted in the county

orch quantity of orchard-type crops planted in the county

teasown quantity of tea sown in the county

sex proportion of males in the birth cohort

post indicator variable for the introduction of price reforms
 

Estimate the mean sex ratio in 1985, which we define as the proportion of male

births, separately for tea-producing and non-tea-producing regions. Compute

the 95% confidence interval for each estimate by assuming independence across

counties within a year. Note that we will maintain this assumption throughout

this exercise. Furthermore, compute the difference-in-means between the two

regions and its 95% confidence interval. Are sex ratios different across these

regions? What assumption is required in order for us to interpret this difference

as causal?

. Repeat the analysis in the previous question for subsequent years, i.e., 1980, 1981,

1982, . . ., 1990. Create a graph which plots the difference-in-means estimates and

their 95% confidence intervals against years. Give a substantive interpretation of

the plot.

. Next, we compare tea-producing and orchard-producing regions before the

policy enactment. Specifically, we examine the sex ratio and the proportion of

Han Chinese in 1978. Estimate the mean difference, its standard error, and

95% confidence intervals for each of these measures between the two regions.

What do the results imply about the interpretation of the results given in

question 1?

. Repeat the analysis for the sex ratio in the previous question for each year before

the reform, i.e., from 1962 until 1978. Create a graph which plots the difference-

in-means estimates between the two regions and their 95% confidence intervals

against years. Give a substantive interpretation of the plot.

. We will adopt the difference-in-differences design by comparing the sex ratio

in 1978 (right before the reform) with that in 1980 (right after the reform).

Focus on a subset of counties that do not have missing observations in these

two years. Compute the difference-in-differences estimate and its 95% confidence

interval. Note that we assume independence across counties but account for

possible dependence across years within each county. Then, the variance of the
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difference-in-differences estimate is given by

V{(Ytea,.2|ftar _ Ytea,before) _ (?orchardmfter _ Yorchard.before)}

= V(?teaafler _ 7tea,before) + V(?orchard.after " 7orchardJJefore),

where dependence across years is given by

V(?tea,after _ T’teabafore)

= V(Ytea.after) "‘ 2 C0V(?tea,afterv 7tea.before) + V(?tea.before)

l
= ; {V(Ytemafler) —' 2 C0V(Ytea,aftera Ytea,before) + V(Ytea,bofore)} -

A similar formula can be given for orchard-producing regions. What substantive
assumptions does the difference-in-differences design require? Give a substantive
interpretation of the results.

7.5.2 FILE DRAWER AND PUBLICATION BIAS IN ACADEMIC RESEARCH
The peer review process is the main mechanism through which scientific commu-

nities decide whether a research paper should be published in academic journals.5 By
having other scientists evaluate research findings, academic journals hope to maintain
the quality of their published articles. However, some have warned that the peer review
process may yield undesirable consequences. In particular, the process may result
in publication bias wherein research papers with statistically significant results are
more likely to be published. To make matters worse, by being aware of such a bias
in the publication process, researchers may be more likely to report findings that are
statistically significant and ignore others. This is calledfile drawer bias.

In this exercise, we will explore these potential problems using data on a subset
of experimental studies that were funded by the Time-Sharing Experiments in the
Social Sciences (TESS) program. This program is sponsored by the National Science
Foundation (NSF). The data set necessary for this exercise can be found in the CSV
files filedrawer . csv and published . csv. The filedrawer . csv file contains
information about 221 research projects funded by the TESS program. However, not
all of those projects produced a published article. The published. csv file contains

information about 53 published journal articles based on TESS projects. This data set

records the number of experimental conditions and outcomes and how many of them
are actually reported in the published article. Tables 7.5 and 7.6 present the names and
descriptions of the variables from these data sets.

1. We begin by analyzing the data contained in the fil‘edrawer . csv file. Create

a contingency table for the publication status of papers and the statistical

5 This exercise is based on the following studies: Annie Franco, Neil Malhotra, and Gabor Simonovits (2014)

“Publication bias in the social sciences: Unlocking the file drawer.” Science, vol. 345, no. 6203, pp. 1502—1505
and Annie Franco, Neil Malhotra, and Gabor Simonovits (2015) “Underreporting in political science survey
experiments: Comparing questionnaires to published results.” Political Analysis, vol. 23, pp. 206—312.
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Table7.5. File Drawer and Publication Bias Data |.
 

 

Variable Description

id study identifier

DV publication status

IV statistical significance of the main findings

max . h H—index (highest among authors)

journal discipline of the journal for published articles
 

Table 7.6. File Drawer and Publication Bias Data ll.
 

 

Variable Description

id . p paper identifier

cond . 5 number of conditions in the study

cond . p number of conditions presented in the paper

out . s number of outcome variables in the study

out . p number of outcome variables used in the paper
 

significance of their main findings. Do we observe any distinguishable trend

towards the publication of strong results? Provide a substantive discussion.

. We next examine whether there exists any difference in the publication rate of

projects with strong versus weak results as well as with strong versus null results.

To do so, first create a variable that takes the value of 1 if a paper was published

and 0 if it was not published. Then, perform two-tailed tests of the difference in

the publication rates for the aforementioned comparisons of groups, using 95%

as the significance level. Briefly comment on your findings.

. Using Monte Carlo simulations, derive the distribution of the test statistic under

the null hypothesis of no difference for each of the two comparisons you made

in the previous question. Do you attain similar p-values (for a two-tailed test) to

those obtained in the previous question?

. Conduct the following power analysis for a one-sided hypothesis test where the

null hypothesis is that there is no difference in the publication rate between the

studies with strong results and those with weak results. The alternative hypothesis

is that the studies with strong results are less likely to be published than those with

weak results. Use 95% as the significance level and assume that the publication

rate for the studies with weak results is the same as the observed publication rate

for those studies in the data. How many studies do we need in order to detect

a 5 percentage point difference in the publication rate and for the test to attain
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a power of95%? For the number of observations in the data, what is the power of
the test of differences in the publication rates?

5. The H-index is a measure of the productivity and citation impact of each
researcher in terms of publications. More capable researchers may produce

stronger results. To shed more light on this issue, conduct a one—sided test for the

null hypothesis that the mean H-index is lower or equal for projects with strong
results than those with null results. What about the comparison between strong
versus weak results? Do your findings threaten those presented for question 2?
Briefly explain.

6. Next, we examine the possibility of file drawer bias. To do so, we will use two
scatter plots, one that plots the total number of conditions in a study (horizontal

axis) against the total number of conditions included in the paper (vertical axis).

Make the size of each dot proportional to the number of corresponding studies,

via the cex argument. The second scatter plot will focus on the number of
outcomes in the study (horizontal axis) and the number ofoutcomes presented in

the published paper (vertical axis). As in the previous plot, make sure each circle

is weighted by the number of cases in each category. Based on these plots, do you

observe problems in terms of underreporting?

7. Create a variable that represents the total number of possible hypotheses to be

tested in a paper by multiplying the total number of conditions and outcomes

presented in the questionnaires. Suppose that these conditions yield no difference

in the outcome. What is the average (per paper) probability that at the 95%

significance level we reject at least one null hypothesis? What about the average

(per paper) probability that we reject at least two or three null hypotheses? Briefly
comment on the results.

7.5.3 THE 1932 GERMAN ELECTION IN THE WEIMAR REPUBLIC

Who voted for the Nazis? Researchers attempted to answer this question by

analyzing aggregate election data from the 1932 German election during the Weimar
Republic.6 We analyze a simplified version ofthe election outcome data, which records,

for each precinct, the number of eligible voters as well as the number of votes for the
Nazi party. In addition, the data set contains the aggregate occupation statistics for
each precinct. Table 7.7 presents the variable names and descriptions of the CSV data
file naz is . csv. Each observation represents a German precinct.

The goal of the analysis is to investigate which types of voters (based on their
occupation category) cast ballots for the Nazi party in 1932. One hypothesis says that

the Nazis received much support from blue-collar workers. Since the data do not
directly tell us how many blue-collar workers voted for the Nazis, we must infer this

6 This exercise is based on the following article: G. King, 0. Rosen, M. Tanner, A.F. Wagner (2008) “Ordinary
economic voting behavior in the extraordinary election of Adolf Hitler." journal of Economic History, vol. 68,
pp. 951—996.
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Table 7.7. 1932 German Election Data.
 

 

Variable Description

sharesel f proportion of self-employed potential voters

shareblue proportion of blue-collar potential voters

sharewhite proportion of white-collar potential voters

sharedomestic proportion of domestically employed potential voters

shareunemployed proportion of unemployed potential voters

nvoter number of eligible voters

nazivote number of votes for Nazis
 

information using a statistical analysis with certain assumptions. Such an analysis,

where researchers try to infer individual behaviors from aggregate data, is called
ecological inference.

To think about ecological inference more carefully in this context, consider the

following simplified table for each precinct i .

Occupation

Blue-collar Non-blue-collar
 

Vote choice

NaZiS W1 W2 Y.-
Other parties

or abstention l — W” 1 — W2 1 — Y,

   Xi 1—X,-

The data at hand tells us only the proportion ofblue—collar voters X,~ and the vote share

for the Nazis Y,- in each precinct, but we would like to know the Nazi vote share among

the blue-collar voters W11 and among the non-blue-collar voters Wb. Then, there is a

deterministic relationship between X , Y, and {W1, Wz}. Indeed, for each precinct i , we

can express the overall Nazi vote share as the weighted average of the Nazi vote share

of each occupation:

Yi = XiWi1+(1— Xi)Wi2- (7-35)

1. We exploit the linear relationship between the Nazi vote share Y,~ and the

proportion of blue-collar voters X,- given in equation (7.35) by regressing the

former on the latter. That is, fit the following linear regression model:

1304 | X;) =a+flXi. (7.36)

Compute the estimated slope coefficient, its standard error, and the 95% confi-

dence interval. Give a substantive interpretation of each quantity.

2. Based on the fitted regression model from the previous question, predict the
average Nazi vote share Y,- given various proportions of blue-collar voters X,-.

Specifically, plot the predicted value of Yi (the vertical axis) against various values
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of Xi within its observed range (the horizontal axis) as a solid line. Add 95%

confidence intervals as dashed lines. Give a substantive interpretation of the plot.

. Fit the following alternative linear regression model:

E(Yx‘ | Xi) = a*Xi + (1 - Xi)fi*- (7.37)

Note that this model does not have an intercept. How should one interpret a*

and ,3*? How are these parameters related to the linear regression model given in
equation (7.36)?

. Fit a linear regression model where the overall Nazi vote share is regressed
on the proportion of each occupation. The model should contain no intercept

and 5 predictors, each representing the proportion of a certain occupation type.

Interpret the estimate of each coefficient and its 95% confidence interval. What

assumption is necessary to permit your interpretation?

. Finally, we consider a model-free approach to ecological inference. That is, we ask

how much we can learn from the data alone without making an additional mod-
eling assumption. Given the relationship in equation (7.35), for each precinct,

obtain the smallest value that is logically possible for W“ by considering the
scenario in which all non-blue—collar voters in precinct 1‘ vote for the Nazis.

Express this value as a function of X,- and Yi. Similarly, what is the largest
possible value for W”? Calculate these bounds, keeping in mind that the value

for Wu cannot be negative or greater than 1. Finally, compute the bounds for

the nationwide proportion of blue-collar voters who voted for the Nazis (i.e.,
combining the blue-collar voters from all precincts by computing their weighted

average based on the number of blue—collar voters). Give a brief substantive

interpretation of the results.
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Next

Statistics are no substitute for judgment.
— Henry Clay

What comes next? There are several directions one could take in order to further

improve data analysis skills. The current book is a first course in applied data analysis

and introduces only a tiny fraction of useful data analytic methods. There is much

more to learn. An obvious next step is to learn more about data analysis and statistics.
For example, one might enroll in a second course in data analysis and statistics

(or read a relevant textbook) that covers regression modeling techniques, which are

essential tools for quantitative social science. Another possibility is to take a course on
specific topics of interest, such as causal inference, social network analysis, and survey
methodology.

As an introduction to quantitative social science, this book does not take a math-

ematical approach to data analysis. Instead, the focus of the book is to give readers
a sense of how data analysis is used in quantitative social science research, while
teaching elementary concepts and methods. But since all of data analysis and statistical
methods have a mathematical foundation, a deeper understanding of them requires a
good command of mathematics. A better grasp of methods will, in turn, enable one
to become a more sophisticated user of data analysis and statistics who can critically
assess the advantages and limitations of various methodologies in applied research.
Furthermore, if one is interested in becoming a methodologist who develops new
methods, a solid foundation in mathematics is critical. In particular, it is essential to
learn multivariate calculus and linear algebra, followed by probability theory. After
these foundations, students can learn statistical theory and various modeling strategies
in a rigorous fashion.

Since the main focus of this book is data analysis, we did not discuss how to
collect data—yet without data collection, there would be no data analysis. Although
we analyzed the data from several randomized controlled trials in this book, little
attention was given to experimental designs. How should we recruit subjects when
conducting an experiment? What are the experimental design strategies one could
use in order to obtain precise estimates of causal effects? These and other questions
arise when designing experiments in the laboratory and field. A pioneer statistician,
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Ronald A. Fisher, once stated, “To call in the statistician after the experiment is done

may be no more than asking him to perform a postmortem examination: he may be

able to say what the experiment died of.”1 We must learn how to design randomized

experiments in order to take advantage of this powerful tool for causal inference. Even

for observational studies, careful planning is required in order to identify the instances

in which researchers can draw causal inference in a credible manner. Research design

forms a fundamental component of quantitative social science research.

Similarly, while we analyze survey data in this book, we do not examine survey sam-

pling strategy and questionnaire design. In many cases, the simple random sampling

we discussed is not feasible, because we do not have a sampling frame that contains

a complete list of all individuals of a target population. For example, when studying

a population that is difficult to reach (e.g., homeless people, seasonal migrants), other

strategies, such as respondent—driven sampling, have been used. Another important

question is how to correct for the lack of representativeness in survey data. In

particular, Internet surveys are now commonly used, but an online panel is often far

from being representative of a target population. Questionnaire design also plays an

essential role in obtaining accurate measurements. In chapter 3, we saw examples of a

special technique for eliciting truthful answers to sensitive questions. The exercise in

section 3.9.2 introduced a survey methodology that reduces measurement error due

to the possibility that respondents may interpret the same questions differently. These

examples suggest that studying a variety of data collection strategies is as important for

quantitative social scientists as learning about data analysis.

While different interests may take people in various directions after completing this

book, everyone should continue to practice data analysis. In the words of John W.

Tukey,2 “If data analysis is to be helpful and useful, it must be practiced.” Now that

users of this book have learned the basic methodology and programming necessary

for data analysis, they should begin to conduct quantitative social science research by

analyzing data sets of their choice. Just as with data analysis, one learns how to conduct

research only by doing, not by reading the research of other people. With the massive

amount of data available online, anyone from undergraduate to graduate students and

from practitioners to academic researchers should be able to start making their own

data-driven discoveries.

This book highlights the power of data analysis. However, it is also important to be

aware of its fundamental limitations when analyzing data. In particular, data analysis

is far from objective. Good data analysis must be accompanied by sound judgment,

which is in turn built upon one’s knowledge and experience. Without substantive

theories, data analysis can easily be misguided. In quantitative social science research,

we analyze data for the purpose of better understanding society and human behavior.

This goal is unattainable unless we use social science theories to determine how data

should be analyzed. Stronger theoretical guidance is required for the analysis of “big

data” because without it we will not know where to look for interesting patterns.

1 Ronald A. Fisher (1938) “Presidential address: The first session ofthe Indian Statistical Conference, Calcutta,

1938.” Sankhyfi, vol. 4, pp. 14—17.

2 John W. Tukey (1962) “The future of data analysis.” Annals of Mathematical Statistics, vol. 33, no. 1,

pp. 1—67.
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Although a solid grasp of the mathematics that underlie statistical theories and
methods is important, we should not underestimate the value of contextual knowledge
about the data sets to be analyzed. For example, to competently design and analyze
the survey of Afghan civilians introduced in chapter 3, researchers had to understand
the cultural, political, and economic environment of local communities in Afghanistan
where the respondents live. Interviewing individuals who have little education, during a
civil war, is a challenging task. The researchers worked with a local survey firm in order
to gain access to rural villages through negotiation with local leaders and militants.
For cultural reasons, they were unable to interview female respondents, and interviews
had to take place in a public sphere where village elders were able to listen to survey
questions and answers. Randomized response methodology is a classic survey method
for asking sensitive questions while protecting the secrecy of individual responses.
However, this method was seen as inappropriate in the study because the required
randomization using coins or dice was considered to be against Islamic law. Other
challenges in this study included how to ask respondents’ tribal affiliation, how to
measure the level of wealth when the economy is largely informal, and what policy
questions to ask when measuring respondents’ political ideology.

These examples illustrate the importance of contextual knowledge in designing
and implementing quantitative social science research. Therefore, data analysts should
learn about the relevant substance and background of their study, either on their own
or by partnering with experts, well before starting to analyze data. They should also
be aware of the danger that mechanical applications of statistical methods to data may
lead to unreliable empirical findings. Indeed, this is the reason why applied statistics
has developed separately in a variety of fields of the natural and social sciences. While
statistical methods rest on universal mathematical theory and are widely applicable,
their application requires specific substantive knowledge. The goal of this book has
been to illustrate this unique feature of data analysis and statistics by showing how
general methods can be used to answer interesting social science questions.

With rapid advancements in technology and data availability, the world needs those
who can creatively combine substantive knowledge with data analysis skills in all fields,
from academia to journalism. This book opens the door to this exciting world of data
analysis.
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absolute value, 67
addition rule, 245

adjacency matrix, 206
adjusted R2, 168, 383
age specific death rate, 31
age specific fertility rate, 30
alternative hypothesis, 348
AND, 37

animation, 234
arguments, l7

assignment operator, 12

association, 50

asymptotic theorems, 300
average treatment effect, 49
axioms, 245

bag-of-words, 195
bar plot, 80
Bayes’ rule, 266
Bayesian, 243

before-and-after design, 60

Bernoulli random variable, 278
betweenness, 210, 215

bias, 133, 316
bin, 81

binary random variable, 278
binary variable, 36

binomial distribution, 282
binomial theorem, 285

birthday problem, 248
box plot, 85
butterfly ballot, 159

categorical variable, 44
causal effects, 46
causal inference, 46

CDF, 279

ceiling effects, 95
census, 89

centering, l 12

central limit theorem, 302, 327, 340, 364, 380, 385
centrality, 208
centroid, l 1 l

ceteris paribus, 165

class, 14

classification, 136

classification error, 202
closeness, 209, 215

clustering algorithms, 108
clusters, 108

coefficient ofdetermination, 156,
168, 383

coefficients, 143
combinations, 252

complement, 246

complete randomization, 317, 343
computational revolution, 1
conditional cash transfer program, 184
conditional expectation, 371
conditional expectation function, 371
conditional independence, 263, 273
conditional probability, 257, 258
conditional statements, 43
confidence bands, 327
confidence interval, 327

confidence level, 327

confounders, 57, 221

confounding bias, 58 ,
contusion matrix, 136 1
consistent, 317 1
contingency table, 35, 43 1
continuous random variable, 278, 280 ‘
control group, 49, 55 1
corpus, 191 ,
correlation, 103, 141 1
correlation coefficient, 103

cosine similarity, 237
counterfactual, 46 1
covariance, 384 1
coverage probability, 329 1
critical value, 327, 340 1
cross tabulation, 35

cross-section comparison design, 55 ‘
cross-section data, 60 ,
crude birth rate, 30 4
crude death rate, 31

CSV, 20, 98

cumulative distribution function, 279,
281

cumulative sum, 301
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data revolution, 1

data-generating process, 143, 251, 319, 370

decile, 65
degree, 208, 213
degrees of freedom, 168, 325, 339

density, 82, 280
descriptive statistics, 63
difference-in-differences, 61

difference-in-means estimator, 49, 164, 318

directed, 212
directed network, 206
discrete random variable, 278

dissimilarity index, 241

disturbance, 143
document frequency, 197

document-term matrix, 193

dot product, 237
dummy variable, 36
DW-NOMINATE scores, 97

ecological inference, 395

edges, 207
Electoral College, 123

error, 143
error bands, 327
estimation error, 315

estimator, 314

event, 244

exogeneity, 370

expectation, 292, 316

experiment, 244

experimental data, 33
exploratory data analysis, 189

external validity, 50, 54, 180

factor, 41

factor variable, 44, 80

factorial, 248

factorial variable, 44, 80

false discoveries, 362

false discovery rate, 271

false negative, 136
false positive, 136, 271

fatness, 209
file drawer bias, 392

first moment, 294

first quartile, 64
Fisher’s exact test, 348

fitted value, 143
floor effects, 95

frequentist, 242

function, 12

fundamental problem of causal inference, 47, 343

Gaussian distribution, 286

get-out-the-vote, 51
Gini coefficient, 101

Gini index, 101

Google, 216

graph, 207

graph strength, 239

Hawthorne effect, 52, 53

heterogeneous treatment effects, 170

heteroskedastic, 380

heteroskedasticity-robust standard errors, 380

hexadecimal, 226
hexadecimal color code, 226
histogram, 81, 134
homoskedasticity, 378

hypothesis testing, 342

i.i.d., 282

ideology, 96
immutable characteristics, 48

in-sample prediction, 161, 203

indegree, 213

independence, 261 .

independently and identically distributed, 282

indexing, 15
indicator, 166
indicator function, 299

Institutional Review Board, 95

integration, 293
interaction effect, 171

intercept, 143

internal validity, 50, 54, 180

interquartile range, 65
inverse document frequency, 197

inverse function, 179

IQR, 65

item count technique, 95

item nonresponse, 93

item response theory, 97

iterations, 125

iterative algorithm, 111

joint independence, 263

joint probability, 257

k-means, 108

Kish grid, 91

large sample theorems, 300

latitude, 225
law of iterated expectation, 377

law of large numbers, 300, 317, 319

law of total probability, 247, 254, 257, 263

law of total variance, 379

least squares, 146
leave-one-out cross validation, 203

level of test, 347

levels, 44
limit, 242

linear algebra, 108
linear model, 143

linear regression, 139
linear relationship, 142
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list, 108, 112

list experiment, 95
listwise deletion, 79

logarithmic transformation, 91, 249
logical conjunction, 37
logical disjunction, 37
logical operators, 37

logical values, 37
longitude, 225

longitudinal data, 60
longitudinal study, 69
loop, 124, 203, 320
loop counter, 124

Lorenz curve, 101
lower quartile, 64

main effect, 172
maps, 220

margin of error, 332

marginal probability, 256
matrix, 108, 112

maximum, 17

mean, 1 7

mean-squared error, 323
measurement models, 96

median, 22, 63, 83
merge, 149

minimum, 17

misclassification, 136
misreporting, 94

Monte Carlo error, 251, 321
Monte Carlo simulation, 250, 265, 282, 297, 301,

319

Monty Hall problem, 264
moving average, 183, 238

multiple testing, 362

multistage cluster sampling, 90

natural experiment, 73, 220, 221

natural language processing, 191
natural logarithm, 92
network data, 205

network density, 239
no omitted variables, 372
nodes, 207

nonlinear relationship, 142
nonresponse, 316

normal distribution, 286, 302
null hypothesis, 346
numeric variable, 81

object, 12

observational studies, 54, 372
one-sample t-test, 353

one-sample z-test, 353

one-sample tests, 350

one-sided p-values, 348
one-tailed p—values, 348
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OR, 37

out-of-sample prediction, 161, 203
outcome variable, 33
outdegree, 213

outliers, 64, 117, 159

overfitting, 161, 203

p-value, 347

PageRank, 216

panel data, 60
parameter, 314

Pascal’s triangle, 285
PDF, 280

percentile, 22, 65
permutations, 247

person-year, 29

placebo test, 180
PMF, 278
political polarization, 101

polity score, 73

population average treatment effect, 319

population mean, 292

positive predictive value, 267
posterior probability, 266
potential outcomes, 47
power, 363

power analysis, 363
power function, 365
predicted value, 143
prediction error, 133, 143
pretreatment variables, 53, 57

prior probability, 266

probability, 242

probability density function, 280
probability distributions, 277

probability mass function, 278
probability model, 278

probability sampling, 89
Progresa, 184

proofby contradiction, 346
publication bias, 361. 392

Q-Q plot, 106, 118, 290, 341

quadratic function, 174

quantile treatment effects, 70

quantile—quantile plot, 106, 118, 290, 341
quantiles, 63, 65, 106
quartile, 22, 64
quincunx, 303

quintile, 65
quota sampling, 89

R2, 156, 168, 383
random digit dialing, 90

random variables, 277

randomization inference, 346

randomized controlled trials, 48, 317, 371
randomized experiments, 48
randomized response technique, 96
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range, 17

rational number, 346

RData, 20
receiver, 206

reference distribution, 346

regression discontinuity design, 176

regression line, 143

regression towards the mean, 148, 289

representative, 89
residual, 143, 165, 290

residual plot, 158
residual standard error, 383

RGB, 227

RM5, 66
root mean square, 66, 133, 146

root-mean-squared error, 133, 146, 323

rule of thumb, 332

sample average, 36

sample average treatment effect, 49, 317

sample average treatment effect for the treated, 62

sample correlation, 384

sample mean, 36. 57, 292
sample selection bias, 50, 90

sample size calculation, 333

sample space, 244

sampling distribution, 316, 323, 346

sampling frame, 89, 90, 93

sampling variability, 296

sampling with replacement, 251

sampling without replacement, 251, 345

scaling, 1 12
scatter plot, 98, 140
scientific significance, 350, 354

scraping, 190

second moment, 294

second quartile, 65

selection bias, 58
selection on observables, 372

sender, 206

set, 244
sharp null hypothesis, 346

simple random sampling, 89, 251, 315

simple randomization, 317, 343

simulation, 250
slope, 143
social desirability bias, 28, 94

sparse, 194

spatial data, 220
spatial point data, 220
spatial polygon data, 220, 223

spatial voting, 96
spatial—temporal data, 220

SPSS, 24
standard deviation, 66, 67, 294

standard error, 324

standard normal distribution, 287, 290, 319

standardize, 1 12
standardized residuals, 290

Stata, 24
statistical control, 58
statistical significance, 350, 354

step function, 284
Student’s t-distribution, 339

Student’s t-test, 368

subclassification, 58

sum, 17

sum of squared residuals, 146, 165
supervised learning, 115, 195

support, 293

survey, 76

survey sampling, 88

t-distribution, 339

t-statistic, 339, 381

t-test, 358

tercile, 65
term frequency, 193, 195, 197

term frequency—inverse document frequency, 196

term—document matrix, 193

test statistic, 346

tf, 193
tf—idf, 196

The Federalist Papers, 190

third quartile, 65

time trend, 60
time-series plot, 100, 138

topics, 195

total fertility rate, 30
total sum of squares, 156

treatment, 47

treatment group, 49, 55

treatment variable, 33, 47

true positive rate, 266, 270

true positives, 270

two-sample t-test, 357, 358

two-sample z—test, 356

two-sample tests, 350
two-sided p-value, 348, 351

two-tailed p—value, 348

type I error, 347

type 11 error, 347, 363

unbiased, 133, 316

unconfoundedness, 372

uncorrelated, 371

undirected, 21 1
undirected network, 206

uniform random variable, 280
unit nonresponse, 93, 336

unobserved confounders, 372
unsupervised learning, 115, 195

upper quartile, 65

variance, 67 , 294

vector, 11, 14

Venn diagram, 246

vertices, 207



weighted average, 274

with replacement. 89

without replacement, 89
word cloud, 195
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working directory, 20
workspace, 23

z-score, 103, 112, 154, 288, 290, 304



Rlndex

!,270

!=, 39

*, 172

-, 15

:, 18, 22, 172

<, 39

<-, 12, 16

<=, 39

=, 39

==, 39

>, 39

>=, 39

1 1,15,22,40

1, 1, 22,41,42, 194

[111,110,193

#, 26

H, 11,26

$, 12, 22, 30, 35, 108, 110, 113, 214

%, 12

915%, 130

%in%, 122

5:, 37, 39

\n,100,126

I, 37—39

abline ( ) , 83—85, 145

addmargins ( ) , 35

animation package, 234

app1y( ) , 109

as .data . frame ( ) , 204

as .Date ( ), 132

as . factor ( ) , 44

as . integer ( ) , 37

as .matrix(), 108, 109, 195

barplot (1, 80, 81

base, 92

base package, 192

betweenness ( ) , 210, 215, 239

boxplot ( ) , 85, 86, 92

breaks, 83

c(),14,15,17, 22, 262

cat ( ) , 125, 126

cbind( ) . 112, 152, 225

centers, 112

cex, 88, 115

cex . axis, 88

cex . lab, 88

cex .main, 88

choose ( ) , 254, 345

c1ass(),14,17

closeness ( ) , 209, 215, 239

cluster, 112

coef ( ) , 145

col, 85, 115

colMeans ( ), 109

colnames ( ), 108

colors (1 .85, 226

colSums ( ) , 109, 206

confint ( ) , 382, 383, 385

content ( ) , 193

content_transformer ( ) , 192

cor ( ) , 105,117,141

Corpus ( ), 191, 236

cumsum( ) , 301

data frame, 33

data ( ) , 223

data . frame, 167

data . frame ( ) , 126,204

dbinom( ) , 283, 298

degree ( ) , 208, 213, 214

dev.off (),88

dim( ) , 21, 33, 55

DirSource ( ) , 191

dnom( ) , 290

DocumentTemMatrix( ) , 194, 197

duni£(),281

else if() (1,128,129

exp(),92, 179

factor, 44

factorial ( ) , 249

FALSE, 37

fisher . test ( ) , 348, 349

fitted( ) , 145, 158, 167, 202

for, 125

foreign package, 24



formula, 86
freq, 82

function( ) , 19

getwd( ) , 20, 234

graph . adj acency( ) , 207, 213

graph . density ( ) , 239

graph . strength ( ) , 239

gsub ( ) , 309

head( ) , 34

height, 88

his: ( 1, 82, 83,118,134, 312

I ( ) . 175

if ( ) , 128

if() (1,127,128

if(){1else(),127,128

ifelse ( ) , 43, 127, 140

igraph package, 207

ineq package, 241
ineq( ) , 241

inspect ( ) , 194

install . packages ( ) , 25,191

integer, 37

IQR( ), 65

is .na ( ), 78

iter, 112

iter.max, 112

kmeans(),112

lchoose ( ) , 254

legend ( ) , 232

length“, 17,111

letters, 309

levels(), 44,166

1factorial(), 249

library( ) . 25,191

lines ( ) , 84, 85, 334

lintr package, 27
1intr(). 27

list, 110, 157

1ist(), 110

1m( ) , 144, 145, 157, 158, 165—167, 169, 373, 374,

381, 382

load( ) , 21, 24, 311

log“. 92

logical, 37, 40, 127

ls ( ) , 13, 23

lty, 85

lwd, 85

main, 81

map ( ) , 223, 225, 226, 240

maps package, 223, 240
match( ) , 269

match(x, y), 270

matrix( ). 108
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max ( ), 17, 78

mean( ) , 17, 23, 36, 37, 40, 45, 78, 87

median( ) , 64, 78, 127

merge ( ) , 149, 152, 275

min( ), 17, 78

NA, 23, 78, 125

na.omit (), 79,255

names, 92

names(),18,21,111

names.arg, 81

ncol (), 21

nrow(), 21

NULL, 18

order ( ) , 214, 224

package; animation, 234; base, 192; foreign,

24; igraph, 207; ineq, 241; lintr, 27; maps,

223, 240; rmarkdown, 27; Snowbal 1C, 191;

swirl, 9, 27; tm, 191, 192; wordcloud, 195

page . rank ( ) , 217

palette ( ) , 115, 226

par ( ) , 88

pbinom( ) , 284, 298

pch, 99, 115, 140

pdf ( ) , 88

plot: ( ) , 98—100, 114, 134, 140, 207, 217, 228, 262

pnom( ) , 288, 291, 310, 351

points ( ) , 85, 99, 115, 224, 225

power .prop. test ( ), 367, 368

power. t . test ( ) , 368, 369

predict ( ) , I67, 174, 175, 178, 203, 204, 385,

387, 388

print ( ) , 12, 17,125, 126

probs, 65

prop . table ( ) , 58, 77, 80, 256

prop . test: ( ) , 354-356, 358—360

punif ( ) , 281

qnorm( ) , 310, 328, 341

qqnorm( ) , 290

qqulot ( ) , 106

Cit (), 341

quantile( ) , 65,121,156

range ( ) , 17

rbind( ) , 112, 152

rbinom( ) , 297

read. csv( ), 21, 33, 52, 55, 76

read. dta( ), 25

read. spss ( ) , 25

removeNumbers ( ) , 192

removePunctuation ( ), 192

removeWords ( ) , 192

rep ( ) , 84, 85, 125

resid(), 146,157

return( ) , 19

rgb( ) , 227
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markdown package, 27

rnor'm( ) , 320

rowMeans ( ), 109

rownames ( ) , 108

rowSums ( ), 109, 206

runif ( ) , 282, 302

sample( ) , 251, 265, 320, 345

save ( ) , 24

save . image( ) , 24
saveHTML( ), 234

saveLatex( ) , 234

saveVideo ( ), 234

sca1e( ) , 112, 154, 290

sd( ) , 68, 202

seq( ), 17, 18,65

setwd( ), 20

sign ( ) . 135

Snowballc package, 191

sort ( ) , 45,197, 214

scurce ( ) , 26

sqrt(),12,17

stemCompletion( ), 196

stemDocument ( ) , 192, 196

stopwords ( ) , 192

stripWhitespace( ), 192

subset ( ) , 41, 42, 56

sum( ) , 17, 37

summary( ) , 21, 22, 34, 55, 65, 76,

158, 169, 381, 382

swirl package, 9, 27

t . test ( ) , 341, 356, 358

table ( ) , 35, 43, 44, 58, 77, 79, 80, 256

tapplw ) , 45, 53, 87, 100,

121, 183

TennDocumentMatrix( ) , 194

text ( ) , 83, 85, 100, 134, 225

title( 1, 224

tm package, 191, 192

tanap ( ) , 192

tolower ( ) , 192, 309

toupper ( ) , 309

TRUE, 37

type, 134

unique ( ) , 73, 132, 167

var ( ) , 68

VectorSource ( ), 236

View( ) , 21, 29

weighted.mean( ) , 274

weightTfIdf ( ) , 197

while, 219

while(), 218, 219

width, 88

wordcloud package, 195

wordcloud( ) , 195

write . csv( ), 24

write . dta( ) , 25

xlab, 81

x1 im, 81

ylab, 81
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