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Data Analysis and Behavioral 
Science or Learning to Bear the 
Quantitative Man's Burden by 

Shunning Badmandments

J. W. Tukey

PREFACE

The basic attitudes of this account were formed by nearly twenty years 
of experience with varied applications of statistics to the analysis of 
data. The core of insight around which these attitudes developed came 
from working alongside Charles P. Winsor during World War II. Their 
rather uninhibited expression was aided by a year's experience (1957-58) 
as a Fellow of the Center for Advanced Study in the Behavioral 
Sciences, which led to four recognition, viz: A recognition that the 
failures of behavioral scientists to get the most out of statistics were 
essentially similar to the failures in other fields. A recognition that very 
able behavioral scientists lacked certain insights which are conveyed by 
example and osmosis (and not by precept or word) to many physical

The Collected Works of John JV. Tukey (1986) Wadsworth, Inc., Belmont, CA. 
Previously unpublished manuscript (1961).



1 8 8  VOL. Ill: PHILOSOPHY (1949 - 1964)

scientists, even to those of rather limited ability. A recognition that, in 
the areas where these insights are conveyed implicitly, mathematical 
formulas are often more important carriers than words. A recognition 
that there are many scientists (not all in behavioral science) for whom 
words are essential if the message is to reach them, and that almost 
everyone is helped a little when it is expressed in words. This year's 
experience also helped to release the inhibition common to 
mathematicians against saying how things really are, rather than how 
they would have to be if they were to make a neat logical package.

The material which follows, then, is designed to have two 
complementary functions:

(1) To help the reader face up to what the situation is really like, to 
what statistics can and cannot do for him, to which burdens of 
uncertainty and judgment he must shoulder if quantitative 
procedures are to serve him well.

(2) To point out to him how he can set about getting more out of his 
data by treating it differently, sometimes by making very simple 
changes in his practices, sometimes by adapting or adopting some 
of the newer techniques of analysis.

For the last few decades mathematical and theoretical statistics has 
concentrated on the search for certainty in the face of uncertainty. (See 
G2 below.) Rather more of the present account is devoted to the most 
classical results of this search, techniques for assessing significance and 
asserting confidence, than I should like. But many pages, I boast, are 
devoted to better ways to dissect data so as to see what is going on, to 
techniques of incision, rather than to those of conclusion or of decision. 
Dissection is the heart of data analysis, and each man who studies data 
needs to continue to learn new ways of dissection, to master new 
incisive techniques.

The original draft of this account was written as background for a 
Seminar at the Center. It was revised and extended after I had returned 
to Princeton Unversity and Bell Telephone Laboratories. The work for 
Princeton was supported by the Office of Ordinance Research, U.S. 
Army under Contract DA 36-034-ORD-2297. Without the support of all 
these organizations and the atmosphere of the Center, it would never 
have been written. Those readers who find it helpful should give 
thanks accordingly.
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INTRODUCTION

The structure of this account is unconventional. And why not? It 
opens with a list of "badmandments," of unwise statements which most 
of us can imagine someone else teaching to his students, either by word 
or deed. It may be that some of these are so obviously "bad" that they 
do not need to be set out and stoned. I hope this may be true, but I fear 
It is false. (They are not living persons, nor are they living truths, 
therefore all of us should cast stones, especially those who have 
themselves sinned.)

From these badmandments it is easy to formulate questions, and to 
go on and discuss various topics. Readers are encouraged to wander and 
browse among the discussions. While there is some system in their 
arrangement, and a small amount of mutual dependence, system and 
dependence are only there for those, probably a minority, who want to
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read through systematically. An epilogue attempts to draw together the 
branching strands of the discussion. And several appendices contain 
supporting material.

The original version promised much philosophy, with only a 
seasoning of techniques. The snowball has grown since then; 
techniques have been like the wet snow, philosophy like the dry. A fair 
number of simple or novel techniques are now included, but philosophy 
still manages to dominate, perhaps barely. Psychology and economics, 
once almost untouched, have now contributed examples.

PROLOGUE

Once upon a time, a collection of cautionary admonitions of the sort 
that follow would have been introduced by the words "once upon a 
time" • • ' and a story of the finding of an ancient manuscript in a 
hidden and cabalistic cache. Today one begins differently, by thanking 
friends and colleagues for their help and contributions. The 
admonitions which follow are, indeed evil; they are not mere straw men 
or scapegoats. They are truly badmandments. For:

(1) I can imagine each of them being supported, explicitly or 
implicitly, by more people than I would wish.

(2) Following their directions can, and usually will, lead to bad 
statistics and bad science.

Each reader should ask, as reads a badmandment: "How prevalent is 
this one in my own thoughts? In those of my immediate colleagues? In 
my special field as a whole?"

THE GREAT BADMANDMENT

The great badmandment can be stated in all languages and to apply to 
any situation. In general allegorical language it reads:

IF IT'S MESSY, SWEEP IT UNDER THE RUG.

It is not difficult to restate it in form specially pertinent for behavioral 
science, and to trace some of its consequences by first stating five
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badmandm ents that flow from it, and then expanding each of these five 
prime badmandm ents further. (As in Tables 1 to 5.) Shock effect has 
therapeutic values, so all these restatements and consequences are 
rightly put in pungent language. The great badmandm ent is simple, 
and of universal application. The first of its prim e consequences is 
rather specifically related to behavioral science, but the others apply 
widely, providing stings for many investigators in a wide variety of 
other fields.

THE GREAT BADMANDMENT RESTATED, AND 
FIVE PRIME CONSEQUENCES * •

ONLY THREE ACTIONS IN SCIENCE ARE SAFE: TO BE GUIDED BY 
THEORY, any theory; TO BE SIMPLE, very simple, and TO DO NOTHING, 
absolutely nothing. ( • • • Certainly, you must be safe at any cost! • • • 
You might miss something? Don't worry; so long as you stick as close 
as a flea to some combination of the three safe actions, no one will ever 
know what you missed!)

1. THERE IS NO ANALYSIS LIKE UNTO CROSS-TABULATION. (And the 
counting sorter is its prophet! • • • It's simple.) (See Table 1.)

2. BE EXACTLY WRONG, RATHER THAN APPROXIMATELY RIGHT. (At 
all costs, be exact! • • • Theory is exact and 'exact' is theory.) (See 
Table 2.)

3. THE ONE AND ONLY PROPER USE OF STATISTICS IS FOR 
SANCTIFICATION. (We used statistics, our work is above criticism!
• • • Statistics is theoretical.) (See Table 3.)

(And we must 
Empiricism can

be
be

4. BEWARE EMPIRICISM, IT ISN'T SCIENTIFIC, 
scientific, even if we learn nothing • • • 
dangerous.) (See Table 4.)

5. AT ALL COSTS BE RIGID AND SERIOUS; FOLLOW THE STRAIGHT 
AND NARROW WAY TO ITS INEVITABLE END. {A scientist always 
knows where he's going! • • • He m ight get in  trouble otherwise.) 
(See Table 5.)
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Table 1
The First Badmandment Expanded

1. THERE IS NO ANALYSIS LIKE UNTO CROSS TABULATION. (And the 
counting sorter is its prophet!)

11. CROSS-TABULATE till the numbers are almost too small, then 
STOP. , .
(No one can criticize you ••• you've done all that is 
possiblel)

12. DON'T try to make difficult distinctions; use only two or 
three cells for each SCALE.
(If you make too many cells, you can't cross-tabulate enough 
ways at once. If you try to make distinctions which are too 
difficult you will put some cases in the wrong cells; just 
think what that would do to your cross-tabulations!)

13. NEVER describe a split except by counts or a PERCENTAGE. 
(The human mind cannot understand any other description 
of a breakdown into two classes!)

14. CELLS in a cross-tabulation involving less than 10 cases are 
USELESS.
(If you can't or won't combine rows or columns to get rid of 
them, give no information at all for such cells • • • Make the 
table less useful? Sure, but it will keep some people from 
getting wrong ideas!)
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Table 2

The Second Badmandment Expanded

21. BE EXACTLY WRONG, RATHER THAN APPROXIMATELY RIGHT. (At 
all costs, be exact!)

21. ALWAYS use "invariantive" statistics appropriate to the 
scale type* of your MEASUREMENTS.
(Then no one can question your judgment ••• since you 
didn't use any!)

22. NEVER make inferences to hypothetical POPULATIONS.
(Stop with a real population! Avoid uncertain populations 
like the plague. Then probability sampling can make your 
formal inference so tight that hardly anyone will think 
about the remaining uncertainties, especially the ever- 
present informal inference from where you really stopped 
to where you want to go!)

23. NEVER make any analysis which was not planned before 
seeing the DATA.
(You might learn something new and unexpected, but you 
couldn't put a precise significance level on it, now could 
you? • • • What, preanalyze a small random subsample as a 
guide to analyzing the whole? But that would be so 
unusuall)

24. QUANTITATIVE empirical regularities are useless in the 
present state of our SCIENCE.
(Further study will always show that they were not precise, 
were not expressed in precisely the right form! • • • You 
know it will!)

25. IF order is the only guaranteed property of your scale, 
DICHOTOMIZE!
(Then you won't have used an incorrect scale! • • • Thrown 
away data? Why I suppose you will, but that isn't so 
important! • • • Made analysis more complex? Not if you 
only cross-tabulate!)

* If it isn't exactly an interval scale, it's only ordinal; if it isn't exactly a ratio scale, it's 
only interval. (Cp. D6 below).



2 0 2  VOL. Ill: PHILOSOPHY (1949 - 1964)

Table 3

The Third Badmandment Expanded

3. THE ONE AND ONLY PROPER USE OF STATISTICS IS FOR 
SANCTIFICATION.

31. IF a statisticar significance test can't demonstrate causal 
relations throw it AWAY.
(It must be useless, we want only irreproachable general 
results])

32. NEVER use statistical techniques to help you find interesting 
INDICATIONS.
( • • • Yes, it might be very helpful. But what a perversion, 
the indications might not be significant!)

33. DISTINGUISH, unfailingly and forever, even barely 
statistically significant results from ones that do not reach 
SIGNIFICANCE.
( • • • You say the underlying strength of relation might be 
the same? But only one was significant]).

34. ONCE a number of results are statistically significantly not 
all the same, believe all apparent relationships among them 
IMPLICITLY.
(Mind you, his differences yield an F statistically significant 
at the 1% level] Surely that unexpected difference between A 
and B must be real]) '

35. IF one overall test shows lack of significance, STOP.
(• • • F-test among means? Sure! •••  Chi-square for 
contingency table association? Sure, Mike!)

36. DON'T think, use STATISTICS.
(Why of course! What else are statistical techniques for?)

37. ALWAYS use the 5% level of SIGNIFICANCE
(Everybody who is anybody always does] Think about what 
is really appropriate to your situation? How odd!)

38. IF a result is not significant, don 't dare show IT. 
(Some poor fool m ight be misled into believing it! 
might he right? So what!)

It
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, Table 4

The Fourth Badmandment Expanded

4. BEWARE EMPIRICISM, IT ISN'T SCIENTIFIC. (And we must be 
scientific, even if we learn nothing).

41. WORTHWHILE regularities always come equipped with a 
theoretical EXPLANATION.
(*• •  You found a more empirical regularity? Forget it. 
• • • It would have important consequences? Not if it's only 

empirical.)

42. QUANTITATIVE measures are most dangerous when they 
seem to behave unexplainably WELL.
(His fit was too goodi No theory could ever account for it! 
It must have been an arfi/acfl)

43. DOING anything at all, except nothing (or, perhaps, except 
exactly that which is conventional) is being ARBITRARY.
(• • • It might be better? But it would be arbitrary!)

44. ONCE your description fits roughly, STOP.
(Never, never study the deviations of observed from 
described • • • Why, you might find systematic deviations'. 
And then where would you be?)
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Table 5
The Fifth Badmandment Expanded

5. AT ALL COSTS BE RIGID AND SERIOUS; FOLLOW THE STRAIGHT 
AND NARROW WAY TO ITS INEVITABLE END. (A scientist always 
knows where he's going!)

51. DON'T try out your proposed data-gathering instrument 
(questionnaire, record-searching technique, etc.) on a 
preliminary SAMPLE.
( . . . Pretest your questionnaire? But you m ight have to 
change it!)

52. DON'T try out your proposed method of analysis on a 
preliminary SAMPLE.
( . . . Pretest your analysis? But you m ight have to change 
It!)

53. DON'T admit, even to yourself, that you had to begin with 
EXPLORATION.
(It's very im proper to work w ithout definite hypotheses • • • 
Half-hypotheses? W hat a w eird idea!)

54. A good piece of work is DEFINITIVE.
( • • • He admits this is only the /irsf phase? His work must 
be utterly useless!)

55. ANY empirical observation must either be considered 
useless, or taken very, very SERIOUSLY.
(There is no room for a middle ground. It must be either 
right or xorongl)

56. DON'T try to find a simple way to answer a complicated 
QUESTION.
( • • • He showed one photograph! But where were his data? 
Yes, I know the photograph was conclusive, but was it 
data? • • • )

SUPPLEMENTARY BADMANDMENTS

Table 6 contains some supplementary badmandments, mainly suggested 
by colleagues. (I owe certain of the expansion of the first five 
badmandments to colleagues also. Many thanks!) In most cases it is not 
difficult to trace each of these back to the prime badmandment. We 
leave this as an instructive task for the interested reader.
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Table 6

SOME SUPPLEMENTARY BADMANDMENTS, MAINLY SUGGESTED BY 
COLLEAGUES.

91.

92.

93.

94.

95.

96.

97.

NEVER plan any analysis before seeing the DATA. (Why, 
who can tell what you may learn from even three cases?)
DON'T consult with a statistician until after collecting your 
data; you would only get confused and DISCOURAGED! 
( • • • Maybe he could help you get more useful data.? But 
would it he right? • • • Smith saved three years work? But 
was that science?)

IT is far, far better to have a large, obvious, but statistically 
not significant difference, than one that is small, reliable 
and statistically SIGNIFICANT.
(His differences were well established? But look how much 
bigger Smith's were!)

LARGE enough samples always tell the TRUTH. (• • • There 
w asn't anything random  about his sample? But look how 
many cases! • • • The Literary Digest Poll failed dismally? 
But that was SO many years ago!)

NEVER tell your statistical consultant about the two most 
important recent papers in the field of your own RESEARCH 
( • • • It might help him advise you? But he is only 
supposed to help with statisticsl Jones's statistician can 
think about Jones's problem? How odd!)
NEVER try to find out if your population is m eaningfully 
divided into two or more SUBPOPULATIONS. ( • ■ • His data 
made much more sense w hen it was separated on that 
variable? It couldn't be! That variable can't be important!)

ANY one regression will tell you what you want to know, 
don't even think of looking at MORE. (• • • He tried 
various alternative regressions? How odd! • • • She looked 
at regressions within subgroups? But why, oh why?)

98. IF rxy.z is significantly different from zero, z can't possibly 
explain the relation between x and y. (• • • Yes, I've 
heard of orthogonal polynomialsl Buy they're just for curve 
pttingl)
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99. IF a "before score" goes with each of your "after scores," 
always analyze the DIFFERENCES. ( ' • * Use covariance? 
Don't be foolish! • • • Your before score is too variable? 
Nonsense!)

100. The significance level tells you the probability your result 
is WRONG. ( • • • Yes, I know the books say something else, 
but I must know the probability that I'm wrong.
• • • Robinson, Sr., never tests any null hypothesis except 

one that everyone knows couldn't possibly hold? But his 
results are never significant at the zero % level!
• • • Robinson, Jr., never tests any null hypothesis except 

one that must hold? But once in 20 times his results are 
significant, significant at the 5% leveV.)

QUESTIONS

It is easy to derive corresponding questions, stated in sober language, 
from most of these badmandments, and to supplement these questions 
vvith either answers or references to the discussion. (It is convenient to 
give each question the number of the badmandment to which it 
corresponds.)

11. How can we go further than by cross-tabulation? (See E and F.)
12A. Will we then need to restrict ourselves to few categories along 

each scale? (See D and F.)
12B. What do errors of classification really cost us? (See Dl.)

13. What other ways of describing splits are useful, and why? (See 
D2 and D3.)

14. What use can be made of data from less than 10 observations per 
cell? (See T4 and F2.)

21. What are the pros and cons about the use of "sophisticated" 
statistics like means and standard deviations when the 
"measurements" are on a scale where only order is definite? 
(See D5.)

22. What are some of the pros and cons about the point where 
formal statistical inferences should stop? (See B.)



23. Is it wise to let a body of data guide its own analysis? (See C3.)

24A. Are quantitative empirical regularities valuable? (See Cl.)
24B. Are quantitative empirical regularities shorter lived than 

theories? Or longer lived? (See Cl.)

25. Why is it unwise to dichotomize data available on a more 
extended scale? (See D.)

31. How may causal relations be established? (See A1 and W.)
32. Can statistical techniques be used to glean interesting indications 

from data? (The answer is "certainly!")
33A. Why do users tend to erect such a rigid wall between results 

which are statistically significant and those which are not? (See 
C2.) ■ , .

33B. What are some of the fallacies encouraged by such walls? (See 
Gl.) ■

34. Can we usefully come to more diverse and useful conclusions 
about the mutual relations of several quantitative results than 
"they could be alike", and "they are significantly different, 
believe in all appearances"? (See G4.)

35. Can we honestly do more than make one overall test of 
significance? (See G2 and G3.)

36A. Is thinking proper? (The answer is "yes")
36B. Can we learn to think more clearly? (The psychologists should 

answer this!)

37. Why are there tables for more than one level of significance? 
(section not yet written)

38. How can there be any interest in results that aren't significant?
■ (See Gl.) , , 6

41. Are purely empirical regularities worthwhile? (See Cl.)

42. What good can come of unusually well-behaved quantitative 
measures? (See Cl.)

43. What really constitutes being arbitrary? (See A2.)
44. Is anything to be learned from the study of residuals? (See F4 to 

F6.)
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51. Does it pay to pretest questionnaires and other data gathering 
instruments? (The answer is "yes".)

52. Does it pay to pretest methods of analysis? (See F6.)
53. Is exploratory inquiry efficient science? (The answer is "yes".)

55. Can empirical observations be usefully taken as working tools 
for later sharpening? (The answer is "yes".)

56. Does it pay to find a simple way to answer a complicated 
question? (The answer is "every time".)

2 0 8  VOL. Ill: PHILOSOPHY (1949 -1964)

A. GENERAL ATTITUDES

Al. HOW MAY CAUSAL RELATIONS BE ESTABLISHED?

The answer to such a question cannot be derived from mutually- 
agreed-upon hypotheses by, formal procedures. The most that can be 
sought is a point of view buttressed by a more or less convincing 
analysis, and by illuminating examples. This we shall try to provide.

The point of view is simple. The establishment of a causal relation 
always requires two elements, one empirical, the other theoretical. The 
empirical observed regularity or experimental result has to be such that 
its occurrence is theoretically impossible unless "A caused B". Both 
elements, the empirical and the theoretical, are essential. Neither alone 
can establish causation; both are required. An empirical result alone can 
suggest causation, and this suggestion can be strengthened by theoretical 
considerations which make it less and less likely that the particular 
empirical result would ever occur unless "A caused B". (These 
theoretical considerations must thus tend to rule out such possibilities as 
(i) "B caused A" or (ii) "something else caused both A and B, or caused 
B and was associated with A".)

If this view be sound, it has very important implications about 
"The Statistician's Burden". For, if it be sound, statistics has no 
responsibility beyond what we might call empirical projection • • • the 
inference from certain empirical observations to what would happen, 
empirically, if observations or experiments were made on a much larger 
scale. Such a situation may be contrafactual, but is (or would be) 
empirical. Consequently, it would, by itself, be without causal content. 
The inference from such a "projected" empirical result to causation is



then a responsibility of theory, and its purveyor, the subject-matter 
specialist. (As a theoretical concept, “causation" seems to me to be 
unequivocally useful, even when all its misuses are allowed for.)

This avoidance of a heavier “Statistician's Burden" may not seem 
important, especially in the behavioral sciences. Yet when Hanan 
Selvin's recent paper in the American Sociological Review attacking the 
use of significance tests in sociology (Selven 1957) is examined, the basic 
motivations for his evil impressions appear to be two:

(1) Some sociologists (along with some statisticians and some 
members of all statistics-using professions) misuse significance 
tests, and

(2) significance tests cannot establish causation.

Of the two, the latter appears to bother him the most.
Why would one choose to adopt this point of view? It seems to me 

that all the really clinching arguments as to causation in particular 
situations come down to saying “there was no way for B to affect A, 
hence (barring some C as the cause of both) the observed 
accompaniment (whether uniform and constant or merely statistically 
excessive) of A and B must be due to causation of B by A." In such 
processes two general principles are applied in many instances, namely;

I. It is impossible for an event occurring at a later time to cause an 
event occurring at an earlier time.

It is impossible for the (possibly concealed) factors; which may 
determine, to a lesser or greater degree, outcomes which will 
occur for specific experimental units to affect the selection of 
units for specific treatments (including the “control" treatment) 
when this selection is made by rolling dice, shuffling cards, 
reading out random numbers — or even, as some appear to feel, 
quite without empirical justification, by the “random" judgment 
of an experimenter.

Most statements of established causation in the physical and biological 
sciences involve one of these principles. Thus no one doubts that the 
change in a star which accompanies its great brightening as a nova 
causes the shell of luminous gas later observed to surround the star. 
And no one doubted that mosquitoes carried yellow fever once those 
selected to be, and actually, bitten by infected mosquitos contracted the 
disease, while the remaining subjects did not.
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A somewhat less general statement of a similar position, in the area 
of survey technique, has been made by Hyman (1955), who says: "The 
notion of explanation provides an analytic basis for defining clearly a 
causal relationship between two variables. If the partial relationships 
never disappear, even when every conceivable antecedent test factor is 
introduced, then the original relationship is a causal one." (Italics Hyman's; 
see Section D3 for a cautionary example, however.)

It is very illuminating, in passing, whatever one's views about 
parapsychological powers may be, to consider what would be the effect 
on one's judgment of causation if we admitted the reality of such 
powers. If an experimenter had precognitive clairvoyance, for example, 
and could know just which subjects were going to contract yellow fever, 
he could arrange for these subjects to be bitten by "infected" 
mosquitoes. The experiment would then offer no evidence of causation. 
(Designers of experiments may find the problem of distinguishing 
"immediate clairvoyance" from "precognitive telepathy", given that one 
and only one exists, quite interesting. It is rumored that one solution is 
offered in Carington 1945.)

Similarly, if R. P. Feynman's model of positons (positive electrons) 
as ordinary electrons moving backwards in time (in his model, pair 
production or annihilation are just U-turns) should grow into a physics 
in which influences could travel backward in time, how would we know 
that the later gas shell did not cause the earlier events in the nova?

In this brief discussion, we have not tried to say all that we might 
about either significance (about which somewhat more will be said in G 
below) or the establishment of causation (to some aspects of which we 
return at the end of W). And we have not really touched on the 
definition of causation (see Wold 1966 for one view) or on why it is 
useful (Tukey 1954 may shed some light on this). But the basic idea 
underlying Selvin's criticism seemed so important, and so little 
discussed, as to deserve special and early notice.

A2. WHAT CONSTITUTES ARBITRARINESS?

What procedures of acquiring data, of processing data, of 
interpreting processed data, are arbitrary? This question is at least as 
broad as the last one. And no neatly-packaged answer is easily 
available. About all we can hope to do is to exhibit and discuss some 
very poor choices of what is bad because it is "arbitrary".

Sometimes "arbitrary" means merely "not the way we are 
accustomed to do it." Thus an engineer used to volts, amperes and 
ohms is quite likely to regard the description of the strength of
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electrical signals in "decibels above reference" as quite arbitrary the first 
time or two he meets this usage (though he soon learns its virtues). 
Similarly, the casual counter of the numbers of fleas or of mites on rats 
is likely to regard the use of such forms of expression as

or
•\/number of fleas

log (1 + number of mites)

as very arbitrary, though he too is likely to come to see some of their 
advantages. Clearly, however, unfamiliarity can be described in other 
words, and does not need "arbitrary" as a further synonym.

Sometimes "arbitrary" means "not in one of the accepted patterns." 
Thus if a single rat has run a maze 30 times it is usually not regarded as 
"arbitrary" (though it is most usually inappropriate) to assume either 
that one has 30 independent observations, or that one has one 
observation (one rat, one observation). On the other hand, it is often 
regarded as "arbitrary" to assume that rat-to-rat variations are one-half 
the size of trial-to-trial variations for an individual rat. (Such an 
assumption would make 30 observations on one rat the equivalent of 
about 4.4 individual trials on separate rats.) It is not "arbitrary" to 
assume that rat-to-rat fluctuations are very, very small — or very, very 
large — compared to trial-to-trial fluctuations, but it is "arbitrary" to 
assume them to be one-half as large. Just how, and why, is — more
"arbitrary" than 0 or «»? (To say that it is not an accepted pattern seems 
not to be enough.)

Mainly, I believe, because it is humanly possible to forget, actually 
or formally, one source of variation whenever 0 or oo is assumed, which 
involves acting as if one source of variation were negligible as compared 
to the other. And the act of neglecting something is so close to doing 
nothing as to be thought "not arbitrary". On the other hand, when j  is
assumed, both sources of variation must be recognized, and 
consideration of the possibility that the ratio might be 0.3 or 0.7 (instead 
of 0.5) recurs, whether one likes it or not. While this suggestion makes 
this attitude psychologically (or perhaps psychiatrically) more 
understandable, it does not make it a bit more logical, nor does it make
it a bit more effective as an aid to gaining knowledge.

Thus, as this instance suggests, the "not-in-an-accepted-pattern" 
sort of arbitrariness may have been generated by what to me seems to 
be the greatest fallacy of them all: the belief that doing nothing cannot be 
arbitrary. Just how this view comes about is not really clear. To what
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extent does it derive from the view that "exactness" is essential at any 
price? To what extent are these two views only seemingly convergent? 
To what extent do they derive from some underlying, unperceived line 
or lines of thought and feeling? Or do they, perhaps, come from a 
misconception of the meaning of the word "exact" in that laudatory, 
sought-after, brightly shining phrase "The Exact Sciences"? (To describe 
"exact scientists" as a reference group for some behavioral scientists 
would be to understate the strength of their feelings, but to take off the 
quotation marks would be to make this statement wholly false.)

A chemist is an "exact scientist", particularly if he is an analytical 
chemist. He weighs, he measures, he determines. And how does he do 
these things? He weighs on a chemical balance, using a set of weights. 
Does he do nothing about the weights, thus avoiding arbitrariness? Not 
at all. His first task is to calibrate his set of weights, determining 
corrections to their nominal values so that he may thereafter weigh 
more precisely. Are these calibration corrections themselves to be 
regarded as "correct"? Surely not. He recognizes that redoing the 
whole calibration would lead to slightly different corrections, but he has 
reason to believe that his are good enough to be useful. In other words, 
the corrections to his weights are "arbitrary" in the sense that they are 
not supposed to be ultimately exact. They do, however, belong to a club 
of lower prestige but higher usefulness, for they may be wisely thought 
to be "either good enough, or about as well as we can do."

The chemist also measures liquids, and titrates to various end 
points, some defined in terms of "neutrality". He measures liquids with 
a burette or a pipette. And his first task is to calibrate these devices. He 
titrates to neutrality with an indicator. And he arbitrarily chooses that 
indicator (or that color of a universal indicator) which experience shows 
gives the best results. (Then he standardizes his titrating solution on a 
known sample.) Throughout he proceeds by making corrections and 
adjustments to get the most precise and useful value. None of these 
adjustments are "exact", all are "arbitrary" in the sense that, if done 
over, they would be different. But ask any chemist if it would not be 
better to omit them, to be "exact" by not being "arbitrary".

The nature of "The Exact Sciences" is that they are full of 
"corrections", "art" and what might even appear to be "folk-wisdom", 
especially when one is concerned with the practice of measurement. 
Other fields cannot hope to become "Exact" with a capital E by abjuring 
good quantitative judgment, or by abjuring empirically sound 
adjustments, or by abjuring "arbitrary" corrections. (Such actions can 
only lead to "exactness" with a vanishingly small "e", and, inevitably, 
to a vanishingly small effectiveness.)
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Bl. THE TWO SORTS OF GAP

To ask a behavioral scientist "What are the dimensions of 
inference?" would be to offer opportunity for many diverse replies, 
since "dimension" comes closer than any other mathematical term to 
being all things to all people. In the title of this section, however, the 
reference is to the dimensions of a piece of lumber: to length, breadth 
and thickness. All three are important to the builder of wooden 
structures. All are important to the user of inferences (meaning formal 
or informal ways of passing from the particular toward the general). 
But, you may properly say, how can an inference have a length, a 
breadth, or a thickness; admittedly these words must be used by 
analogy, but by what analogies?

In his book on The Design of Experiments (Fisher 1935ff), a book 
whose understanding requires some statistical background and whose 
reading repays frequent repetition, R. A. (now Sir Ronald) Fisher points 
out the advantages of broader bases to inferences. As exemplified by 
the advantages of detecting a phenomenon in 5 widely different 
cultures, rather than in 5 West African tribes, this idea is familiar to 
behavioral scientists. As exemplified in cross-tabulation for the purpose 
of showing that the effect still occurs in each stratum, it is likewise 
familiar. As exemplified in analyses where breakdowns are carried so 
far as to require some sort of recombination before interpretation (see F2 
below), and in other analytically sophisticated expressions, the idea is 
not so familiar, is not nearly familiar enough.

It is not unnatural to describe the extent of the data involved as 
the thickness of the inference. If we think of the inference as a 
bridge which helps us on our way, then both breadth and thickness 
help to provide strength. (Indeed, an excess of one cannot make up for 
a deficiency of the other.)

But there is a further dimension of more or less formal inference, 
one all too often unrecognized — its "length". It is too easy to forget 
that scientific (or practical) inferences have to span gaps far wider than 
any statistical bridge (or any possible formally logical bridge) can reach. 
In fact, it would seem that it usually does not even have to be forgotten, 
having never been consciously recognized. Thus we shall mention very 
diverse examples, in the hope of synergistic arousal.
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In the practical applications of the exact sciences we see this gap 
recognized daily, though we do not think of it as such. The chemical 
engineer's classical chain of development — laboratory, pilot plant, 
semi-works, full scale — was (and generally remains) an admission that 
no amount of small-scale testing in the laboratory would settle what 
would happen in the works. (Thickness could be provided by many 
tests, many sorts of breadth could be provided by changes in reaction 
vessels and manipulations, but length remains insufficient to bridge the 
gap.) No one would have expected the atomic bomb to go from Los 
Alamos to Hiroshima without a stop at Alamogordo. (In fact, the 
surprising thing was that one large-scale trial was enough.)

We are "future-oriented" in all fields of science and technology, 
we study "the present" (the recent past) and "the past" (the distant past) 
with the hope of foreseeing, and perhaps even guiding, the future. 
Purely statistical considerations alone can never suffice for inferences from 
the past (distant or recent) to the future (at least not until time machines 
are available). For we cannot draw samples from the future. We can 
make statistical inferences from what was observed in some sample of 
the past to larger aspects of the past. We may even, indeed, make 
inferences to "might-have-been" pasts (the latter is the most important 
function of much of modern statistics). But we may go no further by 
purely statistical arguments. Only theory (itself held on faith) can 
guarantee that the future will resemble the past. (The "laws of nature" 
may be due for a sudden change at 4:23 a.m. on the next Saturday 29th 
March "that ever is".) This gap between past and future is common to 
us all, both personally and by disciplines. Its recognition is of little 
importance in itself, for there is little that we can do but to recognize its 
presence and then press on, trusting our faith in the continuities of 
nature. It is mentioned here, however, to help throw light on less 
extreme gaps of a somewhat similar nature, gaps enforced not by 
"Time's Arrow", but by the extent of the data actually available to us, 
which are the subject of the next few examples.

B2. A BIOLOGICAL EXAMPLE

The biologist studying genetics in insects has habitually used the 
little fruit-fly Drosophila. And in this genus he has used certain species, 
often working with a single laboratory colony of a single geographic 
race of a single species. In doing this he has probably not been unwise, 
but he has introduced many gaps of a sort not to be crossed with 
statistics. No matter how thick the inference, no matter how many flies 
are raised and classed, just so long as all the flies come from a single
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geographical race of a single species, the purely statistical inference 
clearly cannot extend outside the family of which Drosophila is a genus, 
nor outside that genus, nor outside the species studies, nor outside the 
geographical race from which the colony sprang (and often not outside 
the colony). Yet the biologist's interests are not bounded by these 
limits. Few biologists would be modest enough to feel that they were 
studying fly genetics. Most would feel that they were studying the 
fundamental mechanisms of genetics. Of the span of inference from the 
specific laboratory fruit flies to all flies, to all insects, or to all life, only a
short span can be statistical, most has to be biological.

But this has caused little confusion about the contribution of 
statistics to the inference. A man claiming a new genetic phenomenon 
in Drosophila dare not say merely that more than the previously 
expected 50% of flies show this characteristic on the sole basis that more 
than half of the flies he examined showed this characteristic. (After all, 
there is the "66.7% cured" of the medical article traditional among 
statisticians, namely 2 out of 3.) The claimer will be forced to consider 
his flies a sample, even if he has studied every fly in his own colony, 
even if any larger "population" from which these flies might be 
regarded as a "sample" were purely conceptual and never , existed as 
such. Here the policy is well established.

When we deal with people instead of flies, the situation is not so 
clear (perhaps because the investigators do not live many times as long 
as the subjects). The next few pages will summarize a human 
illustration, homely in one sense (though we trust not in another).

B3. A BEAUTY CONTEST

We now wish to discuss the same problem in terms of a bathing 
beauty contest at a seaside resort. Let us suppose that some 25 girls are 
judged by a panel of 300 men, drawn at random from the adult male 
population of the resort. Suppose further that each judge rates each 
contestant on a scale from 0 to 100, and that we are concerned with the 
average rating which would have been given to a contestant by all male 
residents. For each contestant, the determined (i.e., that which is to be 
pointed toward by an appropriate summarization of the data) is this 
average, a typical value of the population of scores which would have 
been given by all adult male residents. The natural choice of the 
corresponding determination or estimate is the mean of the 300 scores 
actually given that contestant.
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Comparisons between individual girls are clearly of interest. (As 
usual, simple comparisons are important.) But, given the data, it is 
reasonably certain that someone (probably several people) will wish to 
make comparisons between redheads, blondes and brunettes. He, she, 
or they will almost inevitably calculate the mean score of all redheads, 
the mean score of all blondes, and the mean score of all brunettes, and 
start to intercompare these mean scores. What difficulties must now be 
faced that are likely to be overlooked?

He (or she) will undoubtedly be concerned with some generally 
expressed question, such as "Do men prefer blondes?" It is most 
unlikely that his (or her) curiosity extends only to the particular girls 
who participated in the particular contest (particularly if hair dyeing or 
tinting may be in question). Now there is little doubt but that the 
blondes who entered this contest are not a random sample of blondes, 
that the brunettes are not a random sample of brunettes, etc. (It might 
be possible to get a random sample of adult males to act as judges, but 
hardly conceivable that a random sample of girls would be willing to 
become contestants.) In fact, we can plausibly say more. Is it not a fact 
that the relative number of redheads in such a contest is greater than in 
the female population at large (of appropriate ages)? If so, then either 
the selective forces of recruiting contestants must operate differently for 
redheads, or the selective forces that determine hair color must operate 
differently for potential contestants. In either case, some systematic 
effects of a difference, or of hair differences, are to be anticipated.

But our protagonist will overcome this difficulty, probably in the 
only reasonable way, namely by deciding that he wishes to compare the 
average adjudged beauty, not of all girls of a given hair color but of 
those who "might have been contestants in a similar contest." (Note 
carefully, not merely those who actually entered this contest.) To the 
sampler of well-defined populations by modern methods of probability 
sampling, this may seem an atrocious action. He might say: "The 
'populations' now being considered are not definite enough! There is 
no trace of a list or frame covering all individuals. You cannot even tell 
whether a particular girl belongs to this 'population' or not. Probability 
sampling was not used to select the sample, so the use of formal 
machinery based on random sampling is entirely improper."

To be sure, there is a real uncertainty here, but it is not novel, not 
unusual, and, in the writer's judgment not too serious. Let him try to 
explain why.
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B4. EXAMPLES FROM PHYSICAL SCIENCE

This problem of the uncertainty of any possible population 
reference has been faced elsewhere, and experience has often shown 
that it is better to make inferences to such an uncertain population than 
to tie oneself down to a particular sample. Modern statistics developed 
in closer relation to agricultural experimentation than to any other 
single field of science or technology. Agricultural experimentation is 
affected by weather — most seriously affected. And is the weather of 
last year, this year and next year a sample from a well-defined population 
of annual weather patterns? Is it a random sample drawn with known 
probabilities? Only the briefest analysis of historical data is required to 
show that the answer is irretrievably “no" to both questions. (Even less 
time is needed to discard that course of perfection which says: "So, 
you're interested in the average behavior of these crops during the next 
25 years since you need to make recommendations to farmers which 
will be valid over that period. Why not select 5 of these years at 
random, say one from each of 5 five-year strata, and plan to run your 
experiments in these selected 5 years?") What practice is in regular use 
in the assessment of agricultural field  ̂trials? What has experience 
taught? A very simple rule of thumb: "Treat the years you have as a 
random sample of years from a population of 'similar' years; this is the 
best you can do!" Here there has been extensive experience; moreover 

■ when the years at hand were treated in some other way, experience has 
often been bitter.

When statistical techniques are applied to experiments in chemistry 
and chemical engineering (and of all the technologies today, chemical 
industry makes the greatest, and most rapidly growing, use of statistics) 
the "samples" often arise by doing the same thing twice, three times or 
more. A chemist may analyze three aliquots of a liquid sample. Three 
different chemists may each analyze a sample from the same batch (they 
may or may not be in three different laboratories). Three replicate 
fermentations may be run in the laboratory 50-gallon fermenter. Three 
experimental runs may be made, one in each of the plant's three 20,000 
gallon fermenters. Three experimental runs of four days each may be 
made in the refinery's one big catalytic cracking still. And so on. In 
each case the three observations will be treated as a "sample". And in 
each case the "population" will be impalpable, unlistable and 
unframable, and uncertain. In every instance, however, the inference 
will have been to a "population of similar runs." The uncertainty of the 
precise nature and identity of such populations has not inhibited or 
devalued the developing use of statistical techniques in the chemical 
industry, where experimental conclusions lead to plant-scale trials, and
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where, contrary to experience in some academic fields, mistakes almost 
inevitably come home to roost. “Populations of similar runs" has 
proved to be a valuable concept.

Consider now a third example. If you were an astronomer 
studying the average behavior of certain novae, and found that good 
spectroscopic plates were available for 17 instances (new instances being 
expected at a rate of about 1 nova every 2 years), would you treat these 
17 "exploding stars" as a sample? As an entire population? And to 
precisely what population would you refer them?

When subgroup means cannot bear the weight of inference to any 
well-defined population, it may be that logically they will not bear the 
weight of the inference to an uncertain population, but practically it is 
almost certain to be best to use them as the bases of such inferences to 
uncertain populations.

B5, A SOCIOLOGICAL EXAMPLE

Consider next a sociological example, mentioned in a Center 
seminar. Sociologists interested in the process of professionalization 
studied the classes attending a given medical school during a particular 
year. Relations between students mainly in the same class, but also 
between classes, were of considerable importance. Let us suppose for 
illustration, whether or not it be the case in fact, that certain processes 
of professionalization were peculiarly distinctive in the first year, 
freshman class. How are we to regard the available evidence? It relates 
to all the students in the freshman class, the freshman class of this 
particular year, in this particular school, a school which trained for the 
particular profession, medicine! We want to learn about
professionalism, not just in medicine, not just in this school, not just in 
this academic year. Clearly much of this span cannot be covered by 
statistics. But some of it can be covered. From a general point of view, 
it is equally as desirable to interpret these medical students who were 
there as representative of the hypothetical population of medical 
students who might have been there as it is to interpret those Drosophila 
who were there as representative of the hypothetical population of 
Drosophila who might have been there. (There are some special 
considerations in this sociological example; they will be discussed 
shortly.) It is clearly desirable, and often essential, to extend the 
statistical part of the inference as far as we can. There will still be a 
wide enough span left to subject-matter faith alone.



If we can agree on the general principle, what of the 
implementation? What are the special considerations which arise in the 
two cases? With Drosophila it may be important that individual flies are 
not unrelated; proper analysis of the data may require treating the data 
in terms of “progenies" or in terms of the groups of progenies raised in 
separate “bottles." With medical students, the situation is somewhat 
more complex. While it is probably true that the student-school 
selection process does not select students independently (and it is 
undoubtedly true that different schools have different curricula and 
policies), a much more serious process begins once the students arrive at 
medical school, once they begin to become a “Freshman class". This 
process involves much interaction between persons, and the nonrandom 
development of many relations. (As one example, note that the number 
of persons classifiable as "the most important opinion leader" is not 
distributed in various Freshman classes as if derived by random 
sampling from a population containing a certain proportion of such 
persons. Its average value is presumably greater than 0.5, but since at 
most one person can be the leader, the values 2 ,3 , . . ,  can never 
appear.) Thus we have some practical difficulties in making inferences 
from this "sample" to a hypothetical population, difficulties connected 
with the determination of the sample size. For some purposes, the 
sample size may be the number of students, for others we might do 
reasonably well with the number of clearly recognizable friendship- 
groups among the students, but for many purposes the sample size is 
one. (One class, one sample!)
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B6. SAMPLES OF MORE THAN ONE

From the statistician s point of view, a sample size of one is a 
serious drawback. In the medical school example, he must ask why the 
hypothetical study did not follow the professionalization of, say, a 
random third of the students in each of three medical schools. One 
sociological answer can be anticipated. It is that "we sociologists study 
groups as wholes; if we only studied samples we would miss the most 
important things we are to study." But the force of such an argument is 
quite limited. If it be feasible to study a sample of individuals, each
with his interconnections, such arguments have no weight.

The physical analogy which arises in sampling the out-of-doors 
plant of a telephone company is interesting, if not too close. The 
convenient sampling unit is the telephone pole, but poles constitute a 
minor fraction of the plant. Open wire, cable, cross-arms, guys (and 
coils, drop loops, and push-braces) are all involved. The solution is
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simple. We make up a sampling unit by including with each pole all 
the equipment carried by or attached to it, thereby including all the 
interconnections running out from it.

And if it be argued that such sampling of individuals with all 
interconnections costs more per medical student studied, the answer is 
immediate. Even if only one-sixth: of the students in each of three 
freshman classes are studied, there will be a sample size of three for 
many purposes where before the sample size was one. And while there 
is much to Milton Friedman's maxim that: "You can never reduce the 
variance [of the sample mean] as much again as when you increase the 
sample size from zero to one!", it is equally true that: "You can never 
reduce the variance so much again as when you increase the sample size 
from one to three!"

This general point is recognized by sociologists. In a 
methodological note appended to The Student Physician (Merton et al. 
1957, p. 304) it is stated that, when a pattern has been found in one 
medical school: "We consider this a valid result only if the same 
pattern is observed in a second medical school, or in the same medical 
school at another time." This statement occurs as part of a discussion of 
why the authors do not use "significance tests," where those words are 
taken as meaning conventional tests for counted fractions based upon 
random sampling of individuals. It would seem that insofar as this 
aspect of the discussion is concerned, the authors are advocating, not the 
avoidance of significance tests, but the use of correct significance tests 
based on honest replication (though apparently at what statisticians 
might consider rather loose significance levels).

B7. ATTITUDES AND CONSCIENCES

We have seen through example something of the need for the use 
of hypothetical populations, for the shortening of the nonstatistical part 
of inference by the lengthening of the statistical part. We have seen, 
especially in connection with sociology, a little of the discomfort and 
complexity which comes from facing up to the real difficulties of 
experimental and observational inquiry. We shall later, in G below, 
have more to say about the problems associated with tests of 
significance. Here is the place for some broad general comments.

Attitudes to the broad family of questions we have opened up are 
strongly influenced by views as to the purpose of statistical inference. 
As we shall try to point out in G2 below, there have been many in 
every decade of inferential statistics who tried to use statistical 
techniques as machines for grinding up uncertainty and making
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certainty out of the grist. Those who hold such views tend to regard 
unspecified and unspecifiable populations with disdain and fear. On 
the other hand, those who, like the writer, look upon statistics as a tool 
to help us deal with the simpler aspects and kinds of uncertainty, tend 
to regard extension of statistical inference to an unspecified population 
as a way to command and control yet one more partial aspect of 
uncertainty, as serving a very useful function, hence as a definite good.

In the face of the systematic errors which inevitably accompany 
randomizable errors in every field of science and technology, the writer 
sees but one view that he himself can take. He cannot insist that others 
do likewise, since it is clear that everyone ought to make up his own 
mind about what standard of intellectual honesty, for each individual 
and for each field, will best support and facilitate progress and sound 
understanding in the field in question. (And if a man considers instead 
what standard of intellectual honesty will best support his own 
professional advancement, we must lay the blame upon his social and 
professional environment.)

Wherever along this scale a particular user of statistical technique 
stands, he dare not confuse the sampled population, which may have to 
be unspecifiable, with his target population, itself rather too often 
unspecified. He must recall that a particular farm, even more a 
particular field on that farm, even if observed in all kinds of "years", 
may not be typical (and usually is not typical) of a county, a state, or a 
country. Similar cautions hold for single ore bodies, single medical 
schools, single strains of Wistar rats (Williams 1950) and particular 
classes of students at particular colleges.

Each of us has a right to make short inferences, so long as this is 
done knowingly, and the remaining gap is recognized. For my own 
part, I find the concept of a hypothetical population and the making of 
explicit inferences to such populations not only useful and proper, but 
important and probably essential to progress. Thus I believe that good 
practice in a wide variety of fields, including those of behavioral 
science, involves inferences to hypothetical populations. Some of my 
statistical colleagues will disagree. The ultimate decision must be made 
by the scientific consciences of many, many individuals.

C  ATTITUDES TOWARD ANALYTICAL TOOLS

We come now to more specific but not highly restrictive questions of 
attitude; attitudes toward the empirical and the quantitative in analysis, 
toward the purposes of formal statistics, and toward allowing the data to 
guide the course of its own analysis.
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Cl. THE QUANTITATIVE AND EMPIRICAL IN ANALYSIS

When we think of analyzing data, we usually find the quantitative 
aspects and the empirical aspects of our analytical techniques entwined 
in our thoughts. Such aspects are "empirical" when they have arisen 
more or less directly from contact with data (perhaps from the body of 
data under analysis, but somewhat more probably from some earlier or 
more extensive body of more or less similar data) rather than from 
suggestions by theory or unmitigated "common sense". (Once properly 
mitigated, common sense is an extremely valuable commodity; but in 
too raw a state it can be misleading and even dangerous.) Such aspects 
are quantitative when the resulting comparisons (and analysis of data 
always involves comparisons with something, if only with alternative 
anticipations) are expressed quantitatively, expressed not merely in 
terms like "more than", "equal to" or "less than" but rather in terms 
like "3 feet higher", "15 points lower I. Q.", "half-way between B and 
C".

One explanation for this intertwining is so simple as to arouse 
doubt. It is this: So long as we only concern ourselves exclusively with 
"greater" or "less", any reasonable mode of expression "works" as well 
as any other, and contact with data, even if extensive, has little effect in 
teaching us how to learn more from similar data. If this be the correct 
explanation, however, why is there apparent in some areas of the 
behavioral sciences a miasma of suspicion directed toward the 
quantitative and the empirical? Somehow there seems to be a feeling 
that the introduction of such aspects of analysis is dangerous (and I 
think not just threatening) and that results so obtained are piddling and 
useless. Sometimes these feelings seem to be justified by a reference to 
the present state of physics, that prototype of exact science, where it is 
apparently believed that theory and common sense do all the 
suggesting. But this is a false analogy in many ways. Any meaningful 
analogy must relate to physics as it was when its state of development 
was the same as that of the behavioral sciences considered today. And 
that would be a long time ago, when, in physics, empiricism was 
rampant and theory minimal. Moreover, even today physics is not 
unempirical. It is not so that theory precedes careful quantitative 
measurement. A few examples are easy to give:

(1) The empirical study of "Mach stems", "Mach reflection", and 
"irregular reflection" as major (quantitative) experimental 
phenomena of shock wave behavior was very active during World 
War II. At last reports, theory had not yet caught up with 
experiment.
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(2) The classification of stars into spectral types, and their location on 
the Russell-Hertzsprung diagram was an important and purely 
empirical business of observational astronomy for decades. Only 
today, with a foundation of nuclear physics at hand, are 
Schwartzschild, Hoyle, and the big electronic computers starting 
to develop a theory of stellar evolution.

(3) The measurement of the exact wave lengths of spectral lines went 
on for decades as a purely empirical matter. And when it was 
learned that using the reciprocal of the wave length made more 
sense, first because differences between reciprocal wave length 
were repeated at various places in the same spectrum, and then 
because the many observed reciprocal wave lengths could be 
described, empirically, as differences among a smaller set of 
numbers, empirical work was stimulated but remained empirical. 
The first theoretical explanation, the Bohr atom, came much later. 
(And the traces of this history remain today. The shells of 
electrons are divided, though today this merely means dividing 
wave functions into families, into those which are "S", those that 
are 'P ' ,  those that are "D", etc. —• an order with no apparent 
alphabetic sense. Why? Because the empirical spectroscopist, 
long before even the empirical discovery of atomic energy levels, 
had empirically classified spectral lines into families called
sharp", "principal", "diffuse", etc. ■— a classification made and 

used three or four decades before there was any corresponding 
theory.)

As another piece of evidence, I relate a complaint about physicists 
made by an engineering acquaintance a few years ago: "We have a 
physicist in the group, but he isn't much help. We told him about a 
particular situation where the observed results didn't agree with simple 
theory. First we told him how they deviated from this simple theory. 
He said: 'Oh yes, it must be that the G is H-ing the K which causes L, 
etc.' Then we found that we had slipped, and had to go back and tell 
him that the deviations were in the opposite direction. He spoke up 
just as fast, saying: 'Well, in that case, the Q must be R-ing the S which 
causes T, etc.' He can explain anything! How do we get help from 
him?" Clearly they were dealing with a physical situation where, even 
today, the empirical precedes the theoretical.

The history of physical science is full of places where one 
precondition of the development of an effective theory was the 
recognition of an empirical regularity in quantitative terms. Why 
should matters be otherwise in behavioral science? The abstract of a 
recent paper entitled "Iterative Experimentation" begins as follows (Box 
1957):



2 2 4  VOL. Ill: PHILOSOPHY (1949 - 1964)

“Scientific research is usually an iterative process. The cycle: 
conjecture-design-experiment-analysis leads to a new cycle of 
conjecture-design-experiment-analysis and so on. It is helpful to keep 
this picture of the experimental method in mind when considering 
statistical problems. Although this cycle is repeated many times during 
an investigation, the experimental environment in which it is employed 
and the techniques appropriate for design and analysis tend to change 
as the investigation proceeds."

"Broadly speaking, one or more of the following four phases can 
be detected in most investigations:

(a)

(b)

(c)
(d)

a screening phase in which an attempt is made to isolate the 
important variables;
a descriptive phase in which the effects of the variables and the 
positions of interesting regions of the space of the variables are 
empirically determined;
a phase leading from (b) to (d);
a theoretical phase in which an attempt is made to understand the 
actual mechanism of the process studied."

As a consequence of empiricism leading theory in an iterative 
cycle, successive theoretical explanations often form a nested structure, 
each new one explaining all that the previous one did and more. 
Changing the theory need not require changing familiar empirically 
well-established facts. The evidence of the best-established sciences 
thus shows that (numbers refer to questions in Table 2 and Table 4):

Quantitative empirical regularities are likely to be most valuable 
(24A).

Empirical regularities are longer-lived than the theories which 
their recognition generates (24B). ,

Most valuable information from observation starts as purely 
empirical regularities (41).

When some quantitative measure seems to be behaving much 
better than any theory would suggest (e.g., the reciprocal of wavelength 
of spectral lines), it is best to push on hard, to use it more widely and 
more deeply (42).

C2. THE ROLE OF STATISTICS

There are almost as many views of the proper purpose and role of 
statistics as there are definitions of statistics (and one article collected
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531 of these; reference lost to me). Four main purposes for statistical 
techniques of analysis seem reasonable and important, however:

(1) to aid in summarization;

(2) to aid in "getting at what is going on";

(3) to aid in extracting "information" from the data; and
(4) to aid in communication.

Use for each of these purposes is at least moderately widespread, but all 
too often an individual use may not be recognized for what it really is.

The uses of statistical techniques in summarization are familiar to 
most of those who deal with extensive data. A few, who have been 
exposed to overemphasis on modern mathematical statistics, may have 
allowed summarization to hide so far behind testing, significance and 
confidence, etc., as to lose sight of it completely. But they can learn 
easily, either from colleagues who summarize, or from elementary texts. 
It would be inappropriate to emphasize this class of uses here.

The use of statistical techniques to aid in "getting at what is going 
on" is another matter. Such simple devices, today to be found profusely 
sprinkled through books on "general statistics", as typical values (once 
horribly miscalled "measures of central tendency"!), measures of spread, 
and measures of association, were once fresh new tools for cutting into 
and pulling apart quantitative messes. Today the discussion of means, 
medians, and their relatives; of standard deviations, mean deviations, 
interquartile ranges, and the like; of coefficients of correlation (product 
moment, Spearman, Sheppard, tetrachoric, or Kendall) and association; 
all this seems "old hat". For this there appear to be two reasons.

First, the essential ideas of using typical values, measures of 
spread, and either measures of nonindependence or of correlation 
proper as elementary tools of entry into quantitative messes, as incisive 
techniques, have become part of the tool kit of almost every worker. 
These ideas may be used with more or less skill, with more or less 
fluency, with more or less success, but they are used. They have lost the 
exciting aspects of novelty.

Second, new tools for cutting into quantitative messes have been 
developed. By and large their incisive features have been carefully 
disguised, and their discussion has been separated from that of the 
classified tools. The new tools have been disguised by association with 
experiment, by association with the formal procedures of statistical 
significance and confidence, by association with careful discussion of 
what procedures are "best", by association with heavy mathematics. No 
one of these disguises is necessary, though much thought, ink, and
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paper may have to be used to expose these concealed weapons and make 
them widely useful. Though most users of the old tools are unaware of 
that fact, there are newer and sharper tools with which one can often 
cut more deeply and more neatly.

If "descriptive statistics" had been called "incisive statistics", we 
might have avoided some of this separation of the new from the old. 
After all, "mere description" does not sound very respectable.

While we shall return to some of the newer tools below (in D, E, F, 
G and H), we must here urge the practitioner to always examine a new 
statistical technique, even a highly mathematically packaged one, and 
ask: "What new sorts of incisions into quantitative messes can it make? 
What part of it is essential for incision alone?"

The third purpose, extracting information, has been well 
advertised by the mathematical statisticians. This is natural, and from 
their point of view fitting, since it is in this connection that 
mathematical problems which are both interesting and soluble arise 
most easily. The idea of "squeezing the data" is not unpleasant to the 
investigator who worked hard to get it, and his cheers have tended to 
urge the mathematician onward. While there are, as always, dangers of 
overselling results based on overnarrow hypotheses (such as efficiencies 
correct for exactly normal distributions and very misleading for nearly 
normal distributions (Tukey I960)) and of slowness in breaking out into 
important new areas (such as how to ask of the data in what sort of 
framework it should be analyzed), the work toward this purpose has on 
balance been useful and well received, as well as being well advertized 
and widely recognized as a proper aspect of statistics.

The fourth broad purpose is another which has had little 
recognition. This is unfortunate, since it is intimately connected with 
the uses of those statistical procedures which until recently were the 
most formal and seemingly the farthest from mundane matters (and 
which are still such among those actually and extensively used). These 
are the procedures of significance testing and of setting confidence 
limits. Why does a behavioral scientist use a significance test? Or, 
better, why should he do so? The best answer is for purposes of 
communication.

This communication is sometimes between persons, and sometimes 
between roles within a single person. Indeed, Milton Friedman would 
distinguish them by assigning "calibration and communication" as a 
purpose of formal statistics. Here "calibration" means what I should 
have termed "adjustment of the investigator's optimism and pessimism". 
Perhaps it may better still be expressed as "aiding the investigator as 
data-gatherer and data-analyst to communicate effectively with himself 
as interpreter of appearances and assessor of theoretical importance".



This aspect is extremely important possibly even as important, though I 
tend to doubt this, as the role of formal statistical procedures as means 
of communication between persons.

Each act of speaking or writing about one's results, formal or 
informal, is an act of communication, and its success depends on what is 
received, both as to extent and as to accuracy. Statements of significance 
or confidence should serve to improve communication; usually, and on 
balance, they do this. (Clearly this whole subject deserves deeper 
consideration than we can give it here.)

Communication has been studied and certain of its aspects 
quantified in modern information theory, which measures its amounts 
of information in bits, one bit being the maximum information provided 
by a choice between two alternatives. Clearly the settlement of the 
disjunction significant" — "not significant" requires the transmission 
of one bit of information. (This is of course a very valuable bit, 
especially if the level of significance to be used is understood in 
advance. It is regrettable that we do not have a good measure of the 
value oi information. Information theory certainly provides none such.) 
If we wish to know more about some investigator's result than merely 
the dichotomy of significant — not significant, we are likely to require 
several bits to specify what we have learned. To go beyond the level of 
a simple "yes" — "no" requires an increased effort, a greater channel 
capacity. And if it be true that information theory is relevant to mental 
habits, we should perhaps not be surprised to find many people who do 
not want to "clutter up their minds with any more bits of information," 
who consequently resist rather bitterly any tendency which might lead 
them to think in less black-and-white terms than "Smith's results was 
significant, but Jones's wasn't".

If we really must live with widespread commitment to such an 
attitude, we shall have to work out the best scheme we can, a scheme 
which will allow the use of "yes" —" n o "  alone and still manage 
somehow to allow us to get hold of what the data offer. But I estimate 
that the effort in preparing such a scheme, and the effort in using it, 
would not be worth while, that teaching people to think in terms of 
more than one bit at a time would require a far smaller investment. (It 
will rather clearly be desirable, in any event, to have a quite simple 
scheme, using some 3 bits, and a somewhat more complex one, using 
perhaps 10 bits, as intermediary techniques between "significance" — 
"nonsignificance" and a rather full assessment of the situation.)

Thus, while rigidity of separation into "significant" and "not 
significant" may possibly be necessary (but see G4 for some of its 
difficulties), it is possible that we can all learn to communicate more 
effectively about results, both with ourselves and with one another, 
using more flexible and useful codes.
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C3. DATA-GUIDED ANALYSIS

Badmandments 23 and 91 refer to the relation between the data 
and what is done to it. At first glance they seem to contradict one 
another, one seeming to imply that the data should guide analysis, and 
the other that it should not. On careful examination, however, it 
appears that they do not contradict one another, but rather call for a 
combined policy, where an analysis is planned before seeing the data 
(preferably before gathering it) but the actual analysis is not confined to 
that which was planned in advance. Is this really the best way to 
proceed? What are the pros and cons?

Some would hold, indeed, that there is something unethical about 
allowing the data to guide its own analysis. Some of these would once 
have been (and some still are) purely mathematical statisticians, who 
sought exactness of probability statements and who saw no way to save 
this exactness if the mode of analysis was not prechosen. Others must 
have been urged on by feelings for which I have no ready analysis. The 
discomfort of the "purely mathematical" statisticians revolved mainly, 
in my judgment, around problems of multiple comparisons and complex 
experiments. These were, and seem to remain, the outstanding cases 
where the dangers of data guiding seemed to outweigh its advantages. 
Today there are available techniques, some of which will be alluded to 
in H3 below, which enable one, in both multiple comparisons and 
complex experiments, to allow the data to guide its analysis (within 
moderately broad limits), while preserving the same degree of exactness 
of the probability statements as would have been available if self-guided 
analysis had not been used. Thus a very large part of this objection has 
disappeared, and the manner of its disappearance has suggested ways 
which further development of new techniques may remove further 
parts. In the meantime, however, the principle that it is wrong for the 
data to guide its analysis has become an emotional commitment for too 
many. Even though its main reason for being has disappeared, we may 
expect this view to be clung to. But we need not join those who cling.

On the other side of the picture, it is even easier to argue that not 
letting the data guide its own analysis is unethical • • • not just 
statistically unethical, but scientifically unethical. If the data is really 
trying to tell us something, should we stop our ears to the answer, just 
because we didn't think of the question in advance? Clearly not if we 
are seeking knowledge. We cannot afford to seek knowledge at the 
price of maintaining no contact at all with the reality of the likely 
effects of random fluctuations, but since present-day statistical 
techniques (and even more those of the near future) allow us to 
combine increasing degrees of data-guidance of analysis with reasonable
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control of exactness of probability statement, we dare not bind ourselves 
away from the data-guidance in the conduct of our analyses.

D. ORDERED CLASSIFICATIONS, THEIR CARE 
AND FEEDING

i

I

Perhaps the largest class of opportunities (whether good or evil) for 
analysis which are customarily ignored on a “do nothing, do nothing 
wrong, be not wrong" basis arise in connection with measurement. The 
subject of measurement has been discussed with much wisdom • • - and 
with much lack of it. It has been discussed just enough, and from 
sufficiently specialized points of view, to ensure that far too many 
people will “act scared", will refrain either from doing better what they 
already know how to do better or from inquiring into how they might 
learn to do better what they do. Many of us need to examine the 
reasons why we feel the way we do about measurement, and then ask if 
our feelings are at all justified.

We cannot deal with the subject exhaustively here, but we can try 
to illuminate some of its aspects. We deal Hrst with ordered 
classifications and later (see E) with the choice of desirable modes of 
expression.

Dl. WIDTHS OF CLASSES

Very many datums of behavioral science are expressed in terms of 
position along an ordered (linearly arranged) classification. Sometimes 
this classification is intrinsic, as when answers to a questionnaire are on 
a five-or seven-point scale ranging from “strongly disapprove" to 
strongly approve . Sometimes this classification is observer-generated, 

as when families are placed as “working class", “middle class", etc. In 
either of these examples, and in many more, there is but little doubt 
either about the fact that the classification is ordered, or about what 
order is correct. (There are many instances of classification where this is 
not the case; they are not subjects for the present discussion.) How 
should we handle such information? How many classes shall we use 
initially? What penalties do we pay because of “misclassification?" 
Should we combine classes prior to further analyses? The answers to 
such questions are likely to depend on how we view the purposes,
potentialities and perversions of ordered classifications.
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We might begin by taking a rigid, logically seamless attitude 
toward classification, as Hempel does in his philosophical treatment 
(Hempel 1952), and require that classifications be definite, perfectly 
reproducible and without error. As a description of practical 
classification this is obviously quite unrealistic. (The distinction 
between males and females of Hottio sapiens is probably as clear as any 
distinction of interest to the behavioral sciences, far clearer than most, 
yet the newspapers delight in telling us of occasional misclassifications.) 
In practice, classification is made with error.

The finer the classification, the narrower the classes, the more 
frequently will an independent reclassification disagree with the 
original classification. But it is far from obvious that finer classes 
thereby produce less useful classifications. Classifying men into weight 
classes about 20 pounds wide will be more reproducible than classifying 
them into 2 pound classes, but there is little doubt that the latter 
classification provides more information. Indeed, classifying them into 
16 times as many classes, into classes 2 ounces wide, would also provide 
more information than the classification into 2-pound classes, though 
communicating the additional detail may require more effort than the 
increase in precision justifies.

Now many will argue that all this discussion about human weight 
is true but irrelevant, for this situation differs from that common in the 
behavioral sciences in two ways: first, a continuous scale of weight 
underlies the classification into weight groups, and second, perhaps 
even more importantly, the measurement of weight is a physical 
measurement conducted on a scale of very prestigious (and in truth very 
desirable) properties • • • a ratio scale. To me such arguments seem very 
weak, once examined.

Suppose that no physicist had ever lived, and that the only way of 
comparing "weights" was by a two-pan balance (without a scale) and a 
set of weights. Suppose further that no one had ever thought of putting 
two weights in a single pan. What could international standardization 
have done? It seems to me that its effort would have been devoted to 
the preparation of standard bodies, numbered in some way, and 
assembled in sets, each individual of a set differently numbered and 
different individuals of the same number chosen so as to very, very 
nearly balance one another. Then weighing, of a man or of a bag of 
potatoes, could be conducted by comparing the unknown with each 
standard body of some standard set, thereby assigning the interval 
between standard bodies in which it fell.

If this were the case, it would still be true that, although no trace 
of a ratio scale would be available, weight comparisons of men with a 
closely spaced set of standards, would be more informative than

(
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comparison with a very coarsely spaced set. Thus the ratio-scale aspect 
had nothing to do with whether we learned more or less from a finer 
classification.

The belief that a continuous scale makes an important difference is 
similarly not sound. The discussion we have just given would have 
gone smoothly, if not continuously, along the same course if the 
weights of all objects concerned, humans or standard bodies, were 
always exact multiples of one pound, or of one ounce, or of one grain, 
so that every weight was expressible on a discrete scale • • • so that the 
continuous scale had no physical reality.

There seems to me no escape from the conclusion that, so long as 
the class boundaries are well defined in some average sense, we learn 
more from a finer classification than from a coarser one, even though we 
expect poorer reproducibility for the finer classification, at least «s 
measured by fraction of agreements on independent reclassification.

Now it could be argued that there are many behavioral science 
situations where the boundaries would become much less well-defined 
if there were an attempt to use finer classes. Doubtless there are such 
circumstances. It is clearly a subject-matter question how often this 
happens, one where actual inquiry is better than expert judgment 
(behavioral science experts, that is), which is better than an outsider's 
impressions (such as mine). But each of us is entitled to his own 
opinion. My opinion, strengthened by listening to such remarks as "we 
wanted to divide them further, into 'upper middle class' and 'lower 
middle class', and into 'upper working class' and 'lower working class', 
but when we tried it the numbers were too small", is that there are 
relatively few such instances.

D2. DIVIDING THE MIDDLE CLASS

Let us examine this last instance more carefully. How could we 
lose information by dividing both "m iddle class" and "working class" 
into "upper" and "lower"? It seems most unlikely that such a 
refinement would affect our decision, in any but an exceedingly small 
fraction of all cases, as to whether a family was "working class" or 
"middle class". (And I doubt whether the changes that did occur 
would, on the average, increase mfsclassification.) Similarly, I cannot 
believe that those classified "upper working class" would, as a group, be 
actually lower in the class structure than those classified as "lower 
working class". The worst one could conceive, and this is very nearly 
too hard for me, is that families might be randomly assigned to the 
upper and lower segments of the "working class". As is set forth in
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more detail in Appendix S4, random splitting is only as much worse 
than no splitting as perfect splitting is better, while rather poor splitting 
is still an improvement. Consequently, if we have any real basis at all 
for splitting, it is relatively certain that we shall be better off to split.

Now it is likely to be argued that, if we halve, or further divide, 
the classes we have done an evil thing, because more frequent "errors" 
in classification will blur the meaningfulness of the classes. Let us 
examine halving the middle class from this point of view. It is indeed 
true that the fraction of all families actually classified "upper middle 
class" about whom we are uncertain as to whether they really belong 
"in" is greater than the corresponding fraction for the middle class as a 
whole. But so what? It is equally clear that the group of families 
classified "upper middle class" is a more homogeneous group than that 
including all those classified "middle class". As a group, and it is to the 
resulting group that further analysis will apply (not to group 
boundaries), there is less blurring for the smaller group. And this is so 
because added variation within the larger group contributed to blurring 
of the group image in just the same way as, and usually to a greater 
extent than, difficulties with assignment to classes can contribute via 
misclassification.

If the smaller classes are less blurred, how then could a prejudice 
develop against them? Two reasons seem most obvious:

(1) statistical techniques of the required flexibility did not seem to be 
available;

(2) certain sorts of misinterpretation were possible for the naive.

We shall return at a number of places below to the question of how 
currently available statistical techniques can be used to deal effectively 
with finer classifications. It is easy to understand reason (1) being once 
strongly felt, but today it no longer offers adequate ground for a 
prejudice.

Reason (2) deserves more discussion. The simplest sort of 
misconception involved arises where subdivision into "upper" and 
"lower" has limited effectiveness, and where, as a consequence, the 
average apparent difference between the upper and lower segments of a 
class is much less than it would have been for a "good" sub
classification. The incautious investigator might then conclude that the 
step between classes was much larger in comparison with the gradation 
within classes than was in fact the case. If fine classes are used, their 
users must be prepared to recall at frequent intervals that their 
establishment is fallible. They must recognize that they are "living 
dangerously". This is uncomfortable, since we all like overall feelings
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of surety and confidence. But in assessing such discomfort, we must 
remember that we have actually learned more from the finer 
classification; our only danger is from believing we learned too much 
more.

There is a Scots proverb, quoted by John Buchan somewhere, to 
the effect that "A man may have a gey fine hoose, but he maun sit loose 
to it". This has many and stringent applications to the analyst and 
interpreter of data, who may indeed have "a gey fine body of data" but 
who, if he is going to get the most out of it, must "sit loose" both to it 
and to many of the interpretations he bases on it.

Perhaps an example from quantitative measurement will illustrate 
the point. The teachers of primary and secondary arithmetic are likely 
to purvey the doctrine that if you are not sure of a figure, you drop it. 
At a higher level of sophistication, surveyors and navigators (to whose 
arts not all behavioral scientists have been exposed) are likely to carry 
one or two extra figures through the computation (and then cut down 
somewhat at the end). At a higher level of sophistication, or so one 
might suppose, should come the makers of mathematical tables, who 
have traditionally been the purest of the pure. Though they are not 
studying the empirical world, they face a similar problem, because their 
numerical calculations (not conducted in integers or rational fractions) 
are made with limited accuracy. If calculations to a particular accuracy 
yield .1349 when more precision would have yielded .1359, and the 
answer is desired to only 2 decimal places, then .13 will be entered in 
the table, when .14 would have been closer. Instead of being correct to 
within .0050, such a table is at best correct to .0059. Some table-makers 
would take .0059 but boggle at .0061, Others would draw the line 
between .0051 and .0052. Indeed, a few purists, knowing that a true 
value was between .26498 and .26502 would refuse to enter .26 since it 
might be off by .00502, which they regard as too great an error for a 
two-place table. (Since errors up to .00500 are inevitable in: two-place 
tables, the economics of these judgments are far from obviously sound, 
at least to a statistician.)

With all these diverse views at hand, what are we to do with 
quantitative measurements such as weights, heights, voltage, etc,, some 
of which are made in duplicate? Suppose that values are originally 
written down to enough figures so that duplicates disagree very 
frequently. How much should we round off? The idea is abroad that 
we should round off until most duplicates agree. This idea is 
statistically unwarranted. Once we have cut back the recorded precision 
till as many as 10% or 20% of the duplicate pairs are identical, we have 
reached the point where further cutting back may discard detectable
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amounts of information (Appendix S; also Tukey 1950). In the marginal 
situation a substantial % of duplicates will differ by 4 or more steps.

If we were to use the same standard on classifications, as well we 
might, provided (i) the juice-extracting power of the statistical 
techniques used upon classifications were equally great as that of those 
used on quantitative measures (this is nearly attainable), and (ii) the 
additional costs of computation were not significant, then we would not 
consider a set of classes too narrow unless classifiers could not agree 
precisely in less than 10 or 20 percent of instances classified. Compared 
to today's usual practice, such a rule would result in very narrow classes 
indeed. Granted that such a standard is likely to be too stringent, not 
only because of the provisos above, but also because uncertainties of 
order would be likely to arise for the kinds of extremely narrow class 
which would have to be defined, it is still true that much more is to be 
gained from finer classes than from coarse ones.

D3. INADEQUACY OF BROAD CLASSES

One of the main reasons for introducing broad classes for some 
variable is so that the effects of that variable may be "controlled". Thus 
we may be interested in the descendants of two groups of immigrants, 
one from Atlantis and the other from Mu, and we may wish to compare 
their incomes, controlling "of course" for social class. Let us suppose (i) 
that social class is really a continuous variable, even if we may not 
know how to measure it on a continuous scale, (ii) that average income 
varies linearly with position along this scale, in exactly the same way for 
both groups of descendants, and (iii) that, for each group, social status is 
normally distributed, the two groups having the same variance. Then 
the figures in Table 7 are perfectly possible, and perfectly consistent 
with these hypotheses. It would not be unnatural for the report of such 
an investigation to read "even after controlling the effects of social class, 
average income of those of Muan descent substantially exceeded those 
of Atlantean descent; this difference is probably to be ascribed 
to • • • extended family • • • facility toward accepting industrial 
society • • • strong motivations • • • ." Such language could of course be 
completely wrong, as the example shows. Such language is thus always 
nearly completely misleading, since the effects found could well be the 
result of incomplete fineness of classification. Table 7 illustrates this in 
detail. While Table 7 shows that the seven-class breakdown did a much 
more thorough job of "controlling" social status than the three-class 
breakdown, its success was far from complete.
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Table 7
Hypothetical example showing failure of broad classifications 

to "control" the effect of a variable* when comparing "A" 
with "M". (Two versions.)

Social
Class

Distribution** 
A M

Average annual income ($) 
A M fM-Al

1 1.0% ■ (4078)
2 0.3% 10.0% (3506) 3558
3 7.8% 43.0% 2902 2993 +91
4 40.9% 39.0% 2304 2414 +110
5 35.0% 6.4% 1778 1835 +57
6 11.0% 0.5% 1363 (1382) . —
7 5.0% 0.1% 968 (1039) ' ■ — ''

Social
Class

Distribution** 
A M

Average Annual Income ($) 
A M Diff

1 ■ — ' 1.0% ■ , ■ -- 4078
2-4 49.0% 92.0% 2407 2809 +402
S-7 51.0% 7.0% 1609 1792 +183

*Mean annual income for infinitely narrow social 
classes the same for A as for M.

**Rounded values. Values to 1 more decimal are for A: 0.32%, 
7.76%, 40.92%, 35.01%, 11.04%, 4.95%; for M 1.00%, 10.2%, 
42.96%, 39.01%, 6.40%, 0.53%, 0.08%.

How can it come about that the use of broad classes is inadequate 
to control the effect of an extraneous variable? Figure 1 shows how this 
can happen. When we separate out all the cases which fall in the broad 
class, we obtain a distribution of the continuous variable that is confined 
between given limits. True, but the shape of this confined (truncated, 
censored) distribution is not given. As Figure 1 shows, this shape 
depends upon where the distribution of the underlying continuous 
variable peaks up.
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Now, at least in the simplest situations, what matters is the mean of 
the underlying continuous variable for all cases falling in the broad class. 
These means, for Group A and Group B, are the centers of gravity of the 
shaded areas in Figure 1. Clearly, these centers of gravity need not be 
the same. Consequently, the groups picked out as belonging to the 
given broad class need not be comparable in terms of the continuous 
variate.

This example is not intended to convince the reader that 
"controlling" variables in broad groups is useless or unwise. It would 
be a serious mistake to come to any such conclusion, since such 
"controlling" is effective, useful, and indispensable. The purpose of, 
and the only appropriate lesson to be learned from, this example is that 
such "control" is far from complete; that its incompleteness can have 
noticeable and apparently significant effects, that control into finer 
classifications can be more effective. (For a possible technique for 
improving the use of broad groups see Appendix X.)

D4. HOW SHALL WE SCALE THE RESULTS?

The first roadblock in the way of applying sensitive techniques of 
analysis is the investigator's reluctance to assign numerical values to 
each class when he faces a classification that entails more than two 
classes. This form of mental paralysis appears to be an anaphylactic 
reaction to successive injections with statements about the importance of 
measurement on proper (not just appropriate) scales. (That anaphylaxis 
has taken place is obvious from the tremendous extent by which the 
reaction exceeds that appropriate to the situation.)

What are the facts? Let us suppose that we have five classes, duly 
arranged in a reliable order. Let there be ideal scale values to attach to 
these classes, values which we do not know, but which certainly 
increase as we go up the order from one class to another. How weird 
might these ideal scores be? Let us suggest some possibilities, bearing 
in mind that we shall lose nothing of importance by fixing the score of 
the lowest class at 0, and that of the highest class at 10. Certainly some 
of the following seven possibilities are rather extreme. If we assess our 
proposed actions in terms of how satisfactorily they will behave in the 
face of each of these possibilities, we should be able to learn a 
considerable amount about what the effects of choosing different actions 
will be.
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GROUP
A

I UNDERLYING 
I CONTINUOUS 
I VARIABLE

C.G

I
1 GROUP

SAME UNDERLYING
CONTINUOUS
VARIABLE

M ID -C LA S S
POINT

BOUNDARIES OF 
BROAD CLASS 
CONSIDERED

Figure 1. Underlying continuous variable replaced by a broad class.
Dependence on center of gravity (C.G.) of continuous variate
for broad class on location of distribution
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A. J - C_ D_ E_ F_ G_

0 0 0 0 0 0 0
1 1 2 5 1 2 3
2 2 7 6 3 5 6
3 9 8 7 6 8 8

10 10 10 10 10 10 10

The “party line" (of the party of mental paralysis) is that we are 
safe if we consider only breakdowns into two classes, for then we can 
choose both the numerical values without loss of generality and, 
therefore, we should combine our five classes into two. Which two? 
The party line sayeth not, and it is reasonable to assume that any way of 
dividing the five among an upper and lower group is entirely 
acceptable. But just what is the consequence of such a reduction in the 
original number of classes? It is just that certain classes are scored with 
one value, which without loss of generality we may take as 0, and all 
others with another, which we may equally well take as 10.

The “party Tine" disapproves most strongly of merely assigning 
equally spaced values, which here would be 0, 2.5, 5, 7.5 and 10, to the 
classes. This is evil • • • because we don't know that it is the ideal thing 
to do! But what are the actual consequences? We clearly need some 
overall measure of agreement and disagreement between the different 
scalings. If we knew the exact frequency with which the various classes 
occurred, it would be natural to calculate (the square of) the correlation 
coefficient (over individuals) between items. In the absence of such 
detailed information, it is natural to treat each class as if it were equally 
frequent, and to calculate formal correlation coefficients between pairs of 
scalings. (In general, assumed equal frequencies will tend to make 
formal correlation coefficients fall somewhere near their lowest possible 
values. This proves further justification for this choice.) Table 8 
presents the square:, of such formal correlation coefficients between each 
of the 5 alternative scorings and each of the 7 suggested ideal scorings.

The natural and fair comparisons are between any single linear 
scoring and a random choice among the dichotomies. For any of the 
ideal scorings considered in the table, the average performance of the 
four dichotomies never comes close to the performance of linear scoring. 
The chance that a randomly chosen dichotomy will do better than the 
linear scoring is never more than 25% for any of these seven ideal 
scorings, and is usually zero. (The doubting reader is encouraged to 
repeat the calculations for his own assumed scorings. However, Robert 
Abelson and I have been looking deeper into such matters. It is easy to

(
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Table 8
Quality of approximation of various dichotomies. as compared

with linear scoring, for seven possible ideal scorings.
(Measured in terms of squared correlation coefficients.)

D i e h o t 0 m i e s
Ideal Linear Exceed-Scoring 1/2 2/3 m 4/5 aver. best worst score ances*
A .20 .35 .58 .92 .51 .92 .20 .70 1/4
B .27 .48 .97 .44 .54 .97 .44 .94 1/4
C .51 .90 .61 .37 .60 .90 .37 .95 0/4
D .68 .56 .59 .42 .54 .68 .42 .84 0/4
E .30 .62 .81 .68 .60 .81 .30 .95 0/4
F .46 .79 .79 .46 .62 .79 .46 .99 0/4
G .57 •79 .67 .41 .61 .79 .41 .97 0/4

^Number of dichotomies doing better than the linear scorine.
expressed as a fraction.

"Ideal" scorings Assumed scorings
A. £ . E_ F_ G_ U1 m . m .  i l l Lin.
0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 5 1 2 3 10 0 0 0 2.5
2 2 7 6 3 5 6 10 10 0 0 5
3 9 8 7 6 8 8 10 10 10 0 7.5
10 10 10 10 10 10 10 10 10 10 10 10

show, for this case of 5 groups, (i) that if the ideal score is ordered in 
the same way as the classes, there cannot be more than one chance in 
four that a random dichotomy does better than the linear scoring, (ii) 
whatever be the ideal scoring, the average unsquared correlation 
coefficient for the dichotomies is less than 4/5 of that for the linear 
scoring. Choosing and calculating other examples cannot alter the 
picture substantially.)

Having been forced to abandon an unspecified dichotomy, the 
last-ditch defenders of the party line will presumably fall back on 
comparing the best dichotomy with linear scoring. Quantitatively, they 
can only claim a case for the two most extreme of the seven possible 
proper scorings considered. This is already not much help. But worse
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is to come. The logic of any such position is nonexistent. If it is right 
for the protagonists of dichotomies to use enough insight into the 
problem to allow them to pick the best of the four dichotomies each 
time, then it is hard to see why those who (in the absence of insight) 
favor linear scoring are not equally entitled to use the same insight to 
choose a more effective modification of linear scoring. When they do 
this, they are almost certain to be ahead of the dichotomizers.

The pragmatic conclusions are, I believe, completely clear. If you 
must not use insight, use linear scoring rather than dichotomizing. If 
you may use insight, and have a reasonable amount to use, use it to 
modify the linear scoring, not just to choose a better dichotomy. In 
terms of getting the most out of the data, dichotomizing is dangerous 
and wasteful.

D5. THE MEASUREMENT OF CLASSIFICATION QUALITY

Ian Campbell Ross has pointed out to me that, since it is customary 
to publish evidence of the reliability of one's classifications, any 
proposal for the use of sensibly narrow classifications is unlikely to be 
widely accepted unless it is accompanied by a suitable way of measuring 
classification quality. What choices have we to consider? Those who 
labor with tests and measurements use reliability measures based upon 
test-retest correlations. If we are prepared to impute a numerical scale 
to our classes, we can easily use a suitable modification as a measure of 
classification-reclassification reliability.

It is natural to seek for a simpler index; perhaps to try to say that, 
while we can admit classes so narrow that independent classification 
will move many individuals into an adjacent class, we dare not use 
classes so narrow as to have any appreciable fractions of reclassifications 
that result from moves by, say, two or more classes. Such a view would 
be doubly wrong, wrong both in detailed fact and in principle. As 
shown in S5, below, efficient classes will be so narrow that a substantial 
fraction of reclassifications will be shifts of two or more classes. 
Moreover, what is far more crucial, using any such criterion would be a 
judgment on a false basis.

The questions:
are the classes narrow enough to make efficient use of classifying 
ability; and
is our classifying ability great enough to make classification useful 
in this particular problem

(1)

(2) I
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are quite distinct and separate questions. The answer to either may be 
"yes" when the other is "no." Thus a policeman's-eye estimate of a 
suspect's weight is surely efficiently utilized when given to the nearest 
pound, but is of no practical use in discriminating among a group of 
teenagers whose spread in weight is only 4 pounds. And the three- 
point scales used by the Gluecks (Glueck and Glueck 1950, pp. 68ff.) are 
surely strong enough to make classification useful in their problem, and 
equally surely far too coarse to make effective use of the classifying 
ability at their disposal.

To answer the question as to whether a classification has enough 
power to be useful, we should make use of some reliability measure. If 
we must have a particular standard method for general use in a wide 
variety of circumstances, we must select a way of assigning scale values 
to the various classes. Especially so long as we are concerned with 
reliability only, the center of gravity of the corresponding area under 
the standard normal distribution seems quite reasonable. Leverett's 
table (Leverett 1947) can be used without interpolation (integer %'s 
being quite close enough) and without accepting any specific views 
about a "true situation."

A particular example is carried through in Table 9 as an 
illustration. (Keeping two decimals in the answer is surely informative 
enough; one decimal may suffice in many instances.) It is important to 
emphasize that this is one of many indices which might be used for this 
purpose. The vast majority of these indices would work satisfactorily. 
And there is no clear theoretical reason for preferring one to another. 
The great reason for the choice of the index illustrated in Table 9 is its 
case of calculation.

To answer the question as to whether a classification has enough 
classes to make efficient use of the classifying power, we need an 
appropriate indication of what that power really is. Reclassification by 
the same judge at another time is not likely to be completely 
independent reclassification. Independent reclassification by judges, 
both of whom belong to a group of judges used to cross-checking one 
another, will give closer agreement than independent reclassification by 
judges who have only read the instructions and criteria. And so on. 
Clearly there is a place for considerable wisdom in determining what 
sort of reclassification fairly indicates the relevant kind of classifying 
power. (The existence of various kinds of reliability is familiar to all 
who measure reliability in mournful numbers.)

A broader gap is of serious importance in many circumstances. An 
infinitely detailed book of infinitely detailed rules can produce near 
perfect classification, but the infinitely small details of the classification
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Table 9

Example of the calculation of an index of 
reclassification consistency or reliability 

using Leverett's 1947 table.

(Observed distribution of 
classification and 
reclassification)

A B C D Total

A 54 12 4 2 72
B 13 65 3 0 81
C 5 3 59 12 79
D 1 0 6 46 53

Total 73 80 72 60 285

(Calculation of 
scores for each class) 

mean of two class n's* 
% ^  

25

Score
no. no. 

A 72.5
(Leverett 1947) 

1.27
212.5 75

B 80.5 29
132 46

C 75.5 26
56.5 20

D 56.5 20

-.27

-.45

-1.40

(Calculation of index itself)

index of
reliability -  54(1.27)2 + 12(1.27)(0.27) + • • • + 6(-.45)(-1.40) + 46(-1.40)2 

72.5(1.27)2 +  80.5(0.27)2 +  75.5(-.45)2 +  56.5(-1.40)2;.5(1.27)2 +  80.5(0.27) +  75.5(-.45)2 +  56.5(-1.40)z
87.22(1.27) +  32.7K.27) -  36.19(-.45) -  65.84(-1.40) 

92.075(1.27) + 21.735(.27) -  33.975(-.45) -  89.1(-1.40)
218.0628 -0 .83260.23245

Mean of classification and reclassification counts. 
(Note: %'s are taken to nearest whole %.)

are almost certain to fail to reflect what is supposed to control the 
classification. Two individuals, whose "true" scale locations are exactly 
the same, may, for example, be classified consistently and repeatedly 
into widely separated classes. In such situations, the adequacy of class 
fineness should not be judged in terms of agreement of classification 
and independent reclassification of the same individual, but rather in 
terms of agreement of classification of "truly equivalent" individuals. 
Direct evidence about this latter sort of agreement will often be too hard 
(if not impossible) to obtain, and it may be appropriate to choose class 
widths on the basis of a subject-matter expert's belief that the agreement 
of classification of equivalent cases is notably less than the agreement of 
classification and reclassification.
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This sort of judgment can be reasonably good evidence that it is 
not worthwhile to go to smaller classes, while, as is abundantly 
documented in S5 below, an observed agreement of only 50% for 
independent reclassification into the more finely divided classes is 
evidence not that the classification is too fine but, rather, that finer 
division may well be quite useful.

D6. THE CONNECTION BETWEEN SCALE TYPES AND 
STATISTICS

We have assigned scale values to ordered classifications in a way 
that some would judge to be blithe and arbitrary. So long as we only 
look at the resulting numbers there will be little conflict. But when we 
come to combine and dissect them, to analyze them in as wide a variety 
of manners as seems to prove useful, then there will be objection. For 
some will have read S. S. Steven's discourses on how each individual 
statistical procedure, more specifically each individual summary statistic, 
should only be used on data of a suitably high scale type (Stevens: 1946, 
1951, 1955, 1959). As Luce (1959, p. 84) summarizes the matter:

" • • - limitations that the scale type places upon the statistics 
one may sensibly employ. If the interpretation of a particular 
statistic or statistical test is altered when admissible scale 
transformations are applied, then our substantive conclusions will 
depend on which arbitrary representation we have used in 
making our calculations. Most scientists, when they understand 
the problem, feel that they should shun such statistics and rely 
only upon those that exhibit the appropriate invariances for the 
scale type at hand. Both the geometric and the arithmetic means 
are legitimate in this sense for ratio scales (unit arbitrary), only 
the latter is legitimate for interval scales (unit and zero arbitrary), 
and neither for ordinal scales. For fuller discussions, see Stevens: 
1946, 1951, 1955; for a somewhat less strict interpretation of the 
conclusions, see Mosteller, 1958."

The view thus summarized is a dangerous one. If generally 
adopted it would not only lead to inefficient analysis of data, but it 
would also lead to failure to give any answer at all to questions whose 
answers are perfectly good, though slightly approximate. All this loss 
for essentially no gain. (We return at the end of the next section to an 
analysis of why this seemingly logical argument can be so misleading.)
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More precisely stated, the limitations discussed by Luce do not 
control which statistics may "sensibly" be used, but only which ones 
may "puristically" be used. Consider an individual physical or chemical 
measuring device of any specific sort. It will have systematic errors of 
calibration, like all individual measuring devices, which will depend 
upon the part of its scale in which a measurement falls. Suppose 
further that, as is so frequently the case, these systematic errors are 
modest, rather than minute, and vary systematically but slowly with 
location on the scale, and that the results of using this device are to be 
the subject of statistical analysis. What measures of typical value and 
spread dare we use?

The measurements are not on an interval scale, in Steven's sense. 
For the results of another individual measuring device, separately 
calibrated and making quite different systematic errors, would have the 
same quality and validity as those obtained with this particular 
instrument. And the relation between these two equivalent scales is not 
of the form z — a + /3y. In Steven's eyes, at least as interpreted by 
others, a scale that is not an interval scale is only an ordinal scale. To 
such eyes it is only sensible in such a case to use those statistics which 
are invariant, or better, covariant, under all monotone increasing 
transformations.

If we have a sample of 10 such measurements, this principle would 
forbid us to calculate the mean of all 10, or the mean of the central 6, 
etc., because means, truncated means, and the like, are not covariant 
under all monotone transformations. Stevens would, of course, allow us 
to use the median of the sample. To use the median may be to lose a 
noticeable amount of efficiency, but one at least gains some advantages 
in return. Comparing the location of two populations in terms of the 
medians of two corresponding samples is not impractical, may indeed 
often be advantageous, though it may also be wasteful.

What if we want to compare the spreads of two populations in 
terms of the two corresponding samples? It is natural to compute a 
measure of spread for each sample, and then to compare them. There 
appears to be a wide choice of measures of spread, including:

the standard deviation of an entire sample;
the standard deviation of a truncated (censored) sample;
the range of an entire sample;
the range of a truncated (censored) sample;
the interquartile deviation of the entire sample.
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Surely most of these will serve, even if some may not. Not in Steven's 
eyes. None of these measures of spread is covariant under all monotone 
increasing transformations; indeed it is easy to see that no measure of 
spread is so covariant. Thus the Stevens view leads to abandoning the 
question as to whether two populations have the same spread.

If our measurements were on a scale of which the most that could 
be rightly said was that it was defined only up to a monotone increasing 
transformation, that it was indeed merely ordinal, then this conclusion 
would be quite correct. To compare the spreads of two populations 
measured on a merely ordinal scale is senseless if the two populations 
do not have a very substantial overlap. The question must be "If a scale 
is not an interval scale, must it be merely ordinal?".

D7. THE MEASUREMENT OF TEMPERATURE

Let us turn to the history of physics, to the days before the 
development of the thermodynamic scale of temperature. How were 
temperatures measured? With one of any of several kinds of 
thermometers. (In the early days these would have been liquid-in-glass 
thermometers with different liquids enclosed in different kinds of glass. 
In later days they would have been gas thermometers using different 
gasses at different densities.) Would there be agreement between the 
different kinds of thermometers? Approximate agreement, yes; exact 
agreement, certainly not. Would any one kind have sufficient 
theoretical support to be chosen as the standard over all others? No. 
Clearly temperature was not measured on an interval scale in those 
days. But equally clearly, it made good sense to compare the spreads of 
two populations of measured temperatures, and to calculate the 
arithmetic mean of a group of temperatures. Temperature was not 
measured on a mere ordinal scale. It was measured on a scale which, 
though not an interval scale, was still quite well defined.

Temperature in those days is a clear example. Today a wide 
variety of other measurements are less clear examples. Not every 
quantity measured on an ordinal scale that is not an interval scale is 
such as to deserve the calculation of a sample mean or a measure of 
sample spread. But there are many that do deserve treatment of such 
quality, and it would be wasteful not to take advantage of the 
opportunity to learn more about many things by making such 
calculations.

As described by Luce, the Stevens position seems cogent and 
logical. Yet we have indicated how it fails. What are the reasons for its 
failure? The two most fundamental seem to stem from:
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(1) A lack of adequate recognition that knowledge is approximate, 
not precise.

(2) A lack of appreciation that all useful conclusions are not 
fundamental.

From (1) comes the failure to recognize that many scales, such as the 
early scales of temperature, are approximate interval scales. Almost all 
liquid-in-glass thermometers show general agreement as to a 
temperature scale. Large differences in variability between two 
populations of temperatures remain large on all scales. And only large 
differences can be detected reliably with samples of reasonable size. 
Here the approximation to an interval scale was close.

Many assignments of scale values to ordered classifications, 
assignments which may be either equally spaced or more carefully or 
appropriately chosen, produce approximate interval scales, where the 
approximation is much rougher than for old-time temperature. But the 
approximation is still there; arithmetic means and measures of spread 
can be very useful, provided they are interpreted with proper caution. 
It is here that (2) enters. If a finding that "variance increases as we 
move up the scale" is only useful if it can be taken as a contribution to 
the fundamentals of psychology, then we must be very careful about 
making such statements. But if it serves to guide us, perhaps in the 
design of an experiment, perhaps in the choice of a method of statistical 
analysis, perhaps in the directions in which we seek new or modified 
theories whose confirmation we realize must rest on approximate 
results, such a statement, although resting on a wholly approximate 
foundation, may be very useful.

One reason for the feelings of those who believe that precise scale 
type should limit the use of statistics may well be the practice, entered 
into by too many, of regarding statistical procedures as a sanctification 
and a final stamp of approval. Results based on approximate 
foundations must be used with the underlying approximation in mind. 
Those who seek certainty rather than truth will try to avoid this fact. 
But what knowledge is not ultimately based on some approximation? 
And what progress has been made, except with the use of such 
knowledge?

If a crudely assigned scale, perhaps followed by a handy 
transformation, leads to data which fits nicely into one of the additive 
patterns associated with the analysis of variance, yielding only very 
small interactions, then an empirical fact has been discovered. 
Arithmetic means and measures of spread will have been calculated 
from values of which it could not be confidently asserted in advance 
that they deserved such treatment. But the results will have shown, by 
their clear additive behavior, that they did deserve it.
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An oversimplified and overpurified view of what measurements 
are like cannot be allowed to dictate how data is to be analyzed. In 
particular, it may be reasonable to apply relatively sophisticated analyses 
to equally spaced values (or more carefully chosen standard scalings) 
which have been “arbitrarily" assigned to an ordered classification.

E. MODES OF EXPRESSION

The title of this part was chosen advisedly with the intention of 
avoiding “loaded" words. The idea it is intended to convey, an idea 
which appears to me to be correct, is that we have decided what aspects 
of which portions of the data we wish to express numerically, and we 
have now to choose a mode of numerical expression, one which will be 
most useful to us for our purposes of analysis. We are, at this point, 
trying to tune our ears to hear what the data are trying to say to us. 
Good data try, much harder than most of us realize, to tell us what is 
going on. We need receptive ears, prepared to hear Scriabin when we 
expected Scarlatti, but not insisting that what we hear must be either.

In this tuning process, graphical techniques can be of great service, 
especially when we draw alternative crude graphs to help us listen 
flexibly, rather than single, definitive, professional graphs, such as a 
“deaf-to-data“ investigator might plan before seeing the data. We shall 
give but little attention to this graphical aspect of analysis here, only a 
small fraction of the amount it deserves.

But what are we really doing when we plot and replot the same 
data on various kinds of graph paper with differently spaced rulings? 
We are experimenting with different modes of expression for the two 
variables represented along the axes. When will we be likely to feel the 
happiest? Probably when we find scales such that the “curves" are 
straight lines. When should we feel happiest? Probably when we find 
scales such that the “curves" for y against a: for two different portions 
of the data (which may correspond to two countries, two occupations, 
two education levels, etc.) are parallel straight lines. For in this latter 
case the description of what we have found is surely as simple as 
possible. Our response, measured vertically, increases in fixed 
proportion to increases in our explanatory variable, which is measured 
horizontally, and the differences between portions (countries, 
occupations, educations, etc.) are described by a single number, the 
vertical ^distance between the curves. (The simplicity of the graphical 
picture is reflected in the simplicity of the numerical description: one
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number for the (common) slope of the lines and one for the shift 
between them.)

Described in such terms, such an ideal state sounds simple, so 
simple as to be unuseful, unconnected with the higher principles of 
"proper" measurement, even perhaps simple-minded. We shall see 
whether this is so.

El. MONASTIC MEASUREMENT

Just as some have done for mathematics, measurement may be 
divided into "monastic" and "secular". The analogy of the "high 
church" view, which we naturally call the "high monastery" view, is 
surely that provided by Norman R. Campbell, whose two books 
(Campbell 1920 and reissued 1958, 1928) have been the source, 
proximate or remote, of many fears that assignment of numbers, many 
of which would have been perfectly useful, were not "measurements". 
These books contain many deep insights, both into classical physics as a 
science, and into measurement as classical physics practiced it, and still 
practices it. Their intellectual authority is obvious, their message is 
clearly meaningful; we must beware only to be sure that we are affected 
and guided by the true substance of Campbell's inquiries rather than by 
superficial considerations (among which may be included some of 
Campbell's own views and statements).

We need here only to be concerned with his idea of fundamental 
measurement, which hangs upon the twin hooks of comparison and 
concatenation. He assumes of some characteristic of "objects" that:

(1) we may determine for each pair of "objects", A and B, whether 
A >  B, A — B OT A < B)

(2) we may "combine" each pair of "objects" to form a new object, 
A + B;and

(3) that these comparisons and concatenations are intra- and inter
related in suitably axiomatized ways.

Leaving aside Campbell's treatment of error, which leaves me (I believe 
both as a statistician and as an ex-physical scientist) quite unsatisfied, 
there is little doubt that measurement which fulfills Campbell's 
requirements, exactly or approximately, is measurement which deserves 
the highest social status, the highest prestige that we can today imagine.
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Certain remarks are of importance at this point. Campbell says 
(1928, pp. 41, 42):

"Now the devising of methods for judging >  is the chief 
problem of the experimental art. For the range of possible 
methods is enormous; any effect, however remote and indirect, of 
a change in a magnitude [i.e., in the characteristic being measured 
jwt] provides a possible method; and the most ingenious 
experimenter is he who can see ways of using very remote 
effects."

In terms of explanatory variables and responses, this translates into: "So 
long as an increase in the explanatory variable increases the response, 
that response is a proper candidate for use in measuring the explanatory 
variable: the best candidate will be the most sensitive response." In 
making this translation, we have made a analogy between Campbellian 
measurement and explanation of response which is not the one that is 
likely to seem most natural, and we must explain both the analogy and 
our choice of it.

Suppose that we are studying the combined effects of education, 
reference groups, work groups, and family groups on political opinions. 
The more or less normal approach would seem to run as follows:

(1) first let us decide how to measure political opinions, (after all this 
is what we are studying);

(2) then let us try to describe how political opinions (thus measured) 
vary with the factors with which we are concerned.

Is this approach sound? It may appear so now, but let us study its 
soundness by setting up a physical analogy. We shall soon wince.

E2. QUADRUPLET WEIGHING

Let it be supposed that we have brass weights, gold-plated weights, 
aluminum weights and quartz weights. Let it further be supposed that 
we wish to study the weights of combinations made up of one brass 
weight, one gold-plated weight, one aluminum weight and one quartz 
weight (strictly analogous to one kind of education, one reference 
group, one work group, one family group). Let us suppose that one 
member of our research team has seen the type of letter scale (very 
ingenious, indeed) where a plate hangs from a pivot in the plate, a 
suspension link that is also, a pointer, as in Figure 2. As heavier objects 
are attached to such a scale, the plate balances in different positions, and
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Figure 2. Simple Letter Scale

the graduations on the plate move past the pointer. To weigh in 
ordinary terms, as in grams, ounces or pounds, these graduations must 
be unequally spaced. Let us suppose further that this member of the 
research team then builds a weighing device of this sort of the best 
workmanship, employing kinematic design, jewelled contacts, and the 
best knife edges, and that he provides a uniformly calibrated scale over 
which the pointer is to travel.

What now happens when we start weighing our quadruples (one 
weight each; brass, gold-plated, aluminum, quartz)? We get numbers, 
highly precise numbers. And these numbers respond in reasonable 
ways when we exchange one quartz weight for another quartz weight; 
they always change in the right direction. But there is most serious 
interaction! Changing from quartz weight Qi to quartz weight Q2 has a 
different numerical effect when brass weight Bi, gold-plated weight Gi, 
and aluminum weight Ai are present than when brass weight B2, gold- 
plated weight G2 and aluminum weight A 2 are present. What should 
we do?

By following the analogy of what might be considered the 
standard approach of factorial experiment, we find ourselves in a 
complex and troubling situation. And we secretly know that we could 
have avoided most of this difficulty by choosing a better scale of 
"weight" to begin with. It would be desirable to avoid such situations 
in every instance. But we usually (or perhaps only often) lack the secret



knowledge which could have saved us in this special instance. In 
instances resembling the influences-on-political-opinion example we are 
almost sure to lack such secret knowledge when we begin. Thus we 
must be prepared to encounter such troublesome and complex 
situations. We must study the possible ways out of difficulty, and be 
prepared to choose and use one or more of them in many situations.

E3. WAYSOUT
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When working with weight quadruples in this way, there may be 
three alternatives:

(1) We may choose to represent our arbitrarily-scaled response as a 
sufficiently complex function of the constituent objects (where 
heavy least-squares computations become very probable).

(2) If we have enough diversity of weights, we may forget our 
quantitative response measures, except as indicators of greater or 
less, and go back to the first principles of Campbellian 
measurement. (After many rather tedious comparative weighings, 
we will reconstruct a conventional scale of weight, providing at 
the same time a calibration for our weighing instrument.)

(3) We may try various modifications of the mode of expressing our 
response, trying perhaps first the logarithm, the square root, and 
the square of the numbers provided by our colleague's scale, and 
then being guided in selecting new trial modes by such 
considerations as reduction of apparent interactions. (We are not 
likely to reach perfection in this way, but we are likely to greatly 
improve the behavior and understandability of our results. It 
might well be that they would become so clear as to suggest an 
approach to a physical theory of our measuring instrument.)

What are the pros and cons of these three ways out? To follow the first 
is clearly a counsel of desperation. To follow the second is a counsel of 
perfection. To follow the third is a counsel of empiricism and 
pragmatism. (A most significant aspect of the third way out is the great 
reduction in the labor associated with either of the other two if, as an 
initial step, the third is carried out with even partial success.)

In the weighing situation, we might hope to be wise enough to 
follow the counsel of perfection (preferably easing the rigors of the 
corresponding labor by taking a few steps down the third path first). 
But what of the opinion situation to which quadruplet weighing was an 
analogy? Various properties of the weighing situation are unlikely to
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carry over. We are unlikely to be able to make highly precise 
comparisons, since sampling and questioning fluctuations will be 
relatively much larger than the instrumental fluctuations of a high 
grade weighing instrument. And we are not likely to have as free 
manipulation of the separate factors. (Formal education comes, for 
almost everyone, in standard doses, while brass weights could be made 
up in any desired size.) As a result of these and other considerations, 
the second way out is almost certain to be closed. We must then decide 
between the first and third ways. Since the third way, carried out at 
least part way, offers a labor-saving approach to the first way, there can 
be little doubt that it is almost always the best way to begin.

Thus the best beginning is almost certain to be the pragmatic, 
empirical one of trying different modes of expression in search of as 
much simplicity as we can readily obtain. Simplicity means: "If you 
change the quartz weight from Qi to Q2 [if you change education from 
El to E2] the numerical change is as nearly as possible the same 
whatever brass weights, gold-plated weights, and aluminum weights are 
held constant [whatever reference groups, work groups and family 
groups are held constant]." When we deal with quadruplet weighing 
these numerical changes can be made extremely closely the same. 
When we deal with political-opinion formation, extreme closeness of 
agreement may not be attainable (though, for all we know today, it may 
be attainable). But if it isn't? There is still advantage in obtaining 
whatever simplicity we can by wise choice of mode of expression before 
allowing ourselves to be forced to deal with complex descriptions.

E4. SOME COMMENTS

For the case of two or more factors it is clear that one can describe 
in axiomatic form an approach to the joint measurement of the factors 
which would take over all the basic ideas and techniques of Campbell's 
treatment of the measurement of freely concatenable objects. And there 
would be no reason for giving such joint measurement lower social 
status or lower prestige than Campbell's fundamental measurement. 
The choice of a mode of expression which avoids all interaction, if this 
be possible, is the road to the best measurement from the high 
monastery view. How could it be more blessed?

One interesting change has taken place without explicit remark. 
We came in thinking we were to measure political opinion. We leave 
measuring the strength of the forces which moW political opinion 
(specifically those of education, of the reference group, of the work 
group, of the family group). Our measurements of political opinion are

I
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cast in the mode which helps us in measuring the forces which mold it. 
We were led to this shift by the analogies with the situation in physical 
science as presented by Campbell, and driven to it by the logical 
exigencies of the situation. But it is not to the disadvantage of 
behavioral science that we have made this shift. More can, and will be, 
made from measurements of molding forces than from measurements of 
effects.

There is another point of interest and importance. Certain simple 
ways of changing the expression of a quantity should not be thought of 
as changing the mode. If expressing a response in square feet leads to 
an additive response, the same will be true when the response is 
expressed in square inches. Since one square foot is exactly 144 square 
inches, each expression in square inches will use a number exactly 144 
times larger than that involved in the expression of the same quantity 
in square feet. If the one is additive, so is the other.

Similar remarks apply to expression in feet or in inches, and to 
latitude in degrees west of Greenwich or degrees west of Washington. 
Changes which involve adding the same constant to the numbers 
expressing all quantities, or multiplying all these numbers by some 
other constant, or both, change only the expression, not the mode of 
expression.

If we so desire, we can always readjust our expressions to have 
their zero at a convenient place by choosing an appropriate additive 
constant. Within one and the same mode of expression we can do this, 
and still be free to choose a multiplicative constant to meet one further 
requirement if we wish. Both kinds of freedom are convenient, and are 
frequently used.

E5. EXPRESSING COUNTED FRACTIONS

Counting sheep and goats, and reporting on the relative number of 
goats, still typifies much of behavioral science. And it is to be expected 
that this will continue to be so. Indeed, it should. As a consequence, 
the behavioral sciences have a very strong continuing interest in modes 
of expression of counted fractions, although they may appear to be 
unaware of this interest.

Are the conventional modes good ones? If not, in what direction 
should we go for better modes? For help in answering these questions 
we may look both to our own intuitions and to the philosophy built up 
in the previous sections. There is no doubt about which mode of 
expression is conventional, it is expression as a percentage, or, 
equivalently, as a decimal fraction. (On occasion, additional useful
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information may be provided by giving the actual counts as common 
fractions, but these rarely enter further analysis as such.) What can we 
say against this mode?

First, our experience-molded intuitions tell us clearly that it is not 
a mode where equal numerical changes correspond to equally important 
changes. A change of 5% is not equally important across the scale. The 
difference, for almost all purposes except voting, between 1% and 6% is 
very much more important than the difference between 48% and 53%. 
Once we break down our idea that "percentages are the only proper 
mode," we come to feel quite clearly that we need to open out the scale 
for extreme percentages, as compared with percentages near 50%.

Second, we may draw a general inference from our discussion of 
the last few sections. If there are many possible factors to be changed, 
each with an effect which should be numerically nearly constant, we are 
likely to be in trouble if our scale has ends. For if we can move almost 
to the end of a scale, and still have a relevant factor which can change, 
one which should take us still further, then we may be stuck, may be 
unable to measure this factor as having its rightful effect, only and 
exactly because the scale ends. As a general consequence we should 
expect that scales which have a finite range are likely to give us trouble, 
unless all our observations tend to be safely away from any ends which 
are present. Hence the fact that percentages go only from one end (at 
0%) to another (at 100%) suggests that, whenever even moderately 
extreme percentages are likely to occur, we are likely to have to "stretch 
the tails", while, if really extreme percentages occur, we may have to 
stretch hard enough so that there are no ends (at any finite values).

Third, experience with a rather wide variety of relative-number 
problems, varying from "how many were affected at this dose" to "how 
many of the pebbles are quartz", indicates that further analysis proceeds 
more smoothly and thoroughly when other modes of expression are 
used instead of "percentages".

Three modes with more extended tails are in more or less common 
use in various fields. While some have tried to provide deep 
philosophical reasons why one or another must be the correct one, all 
such discussion has proved ultimately unconvincing. These three 
modes are introduced here on the following reasons:

(1) in comparison with percentages, each stretches the tails (as 
compared to the middle);

(2) they differ enough among themselves that a choice among them 
is sometimes worth the effort;
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(3) they have worked relatively well in many situations;

(4) they are commercially available (in comparable form) on 
convenient graph paper.

These three are not sacred, only useful. Their mathematical expressions 
are not simple in appearance, but tables and graph papers are freely 
available. (The proof of the pudding is in its eating, not its recipe.)

In order of successively longer tails, the names applied to the 
result of expressing relative numbers in these terms are:

(1) "anglits" ("sinits" or just "angles"), for which we see the 
following graph sheet labeled "Arc-sine transformation ruling" 
and numbered 32, 452, (31, 452 on thin paper). Figure 3.

(2) "normits" (or "probits") for which we see the then following 
graph sheet labelled "Normal ruling" and numbered 32, 451, (31, 
451 on thin paper). Figure 4.

(3) "logits" for which we see the third following graph sheet 
labelled "Logistic ruling" and numbered 32, 450, (31, 450 on thin 
paper). Figure 5.

In my experience, much valuable insight into the behavior of bodies of 
data can be gained from the use of such sheets of graph paper, 
sometimes assisted by the use of tracing paper (or other means) to take 
off distances for replotting other graphs. Much of this insight can be 
gained, together with certain additions, by manipulating the 
corresponding numerical values.

To realize all these advantages we need not know the mathematical 
definitions of these modes of expression of relative numbers. We need 
only know how to read the scale on the graph paper, or how to enter 
and leave the tables, so that we may plot, or convert, our raw 
percentages. We are using these modes of expression as empirically 
useful tools, not as theoretically important constructs. If we can see that 
they serve our purposes, we shall certainly use them. If we can see that 
they do not serve our purposes, we shall use other modes without 
sadness or guilt. They are a simple tool.

E6. SOME NUMERICAL VALUES

We noticed earlier (in E4) that addition of a chosen constant, and 
multiplication by another would not take us out of a given mode of 
expression. The point of symmetry of a counted fraction is surely 50%,
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and it is thus natural to represent 50% by zero, 
mode, the simplest such expression is

Within the classical

I (1) 2 '(fraction) — 1 — (fraction) — (complementary fraction)

I

which is -1  for 0%, 0 for 50%, and +1 for 100%. It will be instructive to 
choose additive and multiplicative constants for the other modes so that 
the resulting expressions match expression (1) in some sense. Matching 
at 0% or 100% is impossible, since two of the modes give —oo for 0% and 
+«> for 100%, so the best we can do is to match behavior near 50%.

Table 10 provides a brief table of values relating % to (1), which we 
will call doubled fractions,” and to center-matched expressions 
representing the three tail-stretching modes.

The values in Table 10 have been rounded to 2 decimals. Some 
will feel that this is ruthless. We shall see (in Section S3) that it is 
reasonable and gentle.

The effect of rounding must be judged by comparison with the 
fluctuation which was present before rounding. The least fluctuation 
that is commonly appropriate for a fraction is that for simple random 
binomial sampling. (Wisely stratified samples can, and indeed, on 
occasion, do have smaller fluctuations, but such situations are both 
infrequent and usually the result of careful planning. The results of 
most samples or "samples" show a greater variability than do the 
corresponding results for simple random samples. See, e.g., Kish 1957. 
Thus simple random variability is usually the least that needs to be 
feared.) For each of the modes of expression of fractions given in Table 
10, we may take

simple random sample variance •- numerator 
sample size

with the numerators given in Table 11.
The comparison of rounding variance with random sampling 

variance is made in S3 below. Insofar as anglits, normits, or logits are 
concerned, two decimals will surely suffice if the samples are not larger 
than, say, 1200, and will almost surely suffice for samples of sizes up to, 
say, 6000. Larger samples tend to have greater variability than that 
which corresponds to simple random sampling, so that two decimals 
will continue to serve in most cases. There may very occasionally be 
instances when more than two decimals will be appropriate. Table 36 
in U4, below, gives values of anglits, normits, and logits to more 
decimal places, for use when necessary.
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Table 10
Comparative values of various modes of expression for fractions for even %'s.
+ (1) (2) (3) (4) - + (1) (2) (3) (4) -

50% .00 .00 .00 .00 50% 85% .70 .78 .83 .86 15%
51 .02 .02 .02 .02 49 86 .72 .80 .86 .91 14
52 .04 .04 .04 .04 48 87 .74 .83 .90 .95 13
53 .06 .06 .06 .06 47 88 .76 .86 .94 1.00 12
54 .08 .08 .08 .08 46 89 .78 .89 .98 1.05 11
55% .10 .10 .10 .10 45% 90% .80 .93 1.03 1.10 10%
56 .12 .12 .12 .12 44 90.5 .81 .94 1.05 1.13 9.5
57 .14 .14 .14 .14 43 91.0 .82 .96 1.07 1.16 9.0
58 .16 .16 .16 .16 42 91.5 .83 .98 1.09 1.19 8.5
59 .18 .18 .18 .18 41 92.0 .84 1.00 1.12 1.22 8.0
60% .20 .20 .20 .20 40% 92.5 .85 1.02 1.15 1.26 7.5
61 .22 .22 .22 .22 39 93.0 .86 1.04 1.18 1.29 7.0
62 .24 .24 .24 .24 38 93.5 .87 1.06 1.21 1.33 6.5
63 .26 .26 .26 .27 37 94.0 .88 1.08 1.24 1.37 6.0
64 .28 .28 .29 .29 36 94.5 .89 1.10 1.28 1.42 5.5
65% .30 .30 .31 .31 35% 95% .90 1.12 1.31 1.47 5%
66 .32 .33 .33 .33 34 95.5 .91 1.14 1.35 1.53 4.5
67 .34 .35 .35 .35 33 96.0 .92 1.17 1.40 1.59 4.0
68 .36 .37 .37 .38 32 96.5 .93 1.19 1.45 1.65 3.5
69 .38 .39 .40 .40 31 97.0 .94 1.22 1.50 1.74 3.0
70% .40 .41 .42 .42 30% 97.2 .94 1.23 1.53 1.77 2.8
71 .42 .43 .44 .45 29 97.4 .95 1.25 1.55 1.81 2.6
72 .44 .46 .46 .47 28 97.6 .95 1.26 1.58 1.85 2.4
73 .46 .48 .49 .50 27 97.8 .96 1.27 1.61 1.90 2.2
74 .48 .50 .51 .52 26 98.0 .96 1.29 1.64 1.95 2%
75% .50 .52 .54 .55 25% 98.2 .96 1.30 1.67 2.00 1.8
76 .52 .55 .56 .58 24 98.4 .97 1.32 1.71 2.06 1.6
77 .54 .57 .58 .60 23 98.6 .97 1.33 1.75 2.13 1.4
78 .56 .59 .61 .63 22 98.8 .98 1.35 1.80 2.21 1.2
79 ;58 .62 .64 .66 21 99.0 .98 1.37 1.86 2.30 1%
80% .60 .64 .67 .69 20% 99.2 .98 1.39 1.92 2.41 0.8
81 .62 .67 .70 .72 19 99.4 .99 1.41 2.00 2.55 0.6
82 .64 .69 .73 .76 18 99.6 .99 1.44 2.13 2.76 0.4
83 .66 .72 .76 .79 17 99.8 1.00 1.48 2.30 3.11 0.2
84 .68 .75 .79 .83 16 100% 1.00 1.57 oo OO 0%

(1) doubled fraction — 2(fraction) — 1
(2) — anglit of fraction

(3) — modified normit modified probit

(4) -  half-logit- j

V? (normit of fraction)

(—5 + probit of fraction)

(logit of fraction)



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 2 6 1

Table 11
Values of factor A in "variance ~  A i n where n 
is the (simple random) sample size, for the modes 

of expression of Table 10
% (1) (2) (3) (4) %

50% 1.00 1.0 1.0 1.00 50%
60 .96 1.0 1.0 1.0 40
70 .84 1.0 1.1 1.2 30
75 .75 1.0 1.2 1.3 25
80 .64 1.0 1.3 1.5 20
82% .59 1.0 1.4 1.7 18%
84 .54 1.0 1.4 1.9 16
86 .48 1.0 1.5 2.1 14
88 .42 1.0 1.7 2.4 12
90 .36 1.0 1.9 2.8 10
91% .33 1.0 2.0 3.1 9%
92 .29 1.0 2.1 3.4 8
93 .26 1.0 2.3 3.8 7
94 .23 1.0 2.5 4.4 6
95% .19 1.0 2.8 5.3 5%
95.5 .17 1.0 3.0 5.8 4.5
96 .15 1.0 3.3 6.5 4.0
96.5 .14 1.0 3.6 7.4 3.5
97 .12 1.0 4.0 8.6 3.0
97.2 .11 1.0 4.2 9.2 2.8
97.4 .10 1.0 4.4 9.9 2.6
97.6 .094 1.0 4.6 11. 2.4
97.8 .086 1.0 5.0 12. 2.2
98% .078 !.0 5.4 13. 2.0
98.2 .071 1.0 5.8 14. 1.8
98.4 .063 1.0 6.3 16. 1.6
98.6 .055 1.0 7.0 18. 1.4
98.8 .048 1.0 7.7 21. 1.2
99% .040 1.0 8.9 25. 1.0
99.2 .032 1.0 11. 32. 0.8
99.4 .024 1.0 13. 42. 0.6
99.6 .016 1.0 18. 63. 0.4
99.8 .0080 1.0 32. 125. 0.2
99.9 .0040 1.0 56. 250. 0.1

Curiously enough it is only for column (1), "doubled fractions," an 
instance of the classical mode of expression for counted fractions, that 
two decimals may not entirely suffice for samples of less than 1000.
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Greater precision for this expression is, however, only useful for 
fractions quite close to 0 or 1.

E7. AN EXAMPLE FROM CLINICAL PSYCHOLOGY

Our first example is drawn from Volume 4 of Studies in Social 
Psychology in World War 11 (Stouffer et al. 1950), where pages 512 to 538 
present tables of frequencies of both individual answers and 
summarized scores for a variety of questions applied to 3,501 white 
enlisted men with no overseas service, and to 563 psychoneutrotic 
patients in Army hospitals. Table 12 presents the tables for four of the

Table 12
Comparison of score distributions for controls and 
psychoneurotics. (From Vol. 4 of Studies in Social 

Psychology in World War II, Stouffer et al. 
1950, pp. 526-531.)

10. Sociability 12. Acceptance of solider role

Neurotic
Patients

Cross
Section (Difference)

Neurotic
Patients

Cross
Section (Difference)

(original 2x4 tables)
Summary Summary

Score (%) (%) (%) Score (%) (%) (%)

(3) 22 43% (21) (4,3) 16% 46% (30)
(2) 33 41 (8) (2) 25 23 (-2)
(1) 26 12 (-14) (1) 32 20 (-12)
(0) 19 4 (-15) (0) 27 11 (-16)

(cumulative %'s)
Break at (%) (%) {%) Break at (%) (%) (%)

2.5 22 43 (21) 2.5 16 46 (30)
1.5 55 84 (29) 1.5 41 69 (28)
0.5 81 96 (15) 0.5 73 89 (16)

(cumulative anglits)
Break at (<) (<) (<) Break at (<) (<) (<)

2.5 -.59 -.14 (.45) 2.5 -.75 -.08 (.67)
1.5 .10 .75 (.65) 1.5 -.18 .39 (.57)
0.5 .67 1.17 (.50) 0.5 .48 .89 (.41)

Mean ■: .53 ■ .54

(%)

(<)
1 fraction, or differences of fractions, expressed in %, or difference in %.
■ fraction, or difference of fractions, expressed in anglits, dr difference in anglits (cp.

Table 10).



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 2 6 3

Table 12 (Cont'd)

Neurotic Cross Neurotic Cross
Patients Section (Difference) Patients Section (Difference

(original 2X4 tables)
Summary Summary

Score (%) (%) (%) Score (%) (%) (%)
(10,9,8) 29% 53% (-24) 19 9 25 (16)

(7,6) 25 28 (3) 18-16 29 43 (14)
(5,4) 23 ' 13 (10) 15-12 31 25 (-6)

(3,2,1,0) 23 6 (17) 11-0 31 ; 7 (-24)

(cumulative %'s)
Break at (%) (%) (%) Break at (%) (%) (%)

7.5 29 53 (24) 18.5 9 25 (16)
5.5 54 81 (33) 15.5 38 68 (30)
3.5 77 94 (17) 11.5 69 93 (4)

(cumulative anglits)
Break at (<) « ) (<) Break at (<) « ) (<)

7.5 -.43 .06 (.49) 18.5 -.96 -.52 (.44)
5.5 .08 .67 (.59) 15.5 -.24 +.37 (.61)
3.5 .57 1.08 (.51) 11.5 +.39 1.04 (.65)

Mean .53 .57

(%) — fraction, or difference of fractions, expressed in %, or difference in %.\ / *' • • •/ wa A a a w  w A AAMVilvAlw/ 111 /O/ WX UIXXtTXdlvw 111 t0%

(<) “  fraction, or difference of fractions, expressed in anglits, or difference in anglits (cp. 
Table 10).

summarized scores and the results of converting their entries first into 
cumulative percentages and then into anglits. It is quite difficult, 
though perhaps possible, to examine the original tables carefully 
enough to detect the lawfulness and order that is actually present. It is 
certainly not possible to examine them closely enough to detect any 
possible deviations from the overall pattern.

The first step in getting a more quantitative hold upon the 
differences between cross-section and psychoneurotic patients is to focus 
attention not on the score values which fall in each of the 4 cells, but 
instead upon the three partitions or breaks which define these cells. The 
second part of the table, accordingly, lists cumulated %'s against breaks. 
(The %'s were cumulated downward from the top in this instance; 
cumulating up from the bottom would change only the signs of the 
anglits and their differences.) These cumulative %'s are then turned
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into anglits with the aid of Table 9, with the result shown in the lower 
third of Table 12. The difference in anglits is everywhere nearly the 
same, both within and across tables, the greatest deviation from a 
differences of .53 being ±.13. This may be compared with a random 
sampling standard deviation of ±  .04, which is obtained as the square 
root of the random sampling variance of

3501 563 -  .0020

Since the survey almost certainly involved some clustering, the 
observed deviations from scale to scale are plausibly consistent with no 
true differences.

The results for these four questionnaire scales may be quite 
completely summarized as being “an apparent shift of about 0.54 in 
anglit between the cross-section population and the psychoneurotic 
population." It is plausible to believe that this result is independent of 
the actual breaks used to form the given cells. (If the raw data were 
available, it would be easy to use all possible breaks, rather than only 
those given in Studies in Social Psychology in World War II, thus 
strenghtening the evidence on this point considerably. See U3 below 
for an example involving many breaks.)

It is probably worth remarking that the other items and scales also 
tended to show shift by an angle approximately constant for each item 
or scale, but differing from scale to scale. This is shown in Table 13.

This broader summary shows clearly the general extent of shift for 
each score, and also reveals some indication of whether the shift tends 
to vary systematically with the break chosen. In the writer's judgment, 
much insight into the data has been gained by conversion from cell 
percentages to cumulative anglits.

E8. AN EXAMPLE FROM ECONOMIC HISTORY

A second elementary example, of a quite different character, can be 
drawn from a discussion (between Landes and Gerschenkron) of the 
quality of industrialization in France and Germany during the early 
years of this century. The point at issue was the extent to which French 
industry was being carried on in smaller establishments. The evidence 
presented came from 1906-1907 census figures showing the number of 
establishments (and numbers of workers) in each of several size classes.
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Table 13
Shifts in angle for two background items and 15 

questionnaire scales. (Data from Stouffer et al. 
1950, pp. 512-538.)

Questionnaire
item or scale Differences Mean Differences

Age .39, .28, .20 .29
Schooling .21, .51, .40 .37
Rural-urban .07, .02, -.06, -.05 .00

(2) Relations with parents* .16, .24, .21 .20
(3) Fears* .44, .61, .65 .57
(4) Neurotic symptoms* .59, .70, .60 .63
(5) School adjustment* .26, .10, .19 .18
(6) Fighting behavior* .29, .31, .30 .30
(7) Participation in sports* .22, .48, .54 .41
(8) Emancipation from parents .03, .12, .21 .12
(9) Mobility .03, .12, .19 .11

(10) Sociability .45, .65, .50 .53
(11) Identification** .12, .16, .19 .16
(12) Acceptance*** .67, .57, .41 .54
(13) Worrying .52, .50, .41 .48
(14) Oversensitivity .49, .59, .51 .53
(15) Personal adjustment .65, .76, .74 .72
(16) Psychosomatic complaints (See Appendix) (larger)

as a child.

** with war effort. 
***■ of soldier role.

Table 14 illustrates the conversion of the size-class data into 
percentages below and above certain size breaks, whose choice is 
determined by the way in which the original tabulations (Landes 1954) 
were made. Table 15 compares the difference between the size 
distributions in France and Germany when expressed (i) as a difference 
in percentage, or (ii) as a difference in logits. Over the range of size 
breaks at hand, the differences in percentage vary from as much as 2 or 
3% to as little as 0.02%. The differences in logits are, by contrast, about 
the same at each of the break points.

For either "industry and mining" or "commerce" the distributions 
of establishment size in Germany is shifted about 1.1 logit toward 
higger establishments. This is a simple statement which sums up the 
bulk of the figures presented. There seems to be no description of the
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Table 14

Percentages of establishments of given sizes in France (1906) and Germany 
(1907) expressed in percentages in different ways. (Date from Landes 1954)

Relation to break
Size
Class

Size
Break

% in class 
France Germany

(smaller and larger in %) 
France Germany

j ___ j  __

1-10 98.02% 94.60%
10.5 98.02 and 1.98 94.60 and 5.40

11-50 1.60% 4.06%
50.5 99.62 and 0.38 98.66 and 1.34

51-200 0.30% 1.07%
200.5 99.92 and 0.08 99.73 and 0.27

201-1000 0.08% 0.24
1000.5 99.99 and 0.01 99.97 and 0.03

1000 up 0.01% 0.03%
— Commerce ——--— -— —

MO 98.95% 97.01%
10.5 98.95 and 1.05 97.01 and 2.99

11-50 0.97% 2.74%
50.5 99.92 and 0.08 99.75 and 0.25

51-200 0.07% 0.22%
200.5 99.99 and 0.01 99.97 and 0.03

201 up 0.01 0.03%

(Rounding of some values adjusted for consistency.)

Franco-German relationship in terms of the percentages shown in the 
left-hand side of Table 15 which is even remotely simple.

If similar behavior (i.e., roughly constant displacement on the logit 
scale) were shown by intercensal comparisons within these countries, 
and between other pairs of countries, this mode of expression might 
prove quite useful in compressing extensive tabulations to much more 
easily perceivable figures.

Landes also gives figures for a number of individual industries. 
Figure 6 shows the relation of logit to breaking point for size of 
establishment for six of these. The three on the left, inorganic 
chemicals, electrical machinery, and water transport, behave quite 
similarly. Not only spacings but slopes are about the same. Although 
the three on the right, mining, chemicals (as a whole), and textiles, 
behave quite differently from one another, their behavior in either 
country alone is quite simple to describe, as is their comparative 
behavior in the two countries. .
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Table 15
Relative numbers of establishments below and above certain 

sizes for France (1906) and Germany (1907) expressed in 
percentages and logits. (Data from Landes 1954)

Size break 
(personnel)

10.5
50.5 

200.5
1000.5

10.5
50.5 

200.5

Percentages 
(smaller and larger) 

France Germany diff.

----------Industry and mining —
98.02 and 1.98 94.60 and 5.40
99.62 and 0.38 98.66 and 1.34
99.92 and 0.08 99.73 and 0.27
99.99 and 0.01 99.97 and 0.03

-------- -— -Commerce——-—
98.95 and 1.05 97.01 and 2.99
99.92 and 0.08 99.75 and 0.25
99.99 and 0.01 99.97 and 0.03

3.42%
0.94
0.19%
0.02%

1.94%
1.17%
0.02%

Logits* c 

France Germany diff.

3.90
5.57
7.08
9.42

4.55
7.12
9.17

2.86

4.30
5.91
8.22

3.48
6.00
8.22

1.0

1.3
1.2

1.2

1.1

1.1

1.0

(*calculated using more significant figures 
than given in percentages.)

(Some might try to argue at this point that whatever simplicity we 
have gained by using logits might equally well have been gained by 
merely plotting cumulative probabilities on a logarithmic scale. The 
instance of inorganic chemicals in Germany shows that this is not the 
case. Here 58% of the establishments fall above the first size break 
(have 11 or more personnel), and the use of the difference in logarithms 
of the two percentages is about 0.9 units different from using the 
logarithm of 58% alone. The symmetry of the logit, as between p and 
1—p, is here of great value in producing results which are simple and 
easily describable.)

This example is also just a hint, but a rather strong one. What is it 
that this example exhibits? It is something more than a mere 
production of a summary figure, such as the difference between the 
average number of personnel in establishments in the two countries 
would have provided. If we knew such a difference in averages, we 
could not predict any detail of one size distribution, given the whole of 
the other. But if we were sure that, throughout the size range, the 
differences in logits were 1.1 logit units, we could make individual 
predictions. Thus, at another place, Landes gives the percentages of 
establishments with 5 or less persons in the two countries. In commerce
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%  G R E A T E R  IN  S IZ E

5 0 .5  2 0 0 .5

S IZ E  B R E A K S

1 0 .5  5 0 .5

S IZ E  BR E A KS

2 0 0 .5

Figures. Size distribution of certain sorts of French and German 
enterprises (logit scale).



and finance this is 92.59% in Germany, corresponding to a logit of 2.53. 
Adding 1.1 to this yields a logit of 3.63, corresponding to 97.42%. 
Landes's figure is 97.06%, to which 97.42% is a moderately good 
extrapolation. (The actual difference is 0.97 logit unit, say 1.0 in 
comparison to 1.1.)

One of the main morals of this example is the great advantage of 
the choice of a mode of expression which permits a single number to 
transmit information about many details. This can only be done, in 
effect, by choosing a mode of expression for the details (here the 
comparisons at various size breaks) in such a way they all have the same 
numerical value.
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E9. THE "PERCENTAGE FALLACY"

The principle that splits should be expressed in terms of 
percentages, fractions, or some equivalent, even though it be accepted 
tacitly rather than explicitly, can lead to conclusions which are poor 
science, though they may perhaps be good engineering. It is important 
to understand this class of situation, since the engineering conclusions 
may be quite different from the scientific ones.

Let us begin with a hypothetical example involving houseflies and 
two insecticides which can be used alone or in a mixture, and whose 
lethal effects arise by entirely different routes. More specifically, if a 
fraction p,- of the flies in question will survive a dose at of the first 
insecticide, while a fraction Pj will survive a dose Bj of the second 
insecticide, the. fraction of flies surviving the mixed dose + By shall 
be PiPj! survival shall be independently and at random. From a 
scientific point of view, the second insecticide is equally effective in the 
presence or absence of the first; a given dose kills a given fraction. 
How could constant effectiveness be more clearly expressed?

Let us take a numerical example, and put it in mournful 
percentages. Consider 4 doses of the first insecticide with lethalities as 
follows;

Dose Lethalitv Survival

«o 0% 100%
a, 50% 50%
a2 90% 10%
«3 -99% 1%
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Consider only one dose, B, of the second insecticide, with 75% lethality. 
Then, cutting each % survival to a quarter

Dose

flo + B 
+ B 

02 + B 
«3 + B

Change in % survival 
Survival due to dose B

25% 75%
12.5% 37.5%
2.5% 7.5%
0.25% 0.75%

Expressed in difference of %, the effect of dose B of the second 
insecticide falls off as the dose of the first insecticide increases. How 
should we interpret this result?

At one extreme we might desire to control the insect population of 
an inhabited area by applying insecticide to the more important sources. 
Knowing that other sources will surely contribute insects, we should be 
concerned with the reduction in total numbers. While % reductions are 
not necessarily directly applicable, more detailed computation being 
needed, they may reflect the engineering usefulness of dose B of the 
second insecticide in the presence of varying doses of the first. The 
change in % may reflect an engineering truth, although it clearly 
distorts scientific truth atrociously and dangerously in such an example.

Let us ask what sort of action by a second insecticide would give a 
constant increase in % reduction, and see if such a "constancy" is 
anything against which we could care to compare possible or actual 
behavior. At dose a3t where 99% are already dead, such a "constant % 
change" agent could at best have 1% effect. One example would thus be 
a dose of an agent which killed on/y 3% of the flies that would 
otherwise survive when the first agent was at the ineffective dose a o/ 
but would kili all the flies that would survive when the first agent was 
at the very effective dose a3.

To make the example more behavioral, let us try to kill illiteracy, 
rather than insects. Would we really feel that an agent (probably some 
sort of intensive literacy program) which would (a) produce 1% literacy 
in an otherwise wholly illiterate culture, (b) increase literacy by 1% in a 
50% literate culture, or (c) eliminate every single case of illiteracy in a 
culture already 99% literate, represented a force of equal strength in all 
three cases? Surely either (a) or (b) is much easier to accomplish than 
(c). Surely the constant % change standard is not a satisfactory measure 
of impact (even though it may sometimes be a satisfactory measure of 
result).
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Now one might say that well-trained behavorial scientists would 
not be beguiled by this.fallacy. Let us look at Herbert Hyman's book on 
survey design and analysis (Hyman 1955) in which very many issues 
have been carefully thought through and worked out. Turning to page 
297, we find Hyman discussing the relationship of sex and campaign 
interest to the probability of voting in the next election in these words: 
"That is, the influence of the varying social roles— and social 
responsibilities— of men and women was most pronounced among 
those who expressed least interest in the coming election." What do the 
facts really say, and how can we let them speak out?

We can do quite well by letting the data speak in logits and

Table 16

Voting — not voting by sex and expressed interest 
in the election. (Hyman 1955, page 297)

men women Difference
Expressed
interest (No.) % voting

half-logit
voting (No.)

half-logit 
% voting voting % half-logit

Great (449) 99% 2.30 (328) 98% 1.95 ,1% 0.35’
Moderate (789) 98% 1.95 (852) 87% 0.95 11% 1.00
None (56) 83% 0.79 (238) 44% -0.12 39% 0.91
’This value subject to extra uncertainty.

(i) because of higher standard error due to simple random sampling (Table 11 leads to 
±  .31 instead of ±  .14 and ±  .19, respectively) and

(il) because of large effects due to rounding observations to integer %. (If %s were 99.4
and 97.6, difference in half-logits would be 0.70 instead of 0.35.)

differences of logits. Table 16 sets forth the data, in % and in half-logits 
(from column (4) of Table 10). As the footnote makes abundantly clear, 
the data reproduced by Hyman is entirely consistent with a constant 
shift of about 0.9 half-logit.

Thus there is no basis for assuming that sex role and responsibility 
differences have had a different impact on voting behavior at various 
levels of interest. The sociologically meaningful conclusions, then, are:

(1) sex, perhaps acting through role and responsibility differences, 
corresponds to a difference in probability of voting of about 0.9 
half-logit in the situation studied;

(2) this shift may not depend upon level of expressed interest in the 
election at all, though possible changes in shift have not been 
measured with great precision.
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The conclusions reached by Hyman are appropriate to the political 
engineering (= the practicing politician).

(The reader may be interested in applying similar analyses, using 
logits, to others of Hyman's examples, including Table 18 on page 291, 
Table 20 on page 293, Table 25 on page 296, noting standard errors of 
differences when appropriate.)

For further discussion of this general subject, see Appendix U.

E*l. THE EXAMPLE FROM ECONOMIC HISTORY

In E8 we compared the size distribution of establishments in 
varying sorts of business and industry in France (1906) and Germany 
(1907). When expressed graphically, the results for (i) industry and 
mining, and (ii) commerce, the results appear as in Figures 7 and 8, if 
we confine our attention in each case to the top 3% (in size) of the 
establishments. Essentially nothing is to be learned from the bar 
diagram. The logit equal-area diagram shows something, but not much.

E*2. THE VOTING EXAMPLE

In E9 we took up, as an example of "the percentage fallacy", data 
on the relation of sex and reported interest in an election to reported 
intention to vote. The results may be displayed is in Figure 9 (in 
percent) or as in Figure 10 (in logits). In this example the change in 
impact is striking.

F. PROCEDURES OF COMBINATION

"In union there is strength" is a motto sometimes neglected and 
sometimes misinterpreted so far as the analysis of counted data is 
concerned. In those branches of modern statistics which deal with 
measured data, especially measured data which comes from experiments, 
much use is made of strength through union, though this fact is kept 
relatively secret. The purpose of this chapter is to explain some of the 
principles and, to a lesser extent, illustrate their potential uses in 
connection with counted data.
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INDUSTRY AND MINING

51 TO 2 0 0 201 TO 1000

51 TO 2 0 0
II TO 50

UP TO 50
TO 10

FRANCE
(1906)

GERMANY
(1907)

COMMERCE

51 TO 200

II TO 50

I TO 10 II TO 5 0

(TOP 3%)

GERMANY
(1907)

FRANCE
(1906)

Figure 7. Size distribution of establishments of various sizes expressed 
in percent. [Data from Landis 1954]
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INDUSTRY AND MINING
1001 UP

-1001 UP

201 TO 1000

201 TO 1000

51 TO 200

51 TO 2 0 0

UP TO 50UP TO 10
(TOP 3%)

GERMANY
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FRANCE
(1906)

COMMERCE201 UP
201 UP

--9 9 .9 9 %

51 TO 2 0 0

51 TO 2 0 0
9 9 .9 %

/ T O

TO 50
I TO 10

97% (TOP 3%)(TOP 3% ) UP TO 10

GERMANY
(1907)

FRANCE
(1906)

Figures. Relative number of establishments of various sizes expressed 
in logits. [Data from Landis 1954].
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FI. BORROWING STRENGTH

One basic notion is that of borrowing strength. From a highly 
puristic standpoint such actions appear logically unsound, but from the 
respective standpoints of practical needs, and collated human 
experience, such actions are necessary and wise. But what action? Let 
us illustrate the situation thus. Suppose some phenomenon of interest 
in some behavioral science context has appeared in some British 
observations, observations which are of high quality but not extensive 
enough for us to have great confidence in the appearances. What is the 
natural thing to do? Certainly to look for other material. When found, 
it may be German, Italian, Spanish, or Texan. Do we not use it because 
it is not British? We shall surely make an attempt to use it, unless we 
have strong reasons to expect substantial and meaningful differences in 
behavior in one of these other societies. We will try to “borrow 
strength" from other situations (so long as it is not unreasonable that 
they be similar) even if we are only concerned with Britain. (If we were 
concerned with general principles alone, we should not be “borrowing". 
Instead we should be “broadening the basis of our inference".)

There are many ways to express the “philosop hy" just illustrated. 
One may say, if he wishes: “When unable to measure individual 
situations precisely enough, guide yourself (in whatever individual 
situation you may be) by the more precise measure available for the 
average situation." When the individual situations are people, this 
statement describes the activity of the life insurance industry. In that 
instance, following such a “philosophy" is generally recognized as wise. 
But when applied to combining German and Spanish data with British 
data in order to draw conclusions about Britain, it is not quite so 
respectable. It is probably right that it should not be quite as 
respectable, but it would be a shame if a slight loss of respectability 
entirely prevented such combination.

Another way to describe this “philosophy", using statistician's 
jargon, is to say: “Unless the 'interactions' are substantial, depend on 
the main effects. Here the main effects are average behaviors over 
various instances or situations, or estimates of such average behaviors. 
Much of the functioning of the analysis of variance revolves around the 
concept of main effect, which, like many useful concepts, is precise 
enough (as the arithmetic average of what goes on in various situations) 
not to disturb theorists (or mathematicians), and still flexible enough to 
serve usefully when only limited data is at hand.

It is my impression that those for whom cross-tabulation is the 
only analysis do not borrow strength nearly as much as they might. It 
is all too easy, once the cross-tab is before one, to try to put into words
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only the differences between the phenomenon exhibited in the various 
columns, to omit explicit recognition of the ways in which the columns 
exhibit similarities, in which the columns reinforce one another. One 
cause of such omissions may be the misconception that the proper way 
to let the columns reinforce one another is to add up across columns, 
and look at the cross-tabulation with one less breakdown. (This may 
sometimes be proper, but it is often quite improper.)

To “borrow strength" it is often necessary to have the plausible 
effects of sampling fluctuations quite firmly in mind, to think of each 
piece of information as fuzzy. This can be uncomfortable to some. How 
great a role this consideration plays in the underuse of strength 
borrowing is also hard to judge.

F2. "POOLING WITHIN'1

The general discussion of the last section would certainly do little 
more good than the average Sunday sermon if there were nothing to 
say but such great generalities. Fortunately, this is not the case. There 
are simple technical devices which make use of the broad principle and 
let us do things we could not otherwise do. One of these is described 
by the words "pooling within". The basic idea is to gather quantitative 
indications from "within" various parts of the data and then "pool" 
these indications into a single overall indication (which we may then 
sometimes be forced to accept as the most reasonable indication of what 
is going on "within" each portion).

A convenient and illuminating counted-data example arises when 
we have counts of a's and A's, separated as to b's and B's within each of 
a number of portions of the data, which we shall designate as 
Ci,C2, . . . ,C6. Table 17 shows some hypothetical numbers. No one of 
the six two-by-two tables really gives strong evidence for more a's 
among b's than among B's. (In fact, continuity-corrected chi-squares are 
all trivially small.) Yet each offers some evidence and, if we may 
combine all these bits and pieces together, we will have useful evidence.

In order to make a quantitative combination, we must measure, in 
some way, the shift in fraction of a's (from b's to B's) within each of the 
six portions. Two of many possible modes of expressing this shift are 
put to use in Table 14. First, we may consider merely

% a's among b's) — (% a's among B's)

which varies between +4.7% and +13.7% with a mean of +8.9%. (If we 
use Student's t to set 95% confidence limits, we find that the mean 
difference in % lies between 5.5% and 12.3% with 95% confidence.)
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This second comparison is made on the basis of the difference in 
anglits, whose average value is +.24 and for which a 95% confidence 
interval extends from +.19 to +.29. (We may regard this latter interval 
as the narrower one. In realistic examples the writer would expect the 
use of anglits, or of normits or logits, to provide, by and large, 
somewhat more searching analyses than the use of %. The numbers 
treated here are purely hypothetical, and thus provide no evidence of 
this. For the point presently being made, the particular mode of 
expression used for the indications provided by each of the various 
two-by-two tables in this example is not important.)

Table 17
Hypothetical example of "pooling within." The influence 

of "b or B" on the relative number of a's within,, 
each of six sections of data Cl, Cj, . . .  ,C6

(i) (2) Ct C2 . c 3 C 4 c 5 c 6 (within) total

b a's 10 15 22 37 15 18 ___  . 117
A's 82 61 40 10 2 1 196

B a's 1 ■■ 2 7 91 63 97 ■ ------ . . 261
A's 15 19 25 40 17 12 — 126

b %a 10.9 19.8 35.5 78.7 88.2 97.7 37.4
B %a 6.2 9.5 21.8 69.5 78.8 89.0 — 67.4
diff. in %a 4.7 10.3 13.7 9.2 9.4 5.7 (+8.9) -30.0
b anglit -.90 -.65 -.29 .61 .87 1.11
B anglit -1.07 -.94 -.58 .40 .61 .90
diff. in anglit .17 .29 .29 .21 .26 .21 (+.24) -.71

Thus, "pooling within" would, in this hypothetical instance, bring 
out clearly the positive relationship between b-ness and a-ness which 
no one of the individual tables could demonstrate. And what would 
have happened if the oversimple approach of combining all six into a 
"total" two-by-two table had been used? Shockingly strong evidence of 
a relation between a-ness and b-ness. Shockingly strong because of the 
fact that such carelessly pooled evidence points in the wrong direction, 
showing relatively more a's among the B's than among the b's. In this 
instance, which was no doubt carefully loaded, the "pool within" and 
"look at the combined table" approaches have come to quite different 
answers. We cannot try to blame this on sampling fluctuations. For the 
results would still have been in the same opposite directions if all the
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original numbers were exactly 100 (or exactly 1000) times as large. We 
have no recourse but to blame this difference on the difference between 
the questions to which the two modes of analysis were responding.

We may phrase these two questions in a variety of ways, but the 
following will serve us well enough:

(1) "How are a-ness and b-ness related within a typical subdivision 
Q of the data?"

(2) "How are a-ness and b-ness related without regard to possible 
subdivision by Q?"

There is a great difference between such questions. This is specially 
true when the subdivision is by such variables as sex, age, geographical 
location, occupation, or socio-economic status. If we ask one question 
by mistake for the other, we may make a most serious error. It is 
important to us not to be forced into the position of having faute de 
mieux to answer the wrong one. As Lazarsfeld (1958, page 121) points 
out, it has been found that the more fire engines that come to a fire, the 
more damage. Yet unable to escape answering the wrong question is 
the position many have felt themselves in. If a subdivision makes the 
number "too small" for individual analyses, and "pooling within" is an 
unknown technique, then there is little escape • • • the second question 
is the one that will be answered, whether or not it is the correct one.

The use of "pooling within" may be either essentially qualitative 
or almost completely quantitative. It can be used, not only to answer 
the correct question, but to answer this question in a more searching 
and revealing way, especially in more complex situations. To do the 
latter thoroughly and well, it must be thoroughly quantitative, and as 
the examples of Sections E7 and E8 illustrate, it must often be aided by a 
wise choice of the mode of expression.

(It may be helpful to notice in passing that the basic concept of 
"borrowing strength" is not restricted to the assessment of directions 
and amounts of individual differences. Finding and using a pooled 
estimate of error, so characteristic of the analysis of variance, is an 
instance of "borrowing strength" to estimate how large typical errors 
and fluctuations are likely to be.)

F3. "ADJUSTED FOR"

In the physical sciences one frequently comes across the words 
"corrected for". They mean that the effects of some variable irrelevant 
to the topic of immediate discussion have been removed as well as we 
know how, and thus been kept from interfering, either systematically or
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irregularly, with our study of the immediate topic. Usually the 
correction is based on theory, though there are circumstances where it is 
based on experience. Physical scientists place results "corrected for so- 
and-so" in the highest of the social classes into which results may fall.

The social class next below this contains, in their view, results 
"adjusted for so-and-so". The words "adjusted for" imply an empirical 
(and therefore undoubtedly somewhat incomplete) compensation for the 
effects of some variable irrelevant to the immediate topic. The basis for 
selecting the form of compensation used will have been empirical, quite 
often consisting of the single body of data at hand. In a very real sense, 
this too is usually an example of "borrowing strength", one which 
operates in a more subtle way. Thus, for example, in dealing with 
measurements, we may borrow information about the nature and extent 
of the apparent effect of the irrelevant variable from "interactions" and 
use this information to adjust "main effects". (This procedure is called 
the analysis of covariance.) In a sense, too, such methods of adjustment, 
in which constants are fitted to the data, could be considered as 
examples of data-guided analyses. No statistician thinks of them this 
way, however, because formal methods of "adjustment" were developed 
and became standard long ago.

_ Why should the behavioral scientist be concerned with methods of 
"adjusting for", when he may use cross-tabulation, especially cross
tabulation strengthened by "pooling within"? To this question there 
are various answers, some involving the relative efficacy of cross
tabulation and adjustment, .while others relate to the very practical fact 
that adjustment for many irrelevant variables is much more feasible than 
is equally many-way cross-tabulation, with or without "pooling within". 
Thus simultaneous adjustment for nine variables is a substantial 
computing job, but in no wise out of hand with modern equipment, 
while an adequate nine-way cross-tabulation is almost (though perhaps 
not quite) unmanageable.

Let us return to the example of the Atlantean-Americans vs. the 
Muan-Americans, and their income distributions. Let us suppose that 
we can measure the social or occupational "class" of the individuals 
studied on a very much more finely divided scale than either of those 
used in Table 7. If we were to repeat this table, using the narrowest 
cells available, we would undoubtedly face very small numbers in each 
cell, with correspondingly large fluctuations in average incomes. A 
direct cross-tabulation approach with very fine cells would not give final 
answers. But it would be a first step (though not necessarily the 
simplest one) toward good answers. For when these narrow-cell 
average incomes were plotted, separately for Atlanteans and Muans, 
against our measure of social status, some regularity could be seen to
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underlie the fluctuation. And after reasonable rescaling of the social 
status scale, if necessary, this relationship would, for the situation 
contemplated, be roughly linear for each group of immigrants, the two 
linear relations having approximately the same slope.

Having now a convenient measure of social status, and an 
approximately common slope (regression coefficient) of average income 
on social status, we can proceed to adjust each individual income for the 
(approximate)//near effect of social status by forming

(actual income) — (slope) x [(actual status) — (reference status)]

for each individual. Doing this:
(1) will not distort or make unfair the comparison of the two groups 

(so long as there are no errors in our social-status scale 
systematically associated with differential preferences for certain 
occupations between the groups);

(2) will provide a more precise comparison, so long as the "slope" 
used is somewhere near that slope which would be most effective 
(there is no necessity to get the slope "exactly right", though 
better slopes will be more effective);

(3) will not compensate for the curvilinear part of the relationship 
between the measure of social status used and average income.

In view of (1) and (2) we have made considerable progress by using 
adjusted income. In view of (3) we may well wish to tabulate mean 
adjusted incomes by social class, thus still further freeing our 
comparisons from the effects of social status.

This example has on the one hand been simple, and on the other 
nonexplicit. It is hoped that its simplicity will outweigh its 
nonexplicitness and that it will throw useful light on the possibilities of 
"adjustment." These possibilities are many, varied, and rewarding. 
Skill in their use comes from practice, from thinking about just what is 
being done (rather than staring at formulas), and, above all, from
common sense.

(The one example of "adjustment" frequent in the behavioral 
sciences is the adjustment of death rates for the age distribution, which 
is far more a matter of "standardization" than of "adjustment." It is a 
useful procedure, but cuts nowhere nearly as deeply as most adjustment 
procedures.)
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F4. THE USE OF RESIDUALS

■ A key part of almost any technique of several-stage analysis is the 
use of residuals. This differs in purpose from the use of adjusted values, 
though not necessarily in computation. It is merely a matter of 
definition whether residuals are the result of adjusting the observed 
responses for the effects of all variables which are naturally, or 
reasonably, considered, or are the deviations of observed responses from 
fitted responses, i.e., from those values predicted on the basis of all 
variables which are naturally, or reasonably, considered. In either 
event, residuals represent the deviation of what is observed from what 
has been systematically described. Whereas adjusted values are 
intended for use in planned further comparisons, residuals are 
calculated either (i) as a basis for estimating the size of fluctuation (as a 
basis for an "error term") or (ii) as a step in discovering unsuspected 
phenomena. The former purpose is more classical, but the latter is 
probably more important.

The use of residuals is an art where some physical scientists long 
maintained a significant lead on most, if not all, statisticians. What are 
considered to be the "raw" results from many a physical science 
experiment are not the responses themselves, but the residuals, the 
differences between what was observed and what currently-used theory 
predicted". This fact has been one of the important keys to physical 

science progress.
Many of the more powerful forms of statistical analysis developed 

since 1920 can be formulated in terms of residuals. Almost all analyses 
of variance can be regarded as making use of residuals. In a two-way 
classification, for example, the formal numerical "interactions", the sum 
of whose squares is the "interaction sum of squares", may be regarded 
as the residuals after fitting both row and column main effects. For a 
long time the analysis of variance was used in such a way as to miss real 
opportunities of discovery. Residuals were used only as an error term. 
Indeed, individual residuals were almost never calculated, only the sum 
of their squares (which certain algebraic identities usually make 
relatively easily available) being obtained. In the last few years, 
however, because of the recognition that much could sometimes be 
learned form the values of individual residuals, and because of the 
increasing cheapness of routine calculations, the calculation of 
individual residuals has become much more frequent. This trend will 
continue.
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F5. ADJUSTMENT AND RESIDUALS FOR COUNTED 
DATA

In those situations where the raw datums of behavioral science are 
of an irretrievably "yes-no" nature, it is clear that we cannot very well 
adjust individual observations, or find useful residuals corresponding to 
them. But this fact is not the insurmountable bar to the use of such 
modes of analysis that it might seem. For in such circumstances the 
relevant unit of data is not likely to be the individual observation.

In these situations, the relevant unit of data is much more likely to 
be a small (or larger) group of individuals, and its numerical content is 
likely to be expressed by the counted fraction of individuals who are 
"yes" or "no". Whatever mode of expression for this counted fraction 
may serve us best, percentage, anglit, normit, logit, or "what-have-we", 
will be such that meaningful residuals can be calculated, that 
meaningful adjustments can be made. (Indeed, if we are wise, we shall 
frequently choose the mode of expression to maximize the usefulness of 
these residuals or adjusted values.)

(It is possible to carry on a somewhat related procedure with 
individual "yes-no" observations. Somewhat more esoteric techniques, 
including the fitting of logit planes and the use of Fisher's scores, then 
enter naturally. Since many applications to behavioral science of 
simpler techniques are applications at present relatively untouched, we 
need not try to discuss these more sophisticated techniques here.)

F6. ANALYSIS OF DATA IN GENERAL

The moral of our whole discussion of the analysis of data is that, 
while it is not simple, it can be very rewarding. The extent of the 
nonsimplicity can usually be adjusted to the skill of the analyst, and to 
the pressure of time. Such adjustments are necessary, but a little more 
effort often provides substantial returns.

The greatest mistake in approaching data is often the idea that 
analysis of data is like taking the hook out of the fish's mouth, to be 
done once and for all, and as expeditiously as possible. There are many 
ways in which it pays to analyze data in stages, and many more will be 
discovered.

Heavy emphasis needs to be given to the advantages of pre
analysis of a small sample of the data. A few years ago, friends and 
colleagues of mine collected, with considerable effort, 1000 long 
questionnaires; they punched up cards, hired a sorter, and started cross
tabulation. By the time they had reached their limits on time and
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funds, they had come to see fairly well what was really going on, to 
recognize which of the tabulations and analyses that they had nol made 
would really illuminate the social situation. The clock having struck, 
these tabulations could not be made, and useful information and insight 
had to be left buried in the data.

How often does this happen? (And are our practices with the 
timing of data-collection and thesis-submission such as to educate each 
new Ph.D. to regard this as the usual thing?)

Now in this particular instance, as I came to see far tooTate, simple 
actions could have avoided a large part of this difficulty. The field work 
took a long time, and was mainly in the hands of interviewers other 
than the chief investigators. A random subsample of 10 questionnaires 
could have been available a month or more before the end of the field 
work. The investigators could have sat around a table for several days, 
chewing over all the details of these 10 questionnaires, all the patterns 
they suggested, what analyses would reveal these patterns. (And by this 
process, not only the information in these 10 questionnaires, but also 
many of the insights in the investigators' minds, would have been 
mobilized and made available to guide analysis, instead of being 
dredged out at the last minute to explain why Table so-and-so might 
reasonably behave in the otherwise peculiar way that it does.)

Then they could have expanded this subsample to 50 or 100 cases 
and written the parts of the data which seemed most likely to be 
relevant on ordinary cards (edge-marked if desired). There would then 
not have been too many cards for any kind of hand sorting and hand 
tabulation. The suggestions of the 10-questionnaire subsample, and any 
other available suggestions could have been tried out. And from more 
discussion there could well have come more insight. At this point, for 
the first time, a rational plan for the analysis of the whole sample could 
have been developed, wherein it would be possible to specify not only 
which tabulations seemed necessary, but also which were needed first. 
(A tabulation may be needed early (i) to provide an opportunity for the 
facts to force reconsideration of current suppositions, or (ii) to help in 
choosing alternative continuations of the analysis.) By this time the 
1000 questionnaires would have been almost available.

Had this sort of a step-by-step approach been adopted, and the 
same amount of time and money given over to the analysis (including 
pre-analysis), I am convinced that much more would have been learned. 
How often is this the case? It seems that it must happen "all the time."

The advantages of pre-analysis have been noticed by behavioral 
scientists, at least in footnotes. Thus Hyman (1955, p. 332-333 footnote) 
says: "a valuable procedure .... is that of trial tabulations, in which
ideally a random sample........ is processed first. This ......... yields quick
and generally reliable estimates of the larger findings."
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It would be a mistake to believe that such step-by-step analysis is 
natural only for the exploratory inquiries associated with (i) a long 
questionnaire, (ii) depth interviewing, or (iii) certain aspects of social 
anthropology. A certain psychological experiment, in which the 
behavior of subjects under quarititatively-described conditions was 
quantitatively measured, appears in the literature as a methodological 
example (Johnson and Tsao 1945, Johnson 1949). Its purpose was to 
illustrate the use of complex analyses of variance in such connections. 
It makes use of randomization, balancing, replication, factorial design; of 
most of what have been called (Student 1938, p. 365) "all the principles 
of allowed witchcraft." And a "corresponding" analysis of variance was 
published, which we will label "Analysis 0." Unfortunately, this 
analysis was clearly inappropriate. So a colleague and I (Green and 
Tukey 1960) made a new analysis, "Analysis 1", which avoided certain 
inadequacies and could be extended to a more complete and appropriate 
analysis, "Analysis 2". So long as the actual numbers were not 
examined carefully (i.e., with the aid of an adequate analysis) there 
could be no objection to Analysis 2. In principle, indeed, it could have 
been appropriate.

But when the numbers were looked at, certain unsuspected 
relations among them clearly indicated a different approach. So we 
went back and made "Analysis 3", which was sensitive enough to 
uncover new regularities and led to "Analysis 4" (not yet published). 
This last analysis was quite self-compatible (the only indications being 
that if the actual randomized orders in which the subjects underwent 
various situations were known, some further gain might be made by 
adjustment for learning within a session). The answers, which were 
now rather sharply defined, were not very close to those of Analysis 0, 
or even to those of Analysis 2. The truth was in the original 448 
observed numbers, but it took several stages of analysis to bring it out.

The moral is clear. Analysis by stages may be necessary with any 
data, even when gathered in the pattern of a formal, randomized, 
"experimental design".

G. SIGNIFICANCE AND CONFIDENCE

Many questions involving significance testing produce active debate. 
What purposes can and should significance procedures serve? Should 
routine significance testing be used in exploratory sociological research? 
What needs to be done to avoid the common fallacies of significance
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testing? How can we modify significance tests to make them more 
relevant to our problems? To what extent should significance 
procedures be replaced by confidence procedures? How should we 
apply significance or confidence procedures to (a) multiple comparisons, 
(b) the results of complex calculations?

Full answers to all these questions would require a few books. 
Only indications can or should be given here. But even simple 
indications, if taken up actively, can lead to substantial im provem ent in 
the day-to-day handling of data.

We have already discussed why significance tests cannot settle 
causality (in A) and how the choice of significance procedures should be 
related to the intended length of inference and the choice of 
hypothetical population (in B). It is now time to go on to some of the 
other questions.

G2. WHEN SHOULD SIGNIFICANCE TESTS BE USED?

There is much discussion of when significance tests should be used 
in sociological inquiries. In most such discussions, "significance tests" 
are equated to classical tests for the significance of the difference of 
fractions based upon assumed independence of sampling of 
individuals". Perhaps the most important issues are reflected in such 
brash statements as:

(1) Significance tests don't establish causality, and we aren't 
interested in anything else. (See A above.)

(2) The classical significance tests are inappropriate because their 
presuppositions do not hold. (See B above for some general 
considerations, Kish 1957 for more specific difficulties which 
occur even in efficient probability samples, and H4 to H6 below 
for a practical way out of many difficulties.)

(3) It isn't SCIENCE unless you prove it; beside mathematical proof, 
and proof by experimental manipulation, only sanctification by
significance tests constitutes proof; sanctify or die!

(4) If I put in some significance tests to sanctify my results, no one 
can complain about anything, not even about those weak 
techniques.

(5) Much valuable work in any field is exploratory; exploratory work 
must seek out even feeble indications; exploratory work dare not 
throw away indications just because they are not significant at 
some conventional level.
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(6) Admittedly there must be exploratory work, but is it sensible to 
write books and books about its results?

(7) Even in physics and chemistry, the ultimate standard is 
repeatability by different workers at different times and places 
and each worker publishes his own work. Why should there not 
be a whole book about each exploration? After all, agreement of 
enough explorations will produce very high quality significance!

The case for exploration untrammeled by statistical significance is 
put forcefully by Zeisel, who says; (Zeisel 1955)

"There is, now, in the social sciences no greater need than the 
development of theoretical insights guided by empirical data — 
to provide this guidance and serve as stimulant — [we rely on] 
the significance of statistically insignificant data. Even if the 
probability is great that an inference will have to be rejected later, 
the practical risk of airing it is small. Subsequent and more 
elaborate studies may disprove some of these inferences; but for 
those that survive social science will be the richer."

"To be sure, a physicist would rightly frown on such 
recommendation. But his is a world with generalizations on a 
high level. By comparison, the social sciences are at a stage 
where for decades to come the formation of even tentative 
theoretical structures will be at a premium."

(See also Merton et al. 1957, pp. 302-303.)
It is not for a statistician to lay down a schedule of dates for the 

change in emphasis from exploration to confirmation in each of the 
many subsubfields of behavioral science. It is right, however, to lay a 
heavy charge upon the consciences of all individual behavioral 
scientists, and upon the collective scientific consciences of each of the 
varied fields and subfields of behavioral science, that

(1) there are appropriate places for both exploratory and confirmatory 
work;

(2) repeating unconfirmed work is useful, perhaps necessary, not 
wasteful;

(3) significance based upon repetition under suitably diverse 
circumstances is essential to confirmation;

(4) it is very hard to justify holding back exploration with severe 
requirements of statistical significance.

This is another place where simple answers should not be forthcoming, 
a place where each must help to bear the "quantitative man's burden".
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G2. THE SEARCH FOR CERTAINTY

Many behavioral scientists who use statistical techniques are 
novices as statisticians. As in so many other instances, "ontogeny 
repeats phylogeny" in the nature of the help they think it appropriate 
to seek from statistics. Just as Reichenbach (1951, e.g., p. 117) portrayed 
the development of philosophy as a learning that more and more 
questions should not be asked, so the development of statistics can be 
portrayed as learning of more and more things about which certainty 
should not be sought. A brief, oversimplified outline of the 
development of statistics through the last half dozen decades may help 
to illustrate the point.

The first real step toward modern statistics was the work of Karl 
Pearson. Much of his impact can be interpreted as a shift from an 
implicit certainty that samples matched the populations from which 
they came to a certainty that random samples did this closely enough if 
they were large enough.

The impact of Student (William Sealy Gossett) was in large part the 
recognition that, starting with a small random sample, even if you 
cannot be certain about the population, you can be certain about the 
degree of uncertainty of your inference. (In particular, you can be sure 
about your level of significance.)

R. A. Fisher (now Sir Ronald) extended the implementation of 
exact tests of significance in many directions, and introduced very 
important methods of dissection of data (such as the analysis of 
variance), but from the aspect we are now considering, his greatest 
impact was through an attempt to restore more certainty to inference. 
Admittedly the result of your inference from a small sample could not 
be free of allowance for sampling fluctuation, but you could try to be 
certain that the inference procedure you used was the best possible, 
often because it "used all the information." (On Student's urging (cp. 
Pearson 1939, pp. 242-243), a modified approach to this kind of certainty 
was pioneered by J. Neyman and E. S. Pearson.) The more classical kind 
of statistical certainty was extended by the growth of a wide variety of 
interval estimates from the twin skeins of the first fiducial (Fisher) and 
confidence (Neyman) statements.

Then the work of Abraham Wald rolled back certainty still further, 
when he showed that, insofar as procedures leading to definite actions 
were concerned, there could, in general, be no single optimal statistical 
procedure, but only a "complete class" of procedures, among which 
selection must be guided by judgment or outside information.
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All of this development made heavy use of closely specified 
population models in which only a few parameters were left free to 
match the model to the real world. During the next decade or decades, 
the growing recognition of the unrealism of such presuppositions will 
inevitably drive statisticians to less certainty about the optimality of 
procedures, to greater reliance on experience in and near particular 
fields of application.

This summary is undoubtedly somewhat unfair to individual fields 
of statistics and to individual statisticians. But insofar as it presents the 
growth and burgeoning of statistics as involving a relentless continued 
pressure for certainty, and a forced abandonment of one certainty after 
another (til the writer tries only to be certain that one cannot be 
certain), it is ultimately truthful and deeply revealing.

There should be no surprise that the statistical novice seeks for 
certainty in statistics. There is no ground for anything but gentleness in 
readjusting his goals. ("He needs help.") But there is equally no 
warrant for leaving them unadjusted.

G3. SOURCES OF UNCERTAINTY

What are some of the reasons why certainty cannot be obtained by 
statistics? Not because of small samples, because Student and Fisher 
have shown us how to be certain about uncertainty. In part because our 
models will always be approximate reflections of the real world. But 
especially because not all sources of variability have had a chance to 
show their effects by entering differently into two or more parts of the 
data before us.

Some sources of variability have not been revealed because the 
data had no chance to come from the whole range of possibilities with 
which we are concerned. There are many reasons why the sampled 
population never coincides with the target population. (The difference 
in epoch between observation and interest, which applies to all except 
the purely descriptive historian, is but one reason for non-coincidence.)

The nature of measurement is also concerned. Not just the fact 
that measurement is fallible, subject to fluctuations. For fluctuations 
which are seemingly random, or which are associated with small 
changes in time or space, will be represented by differences between 
parts of the body of data before us. Physical scientists have been keenly 
aware for a very long time that there are systematic errors in all their 
measurements. These vary from errors intrinsic in the definition of the 
measuring instrument (which cause that which is measured to differ 
from that which is said to be measured), through errors intrinsic in a



specific realization of a measuring instrument (which make the average 
readings of one instrument disagree with those of another), to 
fluctuations which are associated with large changes of time or space, 
and which were consequently not explored, by either the actual data or 
by the potential data, as identified in the sampled population.

The physical sciences live with these difficulties and uncertainties 
every day, are continually conscious of their existence, are aware that 
there are troubles with which statistics cannot appreciably help them to 
cope. Physical scientists neither deny the existence of these difficulties, 
nor give up because they exist. Physical scientists try to use statistics, be 
it formal or informal, to deal with those aspects of their problems to 
which statistics is suited. (The fact that some branches have not yet 
begun to use certain of the newer techniques is an evidence of 
ignorance of fact, not a misdirection of philosophy.) Can behavioral 
sciences and behavioral scientists do less?

It is in the face of such inescapable uncertainties that we must use 
statistics. How then can we allow the mildly uncertain character of a 
hypothetical population (see B3) to worry us seriously? How can we 
flee to statistics as a source of certainty, as a way to avoid all our 
difficulties and troubles?

To some, of course, statistics is a refuge, not from the doubts and 
fears of the individual investigator himself, but rather a refuge from the 
criticism of colleagues, readers, and listeners. "If only my results could 
be sanctified by statistics, my techniques and selection of material made 
immune to criticism, how wonderful it would be!" Many users of 
statistics seem to feel this way. It is not surprising that they do. But 
such an attitude can only retard the progress of science; if sufiiciently 
widespread it could stunt the growth of science or even deform it like a 
Japanese miniature tree. We dare not let statistics be a general 
sanctification. It can rightly offer evidence as to the uncertainties due to 
finiteness of data, and offer, in experimental situations, evidence about 
many aspects of the adequacy of controls and comparison (Fisher 1935ff, 
p. 2). It is badly needed in these limited roles, but it must be kept in its 
place.
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G4. FALLACIES OF SIGNIFICANCE TESTING

Two contradictory sorts of false optimism tempt us whenever we 
assess the usefulness of a tool, even of a statistical tool, on the basis of 
how it is used. We may be falsely optimistic about tools and tool users 
and, believing that it is possible to make tools which will always, or 
even nearly always, be used correctly: we may decry all tools in
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proportion to the number of times each is misused. Good tools are then 
likely to be decried much more vigorously than bad ones. For they will 
be used so much more frequently that even small percentages of misuse 
will lead to large absolute numbers.

On the other hand, one could be falsely optimistic about the 
responsibilities of our roles as tool purveyors (whether as tool designers, 
tool salesmen, or tool advisors). For one might (as too many do) feel 
that a tool is well enough developed if it will be properly used when 
used according to all the rules on the package, including the fine print. 
Such views disregard the empirical observation that no tool is so used.

The ridge between these valleys of misplaced optimism is narrow, 
yet we all should traverse certain parts of it. In describing some of the 
commoner fallacies of significance testing, it is not our purpose (as it 
seems to have been in Selvin 1957) to assert that significance testing is 
intrinsically evil, for that is not at all our view. Rather we are trying to 
point out some of the places where improvements in the use of 
significance testing are both possible and desirable, in the interests of 
making the tool more valuable.

It is natural, when picking up a new tool, to hope, and perhaps 
even to think, that it will do for you just what you wish it to do. The 
classical fallacy of significance testing, is badmandment # 100, namely:

The significance level tells you the 
probability that your result is WRONG.

Every statistician spots some form of this badmandment quite 
frequently, and marks up its appearance as an error. The statistician is 
logically (and interpersonally) right in this ascription, for the 
significance level does not provide a probability of the result being 
wrong, as simple examples show. Instead it provides something notably 
different (which is described clearly in many textbooks). Reproducing 
such statements is interpersonally wrong, because some readers may 
know just enough to mislead themselves. Intra-personally, however, 
where the investigator as data analyst is trying to communicate with 
himself in his other role as interpreter of the results of data analysis, 
such phrases may not be too dangerous. Investigators who use them 
may not be clear enough during intra-personal communication, and may 
not need to be clear enough, about "probability" or "the probability of 
being wrong", to mislead themselves seriously. Investigators who do 
use such phrases do seem to interpret data in about the same way as 
those who do not. Intra-personally, then, this fallacy is not too serious, 
although, especially for the benefit of younger readers, it ought clearly 
to be kept out of the printed literature.



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 2 9 3

Significance testing is the subject of many serious fallacies; an 
exhaustive list would be out of place. Examples of one family are 
discussed below. Certain others are implicitly covered by the discussion 
of the next two sections, while still others can be found in textbooks 
and in the parts of Selvin's article (Selvin 1957) which are not 
concerned with the failure of significance tests to establish causation.

Leading our short list is perhaps the simplest fallacy of them all, 
an inevitable consequence of trying to render a portrait with a single 
round dot, either black or white, (of trying to send a one-bit message). 
Suppose that Jones and Smith, separately, do the same experiment, 
measure the same difference, and make tests of significance. One 
verdict may be "significant" the other "not significant". Then Robinson 
writes a review paper stating that Smith and Jones found contradictory 
results. But a confidence analysis may show, and usually does show, 
that both experiments are consistent with any one of quite a wide range 
of values for the differences concerned. Clearly more definiteness is 
being read into the statements of bare significance procedures than 
belongs there.

In a parallel fallacy, a single experimenter or observer examines 
the effects of two variables, finding one , "significant" and the other 
"nonsignificant", concludes that the first is more important than the 
second, although.there may be far from enough evidence to show this.

In a third example, an experimenter may measure some of the 
more interesting of the 561 correlation coefficients among some 34 
variables. Perhaps 25 out of the 30 which he regards as interesting turn 
out to be "significant" (i.e., to have been successfully discriminated from 
zero). He is dangerously likely to use this judgment of significance not 
merely to convince himself that the relationship indicated by a 
correlation coefficient which just barely reaches his chosen level of 
significance is stronger than that indicated by a coefficient which just 
fails to attain this level, but even to support a belief that the order of 
relative size among "significant" coefficients is exactly (or, at least, 
almost exactly) the same as the order of size of the population 
coefficients he is estimating. Such data may not contain any appreciable 
evidence in support of any of these views.

These particular fallacies of significance testing come from failure 
to recognize that a classification into only two classes is not necessarily a 
classification into clearly defined classes, into classes that are "broad" in 
the sense that classification is easy and reproducible. The classes 
"statistically significant" and "not statistically significant" are narrow in 
the sense that independent reclassification, namely repetition of the 
whole experiment or observation on independent chosen individuals or 
under independently chosen circumstances would differ from the
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original classification in a non-negligible fraction of all instances. 
(Changing to a still broader classification is no help at all in this 
instance.)

A large measure of the situation is summed up in Yates's 1951 
sentences; "Usually quantitative estimates and fiducial limits are 
required. Tests of significance are preliminary or ancillary." Many 
users of statistics have learned to replace significance techniques by 
confidence techniques; more should and will.

H. TECHNIQUES OF SIGNIFICANCE AND 
CONFIDENCE

Principles of significance are important, but they gain their value by 
being combined with techniques. This account has no place for the 
many significance (and confidence) techniques which are well described 
in available books, but it can and should summarize the most useful 
ones which are not easily available.

Basic to such a discussion is a clearer understanding of the notions 
of significance level, and of its generalizations and revisions. The basic 
notion is of an accepted chance of being wrong. There is need to 
describe and specify:

(1) What it means to be wrong;

(2) What chance is accepted;

(3) Under what circumstances this chance must be faced.

Even in the simplest case, say a two-sided f-test at the 5% level against 
equality of means, there are two interpretations. One is:

(1) to be wrong — to assert statistical significance when the 
population means are in fact equal;

(2) the accepted chance is 1 in 20 such comparisons; and
(3) the chance is only faced when the two population means happen

to be equal.

This first three-part interpretation applies when "statistical significance'* 1 
is taken to mean "are not equal." Another interpretation is:

(1) to be wrong — to assert statistical significance in one direction 
when the population means do not differ in that direction;
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(2) the accepted chance is 1 in 20 such comparisons; and

(3) the whole chance is accepted when the two population means are 
equal; a lesser chance is accepted when the population means are 
close, but not equal; this lesser chance falls to zero as the 
separation between population means becomes indefinitely large.

This latter three-part interpretation applies when "statistical 
significance is taken to mean "one population mean differs from the 
other in the same direction that the one sample mean differs from the 
other".

It is convenient to call the largest chance of error that has been 
accepted the error rate. This term emphasizes that such a quantity is a 
fraction whose numerator is a number of errors, and whose 
denominator is a number of chances to make an error. Under different 
circumstances it will prove wise to use different definitions of what is 
"one" error and what is "one" opportunity to make an error.

An investigator who works to a nonextreme significance level, 
such as 5%, and who only compares means which are easy to 
distinguish, perhaps using large samples from populations with widely 
different means, will rarely make an error in asserting statistical 
significance. All of his differences are really not zero, and he has made 
it easy for the data to show that they are not zero. It is very hard for 
him ever to be wrong. He has many formal opportunities to make 
errors, but the actual chance that any individual opportunity will 
produce an error is small. He has budgeted a 5% error rate, but he is 
not really spending it.

Errors are "bad things," so that it is quite natural to compliment 
him on not spending his error rate. Closer analysis shows, however, 
that he deserves no compliments. Suppose his long lost identical twin 
is making exactly the same studies, but was taught to use a 1% error 
rate. The latter sib will reach almost exactly the same conclusions, but 
he will reach them at 1% rather than 5%, attaining greater security from 
the same data. There is a loss in not using the error rate that has been 
budgeted, as can also be seen by considering many sorts of situations 
which differ markedly from the one just described.

It is a truism easier forgotten than remembered that, just as any 
sample can come from any normal distribution (though much more 
probably from some than from others), so any body of experimental or 
observational data can come from almost any underlying situation 
(though much more probably from some than from others). Almost all 
empirical knowledge is purchased at the price of error. Error rate is one 
of the coins that is paid for knowledge.
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Once we recognize error rate as a medium of exchange to be 
budgeted, we must be prepared to divide its application to various ends, 
like anything else to be budgeted, in the way that yields us the highest 
return. The next two sections will provide an example of how this may 
be done.

Once we recognize that not spending the error rate that has been 
budgeted may be wasteful, we seek to find out how to spend it more 
completely. One way is to change from a significance procedure to a 
confidence procedure: to assert, for example, when appropriate, with 
95% confidence that the difference between the mean for A's and B's 
lies between +2.1 and +7.3, instead of asserting either that the 
difference is positive at the 5% level, or that the difference is 
significantly not zero at the 5% level.

In particular, this change has the great advantage that it makes it 
possible to distinguish "negative" results of very different strengths. To 
have 95% confidence that a difference is between —4.3 and +11.2 is quite 
a different thing from having the same confidence that the same 
difference lies between —0.0032 and +0.0017. Yet either is properly 
reported in significance terms as "the observed difference was not 
significant at the 5% level".

Mosf significance procedures have directly corresponding 
confidence procedures. It is reasonable to argue that the
presuppositions of a corresponding confidence procedure are somewhat 
less likely to hold than those for the significance procedure. (Thus, for 
example, assumption of similar shapes and variances of two 
distributions to be compared is more reasonable when testing whether 
the means of the two distributions may be the same, than is the same 
assumption when testing whether the difference between the two means 
may be —14,329.) But wide experience suggests that the more efficient 
use of the budgeted error rate far outweighs such considerations. 
Confidence procedures for simple situations are widely spread through 
the literature. One aspect of confidence technique deserves especial 
attention here, however. Multiple comparisons, in which at least all 
pairs of 3 or more means (or slopes, or what have you) are to be 
compared, arise frequently. Since there is little in the literature on this 
topic. Section H3 offers a brief discussion, in which the nature of an 
error rate as a fraction plays a central role.

Finally, there is the problem of the results of complex calculations. 
Even if the relative numbers of investigators and statisticians were 
reversed, the few investigators could produce new ways to combine data 
faster than the many statisticians could develop and package appropriate 
specialized significance or confidence procedures for these new 
combinations. There is a great need ie r  a nearly universal technique.



which must be easy enough to use, but need not be perfect in any 
respect. Like a Boy Scout jackknife, such a technique should be usable 
for anything, although, again like a jackknife, each of its jobs could be 
better done by the corresponding specialized tool, if that tool were only 
at hand. The last three sections (H4 to H6) are an introduction to such a 
tool.
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HI. SPLITTING AND ALLOCATION OF ERROR RATES

The idea of the single overall test of significance as something 
natural, universal, and perhaps even as a cure-all, might almost be 
considered a statistical disease. As such it is "panstatistic" rather than 
"epistatistic," being present almost anywhere and over a long time.

In the statistics of measurement it most naturally and frequently 
appears in the use of a single overall F-test as the comparison among all 
means. The development of the analysis of variance has provided, as 
one of its implicit, unrecognized functions, a way to escape from such 
an overall test. (These tests are sometimes called "portmanteau tests" 
because they try to carry everything at once. Perhaps "carpetbag test" 
would be more appropriately degrading.)

As a matter of fact, however, the classical approaches and practices 
of the analysis of variance involved concealed inequalities in the way in 
which error rates were granted to different blocks of intercomparisons. 
The development of multiple comparison procedures during the present 
decade (see H3 below) has thrown light on these inequalities, and 
developed a certain conflict of opinion, and considerable intensity of 
view, as to whether they should be removed by weakening the more 
stringent standards or tightening the less stringent ones. (The writer 
has upheld the latter view.)

Insofar as the analysis of counted data is concerned, the F-test and 
the analysis of variance have been historically of limited significance 
(though this situation is likely to change over the years). Thus any 
example we give here should relate to some other portmanteau test and 
its modification. The grand portmanteau for counted data is of course 
the chi-square test, and it is here that we shall deal with an example. 
But before coming to the example itself we need to clarify certain 
general aspects.

First, as we noted above, there is not yet unanimity as to what 
should be the customary assignment of error rates to dissected F-tests (or 
their replacements). And it is almost certain that whatever view may 
prevail for F-tests, an analogous view will in due course prevail for chi- 
square. The writer is a protagonist of one side in this discussion; will
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those who follow his views thereby put themselves in jeopardy? I feel 
that we can confidently say "no". For the procedures to be discussed 
are the most conservative of all the multiple comparisons procedures so 
far proposed, in the sense that every indication they call "definite" will 
be called definite at the same probability level (or perhaps at a more 
extreme level) by any other multiple comparisons procedure. Yet the 
procedure to be discussed will be seen in practice to be more sensitive 
and searching than the classical overall procedures. However the 
controversy comes out, we can make a definite gain in sensitivity and 
incisiveness by taking this step now.

Second, empirical knowledge has to be bought by the simultaneous 
expenditure of several currencies. One of these is a willingness to be 
wrong a certain fraction of the time. We spend this currency, along 
with others, whenever we do an experiment or make an inquiry. We 
can spend varying amounts of "error rate" at our choice, and it is best to 
spend the most where the probable return is most valuable. Quantity 
and price are far from linearly related, however, and we may expect to 
be wise by spending many small sums upon individually unpromising 
possibilities, together with fewer larger sums upon individually 
promising possibilities. Thus we should allocate, or budget, error rate 
with the same care with which we allocate samples over strata, or 
numbers of levels over factors, and, in this allocation, we should be 
guided (in part) by some of the same principles which guide the other 
allocations.

H2. A SPECIFIC EXAMPLE

The specific example to be dealt with comes originally from a 
biochemical study of people (Williams, et al. 1950), in which some 62 
significance tests were performed. These tests seemed on the whole to 
show association, though no one, two or three gave conclusive evidence. 
The initial treatment was objected to (Popham 1953), so that a further, 
more formal analysis was undertaken (Tukey 1954). (For further 
discussion of the original example, see Chung and Fraser 1958 and 
Dempster 1960.) As part of an early stage of this further analysis, it was 
desired to treat these 62 significance tests as if they were independent. 
(Strictly speaking, of course, they could not be independent since they 
involved the same persons.) In the original analysis, two-decimal two- 
tailed P values had been obtained for all 62 significance tests. The 
problem before us is thus: Is it reasonable that these 62 values are a 
sample from a uniform distribution? To answer such a question we 
naturally reach for a chi-square test. (Before going on to the details, we
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should remark that it is possible to make suitable allowance for the 
actual lack of independence of the 62 P values, and that this was also 
done in Tukey 1954.)

The conventional chi-square analysis is set forth in Table 18, where 
an unusual column is to be found at the right. The conventional result, 
then, is a chi-square of 14.47 on 9 degrees of freedom, corresponding to 
a significance level of about 11%. Those who use this analysis have 
behaved as though it were equally valuable to detect any and all 
deviations from uniformity of distribution. This is of course far from 
the case. Deviations of rather systematic natures, corresponding to the 
piling up of P-values at one or both ends, or in the middle, are both 
more likely to occur and more valuable to detect. We should in some 
way focus more of our attention (i.e., spend more of our precious error 
rate) on deviations of these sorts, leaving less for more irregular 
deviations from uniformity.

Having our chi-square written as a sum of squares, we may apply 
conventional techniques of breaking up sums of squares and examine 
the results appropriately. When the elements contributing to a sum of 
squares are naturally arranged at equal spacing in a one-way table, as is 
the case here, it is natural to use orthogonal polynomial coefficients as a 
means of dissection. The gory details, which need not really concern 
us, are to be found in Table 19. The results, with which we should be 
concerned, are given in Table 20. The right-most column labeled 
"Allotted 'bogey'" is again unfamiliar. Its contents, 2%, 2% and 1%, 
represent a splitting up of the 5% error rate we would otherwise have 
been willing to allot to the whole 9-degree-of-freedom chi-square, and 
an allotment of these parts to the three portions into which this chi- 
square has been split. The choice of the sizes of these three parts of 5% 
has obviously to be a matter of judgment, but the realities of the 
situation go far to prescribe what should be done.

In the actual example, the trend constituent, with its significance 
level of 0.2%, is far more extreme than the allotted bogey of 2%. 
Consequently we conclude that the P-values are piled up at one end or 
the other. We may if we choose, and it would be very generally wise to 
so choose, allot this 2% half to the trends toward high P-values and half 
to trends toward low P-values. The observed one-sided significance 
level of 0.1% exceeds the new one-sided bogey of 1%, and examination 
of Table 21 shows that we may conclude that there was an excess of 
large P-values.
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Table 18
Application of classical chi-square to the comparison of 62 

P-values.with a uniform distribution from which 
they might have been a sample. In each cell,

O — number observed and E — number expected. 
Value marked * is x i as classically calculated.

Cell boundaries 0 (O-E)2.
E

O - E
Ve " ‘ X i

0.00-0.09 3 6.2 1.65 -1.29
0.10-0.19 2 6.2 2.84 -1.69
0.20-0.29 5 6.2 .23 -0.48
0.30-0.39 5 . 6.2 .23 -0.48
0.40-0.49 8 6.2 .52 -0.72

0.50-0.59 7 6.2 .10 -0.32
0.60-0.69 3 6.2 1.65 -1.29
0.70-0.79 8 6.2 .52 -0.72
0.80-0.89 9 6.2 1.26 - 1.12
0.90-0.99 12 6.2 5.44 -2.33

Total 62 62.0 14.44* - 0.02

x i also “  (—1.29):1 + (1.69)2 + •• • + (—2.33)2 - 14.47 and very
nearly -  (-1.29)2 + (1.69)2 • • • -  (2.33)2 -  (0.02)2 -  14.47

Differs from 14.47 due to accumulated roundings.

As was the case in this example, such dissected tests, which spend 
no whit more of error rate, often both:

(1) detect deviations which would be otherwise unnoticeable, and
(2) report their positive findings in much more specific and useful 

' forms.

Such procedures of splitting and alloting error rates deserve 
consideration, and use, in a wide variety of situations, including 
complex analyses of variance. Detailed discussion here, however, would 
lead us too far afield.
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X t

Table 19

Breakup of the 9-degree of freedom sum of squares which 
approximates classical chi-square into three parts.

-  (0 -E ) /V e for j,h cell. SSq ■“ sum of squares for column.

Cell X l

, SSq

Orthogonal coefficients

0 -1.29 -9 6 11.61 -7.74
1 -1.69 -7 2 11.83 -3.38
2 -0.48 -5  ' -1 2.40 0.48
3 -0.48 -3 -3 1.44 1.44
4 -0.72 '-1  ' —4 ' -0.72 -2.88

5 ^ -0.32 i ; " —4 0.32 -1.28
6 -1.29 3 -3 -3.87 3.87
7 -0.72 5 -1 3.60 -0.72
8 -1.12 7 2 7.84 2.24
9 -2.33 9 6 20.97 13.98

S (— sum) —0.02 0 0 : - •55.42 -6.01
SSq 14.47 330 132

Xlinear2 " +(55.42)7(330) - 9.31 -  (+3.06)2

^quadratic2 " +(6.01)7(132) - -  0.27 -  (-0 .52 )2

Xresidual2 " +(14.47) - (9.31) -  (0.27) - 4 .8 9

Table 20

The dissected chi-squares and their relation to "bogey".

Nature of 
chi-squares

Degrees of Chi-Square Significance Allotted 
freedom value level "bogey"

Indicative of piling up at 1
one end or the other

9.31 0.2% < < 2%

Indicative of ends higher 1
or lower than the middle

0.27 60% >> 2%

Residual
' 7 4.89 55% , >> 1%

(Undissected for comparison)
Pooled 9 14.47% 11% > 5%
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Table 21

Further dissection of first single degree 
of freedom in Table 19

One-sided 
Deviate significance 

Deviate value level*
Allotted
"bogey"

Indicative of piling
up toward cell 0 XUnear -3.06 99.9% > > > 1%

Indicative of piling 
up toward cell 9 ‘i'XUnear -F3.06 0.1% < < 1%

H3. MULTIPLE COMPARISON PROCEDURES

As noted in passing above, the present decade has seen the 
development of multiple comparison procedures, ways of 
intercomparing a number of means or other estimates in all possible 
ways. Specific techniques have been proposed by a number of authors. 
(For some references see Kurtz et al. 1965a.) The most conservative of 
the serious proposals is that of the writer, which can be summarized as 
in Table 22. The necessary factors are provided in Table 23.

Through the courtesy of Frank Beach, we can present an example 
which is surely behavioral, since it involves both sex and rats. It is 
adapted from an unpublished study by Beach and Whalen on the effect 
of enforced rest, following one ejaculation, on copulatory behavior in 
rats. The variable treated here is the average intercopulatory interval 
(ICI) after the enforced separation of the rats. The data and 
computations are presented in Table 24. Using this technique, it is, in 
particular, demonstrable with 95% confidence that the Id 's  for 15 and 
60 minutes are each less than those for either 5 or 180 minutes.

H4. THE BASIC SOURCE OF CONFIDENCE

It is time to say again, specifically, firmly, and clearly, what we 
have said before: The only basis for statistical confidence, including 
confidence in the statistical significance of some difference, is the 
presupposed independence of the fluctuations contributed by different 
portions of the body of data considered. It may well be that this 
restriction is not necessary, it may be that other presuppositions might 
come to serve as alternative bases. But they have as yet not done so.
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Table 22

Digest of a multiple comparisons procedure.

If Xi,X2, . .  . ,xm and s2 and /  are such that, had any Xj and xj been 
the only two x's, it would have been legitimate to refer

s VI
to Student's f distribution on /  degrees of freedom so that, under 
that assumption, we could (a) test the significance of the difference by 
comparing this value of t with the value t5% found in the standard 
tables for 5% and /  degrees of freedom; (b) assert with 95% 
confidence that the true difference differed from that observed by no 
more than ±  15% (s VI); then, under the actual conditions, we need 
only increase this comparative allowance by multiplication by a 
factor which may be taken from Table 23, forming

comparative allowance -  ±  (tB%) (s VI) (factor)
We may then assert any and all observed differences x,- -  x, as 
differing from the corresponding population (or "true") difference by 
no more than this comparative allowance, and that all of our 
assertions will be correct in 95% of all instances. (One instance — 
application to the intercomparison of all pairs is one family, 
*i,x2, . .  . ,xm, of determinations.)

(T^ere is no mathematical reason why a presupposition that certain 
fluctuations are not independent, but instead have all simple correlation 
coefficients equal to 0.57, could not serve as such a basis. But the 
reasons discussed in A2, which are mainly psychological in nature, do a 
lot to cause such alternative presuppositions to be regarded as arbitrary 
and to prevent their acceptance in practice.)

Thus in simple random sampling, for instance, we presuppose that 
each item is selected at random from the population, a presupposition 
which ensures correct results "on the average" but provides no basis for 
significance or confidence, and that these selections are independent, 
which leads to significance tests and confidence procedures which are 
valid whenever the appropriate, detailed, additional presuppositions 
hold. Selection at random of clusters of items, rather than single items, 
has no effect upon the correctness "on the average" of the sample result, 
but greatly changes the appropriate technique for judging confidence or 
Significance. Indeed, if the clusters cannot be even partially identified 
in the given data, there will be no way to attain statistical confidence 
and significance.
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Table 23
Factors for calculating comparative allowances.

m factor m factor m factor m factor

11 1.65+1.7// 21 1.82+2.5/f 35 1.95+3.4//

2 1.00+0.0/ / 12 1.67+1.8// 22 1.83+2.6// 40 1.99+3.7//

3 1.20+0.4// 13 1.70+1.9// 23 1.85+2.7// 45 2.01+3.9//

4 1.32+0.6// 14 1.72+2.0// 24 1.86+2.8/ / 50 2.04+4.1//

5 1.40+0.8// 15 1.74+2.1// 25 1.87+2.8// 60 2.08+4.4//

6 1.46+1.0// 16 1.75+2.2// 26 1.88+2.9// 80 2.15+5.0//

7 1.51+1.2// 17 1.77+2.3// 27 1.89+3.0// 100 2.19+5.4//

8 1.55+1.4// 18 1.87+2.4// 28 1.90+3.1// 200 2.37+6.9//

9 1.59+1.5// 19 1.80+2.4// 29 1.91+3.1// 500 2.61+9.1//

10 1.62+1.6// 20 1.81+2.5// 30 1.91+3.2// oo 00 +  o o / /

Many times independence of selection has to be attained by a more 
or less reasonable fiction, most often a fiction of a hypothetical 
population, (compare Section B4), to which a statistical step of inference 
may reasonably be sought. But if we are to have confidence in 
something beyond the bare limits, in space and in time, of what was 
observed, we must take nonstatistical steps of inference which are at 
least equally hard to support.

The typical character of a body of data on the basis of which we 
wish to establish statistical confidence is then a body of data divided in 

.subbodies presupposed to show independence of fluctuation. Perhaps 
an intensive battery of psychological tests have been given to 500 
children, and the result of a complex but specific calculation obtained. 
If it is reasonable to divide the 500 into ten 50's in a specified way, and 
then presuppose independence of fluctuation of the ten contributions 
corresponding to these ten groups, we can seek confidence in the over
all complex result on the basis of the extent of quantitative agreement of 
the results for the 10 separate groups.

The observational situation may be such that we dare make up 
these groups at random. If this were so, and if the complex calculation 
were very simple, we would probably be able to "take down from the 
shelf" a conventional technique for confidence or significance. But it is 
much more frequent that, if the presupposition of independence of



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 0 5

Table 24
Example of use of multiple 

comparisons technique.

Enforced rest Average intercopulatory
(minutes)

5 
15 
60 

180

interval (seconds)

34.7
19.0
18.1 
29.3

f - ■ -  4.45

Estimated variance per rat -  68.3 (sec)2.
Estimated variance for mean of 11 rats -  6.21 (sec)2,

(both on 33 degrees of freedom).

t -test for deviation of 15 second rest 
from 5 second rest;

1.90 -  34.7 
y/l2A2

<5% “  2.036 (from standard tables) 

h% (s V2) — 2.036 Vl2.42 — 7.2 (seconds).
Hence if no other times of rest had been used
(a) these two would be significantly different at 5% and,

(b) we could have 95% confidence that the actual difference between 
intercopulatory intervals was within ±7.2 seconds of that actually 
observed, and was consequently between -22.9 and -8.5 seconds.

Since four times of rest were used, the factor from Table 23, amounting to

1.32+ - -  1.34 33
must be used, thus requiring an allowance of

(1.34) (7.2 seconds) — 9.6 seconds.
Thus we may have 95% confidence that all the statements of the class 
exemplified by

(ICI for 15 min.) -  (ICI for 30 min.) -  19.0 -  18.1 ±  9.6 seconds
— between 8.7 and +10.5 seconds,

(ICI for 180 min.) -  (ICI for 15 min.) -  29.3 -  19.0 ±  9.6 seconds
“  between+0.7 and 19.9 seconds 

(ICI for 15 min.) -  (ICI for 5 min.) -  19.0 -  34.7 ±  9.6 seconds
— between —25.3 and —6.1 seconds

are correct.
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fluctuation is to be reasonable, we must assemble the groups much more 
systematically. Perhaps we may divide the subjects into groups in 
accordance with the dates on which they were tested, or according to 
the sizes of the high schools attended, or according to the state or 
residence. The more obviously separated the groups, the more likely to 
be reasonable is the presupposition of independence of fluctuation.

H5. THE JACKKNIFE * 1 2

The result of a simple computation, such as finding a mean or a 
slope, based upon a body of data divided into sub-bodies of 
independent fluctuation, can be provided with confidence limits by a 
procedure tailor-made for the purpose. The results of a complex 
computation, even if applied to a similarly divided body of data, cannot 
be so treated, because no firm of statistical tailors will have produced an 
appropriate special procedure. If a psychologist has given a battery of 
tests to some subjects in such a way that each item on each test can be 
scored in two ways, /I and B, if he has then calculated split-half 
reliability coefficients for each combination of test and scoring method, 
and has averaged these reliabilities for each of the two ways of scoring, 
how is he to judge the significance of the difference of the two average 
reliabilities, especially since almost everything is correlated, to an 
unknown degree, with almost everything else? An honest estimate of 
significance must go back to differences between persons, or between 
groups of persons, since only here is independence of fluctuation at all 
reasonable. (Even here it may require a hypothetical population to 
make it reasonable.)

The simple approach to assessment of significance in such a 
situation is to repeat the complex calculation for each sub-body of data 
separately, and to use the spread of the results as a basis for judging the 
uncertainty of the result calculated from the whole body of data. This 
approach has various difficulties:

(1) if the sub-bodies are too small, the complex calculation may be 
impossible, as when it is sought to use a single point to determine 
a line;

(2) if the sub-bodies are somewhat larger, the complex calculation, 
though possible, may lead to results which:

(a) are nonsensical; or
(b) which vary too widely to be a fair basis for estimating the 

variability of the result of the complex calculation applied 
to the whole body of data.
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In most circumstances, moreover:

(3) the results of a complex calculation will usually be biased, the 
amount of bias depending upon the size of the body of data used; 
the result for the whole data will usually not be free of bias.

It is worth some trouble to avoid these difficulties. Fortunately it is very 
easy to greatly reduce some, and eliminate the rest, by a simple device.

Suppose that there are r different sub-bodies, and that we are 
prepared to treat them as of equal weight. Let

Vij) -  the result of applying the complex calculation to the whole 
body of data with the exception of the ;th  sub-body.

Let

y -  the result of applying the complex calculation to the whole 
body of data, without exception.

Now define pseudo-values by

y / “  r y  -  ( r - l ) y (y).

The price of carrying on to this point is no more than for the first 
suggestion. The complex calculation has to be gone through r + 1 
times. (Especially with the rise of the electronic computer, the price in 
effort of such repetition goes down steadily.)

In most instances these pseudo-values, y . . .  ,y  't can now he 
treated, for the purpose of setting confidence limits, as if they were r 
individual observations on the result of the complex calculation, observations 
with independent fluctuations. This statement is far from obvious, but can 
be obtained and documented for a wide variety of instances by 
appropriate algebraic manipulation or by mathematical experimentation 
(Tukey 1957, Tukey and Chanmugan NYC2). Be the statement obvious 
or unobvious, it is surely useful, for there are many standard procedures 
for setting confidence limits for a population mean on the basis of a 
simple random sample of observations. Student's t is a classic, while 
such standard nonparametric procedures as the one-sample Wilcoxon 
test and the sign test are easily converted into confidence procedures.
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H6. THE FEW EXCEPTIONS

All that remains is to list the cautions which need to be observed 
in the use of this all-purpose, Boy-Scout-jackknife-like confidence 
procedure. So far as is now known, there are only two broad classes of 
situations in which the jackknife may not be effective:

(1) situations in which the answer is coarse-grained; and
(2) situations in which the estimation is very narrow.

Both deserve a word of explanation.
If the result of the complex calculation behaved like "the most 

common number of children in a U.S. family" or, even more extreme, 
like "the number of U.S. presidents to be elected by the Democrats in 
1964," where only a few values are at all possible (in the latter instance 
only two, i.e. "0" or "1"), this coarse-grainedness of answer is very 
likely to make the jackknife procedure ineffective.

If some one observation or some few observations dominate the 
value of the result, the result is said to be narrowly estimated. The 
largest observed value of some quantity is usually narrowly estimated, 
since this largest value is usually taken on in only one or a few of the 
instances observed. The average sales per outlet of a household 
gimmick sold only by Macy's, by Sears Roebuck, and by not very many 
small country stores is narrowly estimated, because it will be dominated 
by two observations, "How many does Macy's sell?" and "How many 
does Sears Roebuck sell?" There can be many other sorts of narrow 
estimation, but these two should identify the problem.

If the result for which confidence or significance statements are 
desired is narrowly estimated, the jackknife method is not likely to be 
effective. This is true whether the few dominant values are included 
among the actual observations or are only among the potential 
observations. In this latter case we speak of vanishing estimation.

Thus if there is exactly one very extreme individual in a 
population, the fact that the most extreme observed value in the sample 
was represented by many individuals offers no protection. The sample 
offers little or no evidence as to how extreme the single anomalous 
individual may be.

Similarly, if a sample of sales for the household gimmick includes 
only sales for some country stores, the very much larger sales of Macy's 
and Sears Roebuck cause even more difficulty when they are missing 
than they would if they were in the sample.
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When reasonable and possible, narrow or vanishing estimation is 
best avoided. If the very extreme value can, without loss of relevance 
and usefulness, be replaced by the value exceeded by only 1 instance in 
100 much will have been gained. Not only will the jackknife method 
be applicable as soon as a sample of some hundreds is available, though 
a simpler special-purpose method should probably replace it, but the 
graspability of the result will be better in samples of any size. Rational 
study of the sales of the kitchen gimmick calls out for stratification into 
three strata of outlets: large department stores, large mail-order houses, 
small country stores. Once the data is thought of, and collected, in this 
way, there not only remains no problem of narrow estimation, but the 
whole process becomes much more efficient, helpful, and manageable. 
And so on.

It may not be possible to avoid narrow estimation, particularly 
when the analogs of Macy's or Sears Roebuck are unrecognized or 
unsuspected. If narrow estimation has to be faced, it must be regarded 
as a very special and veiy important difficulty, to be thought over 
carefully in each special instance.

EPILOGUE

Starting from the first badmandment, and its expansion stage by 
stage, we have discussed topics which may seem slightly disconnected, 
which now ought to be drawn together to a point, to be focused like the 
light rays of well-behaved instances of geometrical optics. At the same 
time, certain of the points made above can receive the additional 
emphasis they deserve.

Let us begin by trying to epitomize various sections of the 
discussion in terms of conclusions (and comments thereupon):

Al. Causation can only be established as a theoretically inevitable 
consequence of empirical observations. (Failure to recognize this 
dual requirement leads to asking too much of statistics, and to 
consequent dissatisfaction.)

Those who regard the very arbitrary act of "doing nothing 
about • • • " as "not arbitrary" are afraid of being called arbitrary 
rather than of beittg arbitrary. (Thereby they lose many 
opportunities and are often very arbitrary.)
From empirical observations to desired conclusion is two steps, 
and at most the first can be purely statistical. (It is best that the 
first step reach out as far as possible.)

A2.

Bl.
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B2.

B3.

B4.

Cl.

D4.

Drosophila often stand for all flies, all insects, or all life. (This 
must be a biological act of faith, not just a statistical one.)
To regard the particular redheads, brunettes and blondes who 
entered a beauty contest as more than just a sample is unwise. 
(If they are not random samples from specifiable populations, 
that fact does not warrant promoting each subset of contestants 
to be a population.)
Even a sociologist's single interconnected group of people needs 
to be considered a sample — often a sample of size one. (When 
so regarded, more efficient sampling designs become clear.)

C2.

Noting and utilizing empirical regularities was very important 
in the growth of physics. (It may be expected to be just as 
important elsewhere.)
Formal statistics, at least in science, exists as a relatively precise 
mode of communication, both inter- and intra-individual. (It is 
not just a way to make safe statements or a way to choose good 
bets.)

C3. While setting up an analysis in advance should be regular 
practice, the data must always have a chance to guide its own 
analysis. (Certain formal statistical difficulties can and should be 
overcome. But the investigator should not wait for this to 
happen before looking to the data for guidance.)

Dl. Broad classes are not as useful as narrow ones. (Especially when 
later analysis is wisely performed and interpreted.)

D2. Classes so fine that two experts cannot agree on the exact class 
for three-quarters of the cases need not necessarily be too fine. 
(Enrico Fermi once said: "Measurement is just the making of fine 
distinctions".)

D3. "Controlling" variables in broad classes is not at all certain to be 
effective. (Of course it does help.)
Dichotomizing instead of choosing the best scale one can select 
is most unwise, and brings a fool's reward. (An "arbitrary" 
equal-step scale is always better than a randomly chosen 
dichotomy.)

El. Deep and careful searching into physical measurement has led to 
a formalization of what measurement in the highest monastic 
sense should be. (And this formalization is subject to 
misinterpretation!)



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 1 1

E4.

E2. Choosing the scale of the response without regard to the effects 
of the variables to be studied is almost sure to lead to trouble. 
(Massive "interactions" are the most likely trouble sign.)

E3. If lack of knowledge forced us to start with an arbitrary response 
scale, the first way to use the data is to seek for a better mode of 
expressing the response. (With luck such an empirical step can 
lead to deep and broad advances, but it will anyway be valuable 
on its own account.) r If a scale of response can be found so that 
the factors act additively, the result will be joint measurement of 
the factors according to the highest monastic standards.

Expressing relative numbers as a response is usually best done in 
terms which differ from percentages by stretching the "tails" (in 
comparison to the "center"); three modes of expression are often 
used for this purpose. (Graph papers with percentage scales 
makes the use of these three simple. Shape-changing of scales 
matters to later analysis, while uniform stretching or shrinking, 
as produced by a linear transformation, ordinarily does not.)
These modes have rather understandable properties. (The use of 
the modes can be quite helpful even to those who do not know 
either these properties or their formal definitions.)
In very simple examples, the use of these modes often exposes 
insights which percentages concealed. (Don't be blinded by the 
simplicity of such changes. The largest dividends are likely to 
come from simple ways of doing things better.)

El. Borrowing strength from parallel, formally irrelevant 
observations is not only often practiced, but desirable. (Its 
dangers are better faced than avoided.)

F2. The technique of pooling information "within" portions of a 
classification (as opposed to pooling the raw counts themselves) 
is an important way of borrowing strength. (It is much used, in 
concealed form, in modern analysis of measurements. It offers 
many possibilities of better analysis in behavioral science.)

F3. Statistically appropriate "adjustment" for the values of variables 
whose effects are confusing and irrelevant is a valuable tool. (It 
is, in large part, another way of borrowing strength. Its use 
must, of course, be reported.)

F4. Residuals, which represent differences between what was 
observed and what has been systematically described, offer the 
greatest possibility of discovering unexpected things in a body

E5.

E6.
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of data. (In a concealed way, they underlie many statistical 
procedures.)

F5. Counted data are subject to adjustment, and can generate 
residuals, once attention is given to subgroups, instead of 
individuals. (Any of various modes of expression for the relative 
numbers showing a characteristic in each subgroup may prove 
most helpful.)

F6. Data quite frequently, perhaps usually, has to be analyzed in 
stages if its analysis is to be either efficient or searching. (Often 
pre-analysis of small subsamples is desirable. Sometimes a 
"complete" analysis provides only a jumping-off place for a 
better analysis.)

Gl. Many fallacies, which should be carefully studied and avoided, 
are prevalent in the use of tests of significance. (But even so, the 
overall value of such tests is great.)

G2. There is much to be gained by avoiding "omnibus" tests through 
dissection of intercomparisons into more meaningful pieces. 
(And by treating "error rate" as a scarce commodity, one to be 
carefully and wisely allocated.)

G3. In many specific instances, splitting a chi-square offers very 
much more insight into what is happening. (As well as often 
converting a lack of significance into significance.)

G4.

T3.

There are now adequate procedures for making all possible 
intercomparisons among a set of means or other typical values. 
(These are statistically respectable, and involve meaningful 
probability statements.)
More attention needs to be given to the multiple uses to which 
tabulations will be put. (And a suggestion by Dwyer offers one 
approach.)

Most of these epitomes can be classified under one or more 
(average 1.7) of the following prime goodmandments (classification 
indicated): -

(X) As a scientist and investigator you can never give over your 
responsibilities as a thinking, judging, noticing, feeling person. You can 
receive much help from such tools as concepts and statistical techniques, 
but you must use them, not let them use you. You can do better than a 
machine, but only by taking the chance of doing worse. (Al, A2, Bl, B2, 
B3, B4, Cl, C2, C3, El, E4, E5, FI, F6, Gl, G2, G3.)
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(Y) The twin arts of empirical approximation and statistical inference 
complement each other. Either slone yields limited gains and exposure to 
certain dangers. Both together offer far greater returns (and less 
danger). (A2, Cl, C3, D3, D4, E2, E3, E4, E5, E6, FI, F2, F3, F4, F5, F6, 
G2,G3,G4.)

(Z) You must "sit loose" to data, to results of analyzing data, and to 
interpretations of these results, if you are to get full value from any of them. 
Treating any one of these as "black or white" means discarding both 
information and opportunities for insight. (Al, Bl, B2, B3, B4, C2, Dl, 
D2, E2, F3, F4, F6, Gl, G2, G3, T3.)

Of what are these three prime goodmandments extensions? To
what focus can we finally converge? There is but one choice:

IN BUILDING NEW SCIENCES, LOOK TO HOW THE ELDER SCIENCES 
ACTUALLY WERE BUILT.

Do not look to how it is stated that they should have been built, or 
to how their completed edifices appear, even though, as is often the 
case, one or other of these is claimed to show "how they were built". 
Look to the formative stages of the elder sciences, look to the actual 
practice of scientists during those stages.

R. REFERENCES AND BACKGROUND 
MATERIAL

The sections which follow are an attempt to try to direct the interested 
reader to material which extends, or illuminates, or contradicts the 
material of the previous sections. The last section (R9) gives details of 
all references cited. Background material for the appendices (S, T, U, V, 
W) is to be found at the end of each appendix.

Rl. BACKGROUND FOR CHAPTER A

There seem to be few discussions, if any, of the establishment of 
causal relations. The classical technique, still not widely enough 
employed, for the utilization of assumed causal relations in untangling 
complex numerical data is Sewell Wright's path analysis. Wright 1923 
and Wright 1921 are good introductions. Wright 1934 and Wright 1951 
give advanced accounts. Path analysis was originally stated in 
correlation form, but can be put into regression terms (Tukey 1954). For 
recent expositions see Li 1955, Li 1956, Turner and Stevens 1959.
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At the time of its introduction, path analysis was attacked (Niles 
1922, 1923) by proponents of Karl Pearson's (1892 ff) view (which has a 
long philosophical history) that causation was merely close correlation. 
(Fortunately this attempt to find certainty in uncertainty seems to have 
lost its popularity among users of quantitative method, though it seems 
still to be popular among philosophers.)

For a discussion of the meaning of causation, see Wold 1966. (The 
writer would agree with Wold about meaning, but not about ease of 
verification.) Questions of antecedent and intervening variables are 
often relevant in connection with causality. Lazarsfeld 1958 offers an 
introduction to their use (at pp. 117-124 and 130).

Even less can be offered as background on what does and does not 
constitute arbitrariness.

R2. BACKGROUND FOR CHAPTER B

The opposite view to that put forward in this chapter has been 
strongly stated by Kempthorne (1955, 1961).

At a more technical level, discussions of the "corrected error term" 
in analyses of variance are related to this question. See Chapter 5 of 
Goulden 1952 or Section 11.8 of Snedecor 1946 for discussions in an 
agricultural context. Green and Tukey 1960 for a partial discussion in a 
psychological context, and Fisher 19?? (reference lost!) for an early and 
fundamental statement. (Still more technical material may be found in 
Wilk and Kempthorne 1955 and 1956, and in Cornfield and Tukey 1956.)

R3. BACKGROUND FOR CHAPTER C

Again a dearth of references.

R4. BACKGROUND FOR CHAPTER D

Surely there must be many references in the psychological 
literature. But where?

The effects of grouping on simple statistics is a classical topic. The 
effects of grouping on normal variates are among the topics treated by 
Fisher in "O n  The Mathematical Foundations of Theoretical Statistics" 
(see Fisher 1922, pp. 317-321). The connection between grouping 
efficiency and reclassification agreement seem to have been first 
discussed in Tukey 1950.
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The subject of selecting effective scales for ordered classifications, 
with or without additional information, has been undertaken by 
Abelson and Tukey (1963, others in preparation).

The limitation of statistical procedures by scale type has been 
almost exclusively discussed by Stevens (1946, 1951, 1955, 1959). See 
also Mosteller (1958).

R5. BACKGROUND FOR CHAPTER E

Discussions of fundamental measurement seem to have been 
largely confined to Campbell 1920, 1928, and Stevens 1946, 1951, 1959. 
It is clearly time for a reconsideration of the whole subject. (A brief 
discussion will be included in Tukey NYCl.)

The choice of modes of expression, and the reasons for choice, 
have also been rather neglected. A fair amount of general discussion 
together with rather careful consideration of techniques for choosing an 
appropriate mode may, in due course, appear in Tukey NYCl., The 
earlier literature speaks mainly of "transformation" (e.g., Bartlett 1947).

For further discussion of particular modes of expressing counted 
fractions, see Appendix U below.

For a brief discussion of modes of expression for other quantities 
than counted fractions, see Appendix V below.

R6. BACKGROUND FOR CHAPTER F

Explicit discussions of "borrowing strength" and "pooling within" 
seem notable by their absence, although these notions underlie most of 
the refined procedures of modern statistical analysis.

Similar remarks seem to apply to the other topics treated in 
Chapter F.

The use of sophisticated statistical techniques, rather than simple 
ones illustrated in Chapter F is not likely to be often necessary in 
connection with pooling within" counted fractions expressed in 
normits, logits, etc. Moderately extensive examples of sophisticated 
techniques may be found in Yates 1955.

R7. BACKGROUND FOR CHAPTER G

Many of the main references on when significance tests should be 
used were already cited in Section Gl. The discussion begun by Selvin 
1957 was continued by McGinnis 1958 and Kish 1959 (as well as by
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shorter discussions mentioned under Selvin 1957). Wold 1956 
approaches the question somewhat differently. The discussions in 
Merton et al. 1958 (at pages 302-304) and Zeisel 1955 were cited above. 
A  strong opposing view has been taken in Kempthorne 1961.

The interpretation of the growth of statistics as a search for 
certainty does not seem to appear in the literature.

Many books on laboratory technique discuss the importance of 
systematic errors, but the writer knows of none that goes on to discuss 
their implications for the analysis of fluctuating errors in any detail. 
Some useful general background may come from reading Wilson 1952 
on general scientific technique, and DuMond and Cohen 1958 on the 
present state of knowledge of the fundamental physical constants. 
(Their statement at page 7-164 that "the adjusted 'best' values have 
changed in the last two years by from five to nine times the estimated 
probable errors of the December 1950 evaluation" clearly illustrates the 
importance of systematic errors in physical science measurements.)

Many books on statistics devote some space to the fallacies of 
significance testing. None can be complete, since new fallacies are 
frequently invented to supplement the old. It seems best not to suggest 
any particular sources.

R8. BACKGROUND FOR CHAPTER H

The splitting and allocation of error rates has been little discussed 
in print, perhaps because of its necessary use of judgment, and its 
consequent apparent arbitrariness. The best discussion of the partition 
of chi-square is undoubtedly that of Cochran (1954) which is «of made 
obsolete by more detailed work of Lancaster.

Multiple comparison procedures are a recent development, and 
have led to strongly conflicting views. The only exposition of views 
similar to the writer's is to be found in Ryan 1959a, which is addressed 
to psychologists. (It is hoped the Kurtz et al. 1965 will appear shortly 
and that Tukey 1960u will appear.) Extended lists of references to 
articles presenting various views can be found in Kurtz et al. 1965.

The only direct reference to the jackknife procedure in print is 
Tukey 1958. A relatively full account is being prepared by Chanmugam 
and Tukey NYC2.
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S. THE ARITHMETIC OF GROUPING

Rounding off numerical values, grouping frequency distributions, and 
classifying on the basis of either rules or judgment, lead to essentially 
similar problems of how much information is lost by severe rounding, 
long grouping intervals, or broad classifications, and of how much effort 
is wasted by overgentle rounding, very short grouping intervals, or 
overnarrow classifications. The best extent to round, group, or classify 
has to be learned from essentially similar facts. Yet in much of today's 
practice we are too "cautious" in all three. And by being "cautious" we 
adopt wholly inconsistent standards, frequently carrying more decimal 
places than we need, and very often refusing to make as fine 
classifications as would help us. The first of these three practices tends 
to deviate in one sense from our relatively sound practice in grouping 
frequency distributions, the third tends to deviate oppositely.
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SI. KINDS OF ROUNDING, AND SOME PROPERTIES

The question of rounding off values is always with us in one form 
or another. It is often helpful to know just what the quantitative effects 
of rounding are. Suppose we replace continuously, and sensibly 
uniformly, distributed values by values rounded to steps of width h. 
(Rounding to 3 decimal places, for example, corresponds to h — 0.001.) 
How much shift, on the average, is there between unrounded value and 
rounded value?

Kind of Rounding

Perfect (to nearest rounded 
value)

Average Square of Shift

(l/12)h2

Random (to either of nearest 
two rounded values with 
equal probability)

(4/12)h2 -  (l/3)ft2

Perverse (to further of 
nearest two rounded values)

(7ll2)hi

At least three answers are helpful, viz; These three answers are 
worth considering because they are easy to think about, and because 
they bracket most usual situations which arise either when rounding 
given numbers, or when measuring "to the nearest • ’ • ."

How large can h2 reasonably be? And why? The why must 
usually come from some comparison of average square of shift due to 
rounding with the average square of the fluctuations arising from other
sources.

Many of the books on elementary statistics which discuss the 
calculation of means, variances, etc., of large bodies of data through the 
formation of a grouped frequency distribution indicate the desired 
fineness of grouping (here corresponding to perfect rounding) by 
suggesting that 10 to 20 cells of the frequency distribution should be 
occupied. If the distribution is crudely normal, the range of occupied 
cells will cover some 5 or 6 standard deviations. Let us take 5er as a 
convenient number. If this is 20h or 10ft, then ft ■■ <r/2 or <r/4, and 
(l/12)ft2 is (t2/48 or ff2/192, corresponding to an increase of mean square 
fluctuation due to grouping of 2% of «r2 or 0.5% of <r2. When we allow a 
little for longer occupied ranges due to the non-normality of many 
practical distributions, it seems right to judge that tacit statistical
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practice through the years has found 5% to 1% increase in mean square 
fluctuation due to grouping entirely palatable. This is not different 
from what we might have expected if we had approached the question 
without background of experience.

S2. ROUNDING NORMAL DISTRIBUTIONS

In one of his early long and path-breaking papers, R. A. Fisher 
(1922) studied the effect of (perfect) rounding on (perfectly) normal 
distributions. His results were surprising, and yet have been typically 
overlooked. In addition to the average effects of rounding known as 
Shepard's corrections which do not depend upon how much the 
population mean must be rounded to reach a round value, he found 
small effects depending on the relation of the population mean to the 
two nearest round values. In samples of less than 12,000 million million 
this effect is less than 1/lOth the standard deviation of the sample mean. 
(Similar results hold for all four of the first four moments in samples of 
less than a million million.)

These results cannot be taken over directly for practical guidance, 
since rounding has a somewhat greater effect upon many practical 
distributions than it has upon perfectly normal distributions. But they 
serve as an excellent remedy for the feeling that grouping or rounding 
is always dangerous.

S3. HOW MANY DECIMAL PLACES DO EXPRESSIONS OF 
COUNTED FRACTIONS REQUIRE?

Table 10 in Section E4 presented values of anglits, (modified) 
normits, and (modified) logits to only two decimal places. Table 11 
presented values of "numerator" where simple random sampling 

. numerator , , ■
variance ”  samp[e size *or t^ese same modes of expression. It is clear
from the table that, for these three modes, "numerator" is never less 
than unity, so that the simple random sampling variance is never less 
than 1/(sample size).

As we have seen, if the distribution of some quantity is relatively 
smooth, rounding to steps of width h introduces rounding of variance 
about h2llZ. With h ■■ .01, as in our case, this rounding variance is 
0.0000083+. This is a rather small variance.
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The rounding variance will almost surely be accepted so long as it 
is no more than 5% of the random sampling variance. Thus the random 
sampling variance needs to be at least 0.00017 1/6000 if this much
rounding variance is to be acceptable. Samples of size no more than 
6000 will have this property.

If we require a rounding variance of no more than}l% of random 
sampling variance, a similar calculation shows that it is sufficient for the 
sample size to be no larger than 1200.

In practice, very large samples are rarely so conducted that the 
variability associated with simple random sampling dominates the 
variability of the answers. Accordingly, the precision offered by two 
decimal place accuracy in anglits or modified normits is usually quite 
sufficient for practical samples of any size, while that offered by half
logits is even more certain to be sufficient.

For the "doubled fraction," (column (1) in Table 10), the 
"numerator" becomes quite small for extreme fractions. For such 
fractions, two decimals in the doubled fraction may not suffice for 
samples of some hundreds.

S4. WHEN DOES IT PAY TO SPLIT A BROAD CLASS INTO 
TWO NARROW ONES? * 1 2 3

In Section D2 we argued strongly that it was usually wise to split a 
broad classification if one had any reasonable basis for doing so. In this 
appendix we seek to provide concrete support for this position by 
treating some simple examples. These examples are not supposed to 
represent exactly what happens in any one actual instance of broad 
classification. They are supposed to provide specific instances which 
will help the reader in thinking about the broad class of problems. 
(After all, the methods we use are simple; each reader who cares to can 
choose his own examples and treat as many of them as he desires in a 
similar way.)

We have no hesitation in seeking a simple illustrative and 
informative situation by assuming several things, no one of which 
necessarily holds in practice, namely:

(1) There is an underlying true value for what is being classified;
(2) This true value can be wisely expressed in some definite 

quantitative terms;
(3) In these quantitative terms, the distribution of the true value is 

sensibly rectangular;
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(4) The boundaries of the broad classes are infinitely sharp; this 
classification is perfect;

(5) If a broad class is divided into two narrow classes to each of 
which is assigned a score, or if the same score is assigned to each 
item in the broad class, the proper measure of unsatisfactoriness 
of classification is the mean square error, the average squared 
difference between score and true value.

Once these assumptions have been made, there is no loss of 
generality in assuming that the true values of the broad class extend 
from 0 to 1. If the natural choice of score for the undivided broad class, 
which here is the best, is made, namely 1/2, then the mean square error 
will be 1/12 — 4/48.

For perfect splitting, in which all items with true values between 0 
and 1/2 fall into the lower class, while all items with true values 
between 1/2 and 1 fall in the upper class, the natural scores are 1/4 for 
the lower class and 3/4 for the upper. The mean square error will be 
(1/2)2(1/12) -  1/48 for each class separately, and hence the same for the 
combination.

For random splitting between upper and lower halves, the mean 
square errors around 1/2 will be 1/12 for each class, and each class will 
have 1/2 for its mean. If we allow "each class to find its own level," so 
that each is scored 1/2, the overall mean square error remains 
1/12 -  4/48. If we force "equally spaced" scores of 1/4 and 3/4 upon 
the halves, as is not unlikely, this figure must be increased by
1 1 i  1 « 1 2

2 — 1/16 — 3/48, to reach 7/48.

Thus we have obtained most of the numbers in the following list 
of mean square errors

Equally Spaced Finding Own
Scores (1/4 and 3/4) 2:1 Scores* Level

Perfect Split 

No Split 

Random Split

1/48

4/48

7/48

1/36

4/48

5/45

1/48

4/48

4/48
Corresponding to scores of 1/3 for lower class and 2/3 for upper 
class.
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We see that if we can let the upper and lower halves "find their 
own level" there is no loss from random splitting, while even if we 
rigidly impose equally spaced scores on the halves, the random split is 
only as much worse than no split, namely 7/48 — 4/48 — 3/48 — 
4/48 — 1/48, as the perfect split is better. (With compromise scores at 
1/3 and 2/3, even random splitting is not very expensive, while perfect 
splitting produces a very considerable gain.)

The notions of "perfect split," "no split," and "random split" are 
quite clear, but what we need to consider most are intermediate cases. 
When we do this, the notion of % classification discrepancy will help us 
somewhat. Consider any pair of items which have the same true value, 
and hence fall in the same broad class. When they are assigned to the 
narrow classes, they may both be assigned to some one half, or they 
may be assigned one to each half. The latter situation we call a 
classification discrepancy, and we ask what fraction of the pairs with 
identical true values will be discrepant. For our three leading instances 
the answer is easy.

0% classification discrepancy — for no split, and for perfect split; 
50% classification discrepancy — for random split.

These are the extreme limits.
The behavior of intermediate cases is naturally described in terms 

of a splitting curve, which shows for each true value from 0 to 1 the 
chance that an item with such a true value will belong to each class. 
Table 25 shows % classification discrepancy, shape of splitting curve, 
and, for each of our three assumptions about scores, mean square errors, 
all for a variety of examples where the splitting curve is made up of 
straight lines.

As we saw above, if scores are allowed to find their own level we 
never lose by splitting. If, instead, we force scores of 1/3 and 2/3 on 
the halves, then one break-even situation arises when units with the 
highest or lowest true values (1 or 0) have one chance in four of being 
assigned to the wrong narrow class. And if, as an extreme, we force 
scores of 1/4 and 3/4 on the halves, one break-even situation arises 
when such extreme items have one chance in eight of being assigned to 
the wrong narrow class.
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Table 25
Effect, when there is an Underlying Continuous (and Uniform)

Distribution of "True Values," of Splitting One 
Broad Class into Two Narrow Classes with Varying 
Precision and with Varying Assignment of Scores

Ratio of Mean Square Error of Classification 
After Subdivision to that before Subdivision

Fraction of Shape of If treated If allowed
Classification Splitting If treated as as to find
Discrepancies Curve equally spaced spaced 1:2 own spacing

50% 1/2 1/2 1.75 1.11 1.00

49% 5/8
3/8 1.50 1.06 0.97

46%

41%

33%

1.25

1.00

0.75

1.00

0.94

0.89

0.94

0.92

0.89

22%

11%

0%

1/6 5/6

K
1/3 2 /3

0.47

0.30

0.25

t 1/2 t
BOUNDARIES 

OF BROAD CLASS

0.36

0.33

0.33

0.32

0.30

0.25
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When we recall that, in terms of our original example in Section 
D2, this break-even situation corresponds to situations where an 
individual who is truly on the very lower edge of the middle class, right 
next the upper working class, has, in fact, one chance in four, or one 
chance in eight, of being assigned to the upper middle class, we see just 
how poor our classifying ability must be if we are to break even, instead 
of gaining, when we split a broad class into two narrow ones.

Table 26

Chances of Shifts of Varying Numbers of Classes on 
Independent Reclassification into Classes of Varying Fineness

Classes per 
Standard Deviation

Chances of Shifts of Efficiency
of

of ludEment* 0 ±1 ± 2 ±3 more Classification’

0.35 61% 38% 1% 60%

0.47 36% 60% 4% 73%

0.71 37% 48% 13% 2% 85%

1.4 29% 25% 24% 13% 8% 96%

2.4 12% 21% 23% 15% 30% 98.5%

3.5 8% 16% 15% 14% 47% 99.3%

or perturbation 
of

( l . o l  +  T T
1

.35

original variance 

for the first time)

to grouped variance

S5. RECLASSIFICATION AGREEMENT AND EFFICIENCY

The discussion of the last section was devoted to the splitting of an 
extremely clearly defined class. It clearly provides a basis for deciding 
whether or not to split the middle class. There is also a place for a basis 
for answering analogous questions in situations where no one of the 
possible boundaries is better defined or more precise than another, 
where classification resembles quantitative measurement.
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Table 27

Formulas Underlying Table 26
With variance of perturbation of judgment -  (t2; interval length -  T<r; 
bases for classification and reclassification — ax and ax + ay with y >  0 
and t ■« fractional part of x/ t, 
then

distribution of y ~  dy, y >  0;

distribution of t ~  dt, 0 <  f <  1, 
y and t are independent,

and : '

dumber of intervals shifted] — integer part of f + y/r, 

so that the probability of shifting <  /  intervals is

— ;r dy +
y+i)r

;
I t

7 + 1 _  IL -yVi dy

-  2 Gau((/+l)r/>/2) - 1 + 2 /  (Gau((/+l)r/V2) -  Gau(/r/>/2))

-  j  ( l -  e- (2l+1)TJ/4)

which for t  -  2.8571 gives

for /  -  0: .9566 + 0.0 -  .3436 -  .6130, 
for 7 -  1: .9999 + .0433 -  .0513 -  .9919,

so that the probabilities of shift of 0, shift of ±1  and shift of ± 2  are, 
when rounded, 61%, 38% and 1% as in the top line of Table 25 
(.35 -  1/2.8571).

For this second basis it is reasonable to consider the conventional 
prototype situation: True values smoothly distributed along a 
continuous scale; apparent values obtained from true values by additive 
normally distributed perturbations; apparent values sliced up by 
equally-spaced cell boundaries; cell lengths narrow with respect to 
width of distribution; perturbations in reclassification independent of
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those in classification. To finish specifying the situation, we need only 
specify one more parameter,

standard deviation of perturbation 
cell length

If we adopt various values for this parameter, we obtain the results in 
Table 26. (These are based upon the formulas summarized in Table 27.)

We see that if no more than 15% of independent reclassifications 
neither check, nor even fall in a class adjacent to the original class, at least 
15% efficiency is lost because the classes are so broad.

T. TRANSMISSION OF QUANTITATIVE 
INFORMATION

The purposes of technical discourse are not unified. Most technical 
writings are intended to span at least a modest portion of the broad 
spectrum from what can be read by the general public with ease to what 
the highly-trained specialist can only puzzle out slowly and painfully. 
Verbal expressions are used to transmit information at varying degrees 
of complexity and sophistication; numbers, tables, charts and graphs, all 
the forms of quantitative expression, must be expected to do the same.

Sometimes a quantitative expression should convey a very general 
message to a nonspecialized reader. Sometimes a quantitative 
expression should convey modest detail, or even considerable detail, in 
a form which may safely be handled by the naive specialist, even 
perhaps by a misguided one. At other times a quantitative expression 
should convey complete detail in a form which may only be safely 
handled by experts. It is as much a mistake to expect a singie 
quantitative expression to meet all these requirements as it is to expect a 
single verbal expression to meet correspondingly diverse ones.

Verbal expressions are moderately compact; even at today's prices, 
the cost of letterpress composition is relatively readily borne. No editor 
forces the deletion of a sentence in a summary because it is a logical 
consequence of the sentences of the fuller exposition. Yet there is a 
standard that "the same information should not be given in both a 
graph and in a table". This is only in part because graphs and tables 
take much space and are expensive to set. It is also because the 
possibility of different purposes for two quantitative expressions of the 
same facts is neglected.
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purpose is to stimulate the reader to think out some applications to his 
own work.
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Tl. COMPACT PRESENTATION

Tables must be relatively simple and full of white space if their 
messages are to be absorbed by the typical rapid reader. Graphs for 
similar purposes need to be simple and clearly labeled. These are 
precepts of broad application which we neglect at our peril.

Yet when quantitative information needs to be recorded, recorded 
only for those willing to dig, it can be compressed into text-like strings 
with great efficiency. John Hammersley was one of the pioneers of this 
(1954) when he recorded "full information" about a 4000-step self
avoiding random walk in 31 lines of Journal of the Royal Statistical 
Society text (pp. 31-32). There are readers who have read this paper 
through several times, and lectured on it to graduate students without 
learning how to decipher this compaction. The writer is one. But these 
readers know that they can recover the information if they need it. 
These lines are far more valuable as they now stand than they would be 
if the same space had been expended on a few additional sentences.

What are the prospects for such compactions elsewhere?

T2. COMPLETE PRESENTATION

Milton Friedman has reported (1957, p. 60, fn) his bitter experience 
in trying to make analytical use of government figures on consumer 
spending, where the policy of not giving figures based on few cases 
made otherwise valuable series wholly useless. To avoid danger to the 
naive or misguided, these tabulations were made useless to those who 
wished to give them specialized and serious study.

If this were an isolated instance, it would not deserve note. But it 
is not. And we dare not be surprised at its frequency. For it is a 
difficult typographical problem to combine either

(a) effective presentation of data to the rapidly scanning eye;

or

(b) protected presentation of data to the innocent;
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with
(c) providing a record from which as much valuable information as 

possible can be recovered.

The task is not easy, yet an investigator who does not consider meeting 
both kinds of purposes is likely to be failing in his duty as a member of 
an on-going social institution.

T3. DWYER'S DEVICE

One of the simplest situations where it is desirable to provide for 
both the quick scan and the deep dig is in reporting frequency 
distributions. Unless the quantity distributed comes in neat little units 
(like number of children in a family), some grouping is inevitable, and 
heavy grouping is usually desired to save space.

A reasonable solution to this problem was suggested a number of 
years ago by Paul Dwyer (1942). Perhaps because of its location, this 
suggestion seems almost to have been lost. Yet it is simple and 
apparently effective.

Dwyer suggests that a grouped frequency distribution should 
wisely show

(a) the number of individuals in each cell;
(b) the sum of the values corresponding to these individuals; and
(c) the sum of squares of the values corresponding to these 

individuals.

He shows that this provides much more usable information when using 
heavily grouped frequency distributions than does (a) alone. (In a sense 
one becomes able to approximate with parabolic arcs rather than with 
horizontal steps.)

This proposal, which can be extended to more complex situations, 
seems to deserve much consideration.

T4. AN EXAMPLE

In seeking moderate persuasive examples of the use of nonclassical 
modes of expression we have turned to Volume 4 of Studies in Social 
Psychology in World War II ("Measurement and Prediction", 
Stouffer et al., 1950) in more than one instance. Our first simple

■' -

-
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example (in Section E7) examined the 4-by-2 tables contrasting 
psychoneurotic patients with an army cross-section in a variety of 
questionnaire areas. And in the next appendix we shall examine one 
aspect of one further questionnaire area, area 16, psychosomatic 
complaints, for which no 4-by-2 table was given. Why?

Apparently because giving the "detailed data" in a graph (% 
frequency of occurrence for each number or score value) made it 
editorially impractical to provide the corresponding 4-by-2 table. Let us 
inquire into the sensibleness of this decision, even though inquiry may 
lead us into winding paths.

Why were the 4-by-2 tables given in detail in the first place? 
Presumably because they were relatively directly understandable by the 
target reader, and because they can be rather roughly compared with 
one another with modest ease. Such tables were given for 106 
individual items and 16 summary scores, the 122 tables taking up 25 
pages. Presumably both these tables and their comparisons were 
important to both author and editor. The omitted area involved the 
most different items and showed the greatest difference between 
neurotic patients and the cross-section of any of the areas. Yet 
comparisons involving it have to be made either by comparing a 4-by-2 
table with a graph drawn for a different purpose or by reconstruction of 
a table from the graph.

If it were easy to read from the graph entries for a 4-by-2 table, the 
case would be less strong. But it is a tedious and delicate job to recover 
a possible set of entries. How can the saving of 1/123 of the space 
devoted to the 4-by-2 tables be justified, especially in a volume devoted 
to methodology?

As our examples demonstrate, it is now possible to handle the 
broader aspects of the information presented in each 4-by-2 table in 
terms of a few differences of logits. Thus these aspects could be easily 
condensed into a page or two of tables. In doing this, of course, there 
would be a loss of some of the numerical detail presented in the 4-by-2 
tables. How could this be compactly recorded? How much space would 
it require?

One solution is easy to provide. If we use letters as break 
indicators and pass down columns in solid blocks, the % entries for the 
area 12 summary score, which is given in conventional form in Table 12 
of Section E6, become "Scores a43b2cld0e. Neurotic patients (%) 
al6b25c32d27e. Cross-section (%) a46b23c20dll." This would occupy 
about 1.3 lines of the large type used in the text of Studies in Social 
Psychology in World War II, but only about 1.0 line of the font used for 
table footnotes. This sort of condensation applied to area summary 
scores would lead to perhaps two lines of description, one of tabulation
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of shifts in logits, and one of detailed numbers. For the individual 
items, the space required would be mainly that required to state the 
answers to which the %'s apply.

Consider next the graphs (Chart I on their page 501) which present 
distributions, both for psychoneurotics and for the cross-section, of each 
score according to three scoring systems. Their purpose was to show 
the substantial equivalence of simple and sophisticated scoring schemes. 
This purpose was accomplished to a limited extent, mainly by 
nongraphical means. The burden of the argument is carried by the 
similarity of certain %'s written prominently on the graphs. This 
similarity cannot be judged directly from the graphs, whose main virtue 
is to show that other critical score boundaries would not be obviously 
better. Something can be done to make the comparison directly 
appreciated graphically. The details are worked out in U3 below, and 
the results exhibited in Figures 14 and 15.

It is important to emphasize that examples were selected from 
"Measurement and Prediction," not because the source was technically 
poor, but because the source was technically good. It is only against a 
background of understanding of subject-matter, tender and loving care 
of data, and attention to exposition, that the detailed problems, 
difficulties, and solutions we have been discussing can be seen clearly 
and in silhouette. An example from a poor book would have failed to 
make its point.

u. MORE ABOUT MODES OF EXPRESSING 
COUNTED FRACTIONS

Chapter E gave considerable attention to three nonclassical modes of 
expressing fractions: anglits, normits, and logits. More attention there, 
though useful in itself, would have been too long a digression. In this 
appendix, then, we present three further examples (3A, 3B, and 3C), 
more details of tabulation (3D), a little about nature and behavior (3E), 
and some information on covariances between expressions of two 
fractions from a single table (3F).

Ul. A SLIGHTLY MORE COMPLEX EXAMPLE

For a slightly more complex situation where a more reasonable 
mode of expression can be used to increase our understanding we turn 
again to Volume 4 of Studies in Social Psychology in World War II
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(Stouffer et al. 1950), whose Table 2 on page 629 divides July 1945 and 
December 1945 separatees according to strength of plan to return to 
previous employer. Table 28 gives original %'s and the corresponding

Table 28
Plans to return to previous employer, by duration of 
previous employment in years. (From Volume 4 of 

Studies in Social Psychology in World War II 
(Stouffer et al. 1950, p. 629.)

Tulv Separatees

<1 1-2 2-5 >5 <1 1-2 2-5 >5
(Individual % for each duration)

Definite plans 12 22 31 49 18 35 47 64
Tentative plans 
Considering

9 11 12 16 22 24 17 16

returning 
Not considering

20 18 17 14 17 19 13 13

returning 59 49 40 21 43 22 23 17

Definite plans
(Cumulative anglits for each duration)

-.86 -.59 -.30 -.02 -.69 -.30 -.06 +.28
Tentative plans 
Considering

-.62 -.35 -.14 +.30 -.20 +.18 +.28 +.64

returning 
Not considering

-.18 +.02 +.20 +.62 +.14 +.59 +.57 +1.09

returning

cumulative anglits, making use of the classification in terms of duration 
of previous employment. The two 3X4 tables which result may be 
dissected into (apparent) main effects and (apparent) interactions by the 
usual procedures of finding, and then subtracting, row means and 
column means. The results are shown in Tables 29 and 30.

The following conclusions appear to be supported by these last two 
tables:

(1) In terms of cumulative anglits, both tables show relatively small 
residuals; the approximate description in terms of main effects 
and grand means alone is quite effective.

(2) The large shift between July and December toward returning to
the previous employer outweighs any other visible effects except 
the effect of duration of previous employment.

(3) The spread of opinion over the four-point scale is somewhat 
reduced in December as compared to July, the main effects of
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Table 29
Results of dissecting the cumulative anglits 

of Table 28 for July separatees

Duration of previous employment

(residuals after dissection, bordered 
by main effects and grand mean)

-.01 +.02 +.02 -.02
-.03 +.00 +.01 +.04
+.04 +.00 -.02 -.01

-.30
-.04
+.33

-.37 -.14 +.06 +.47 -.17

Explanations:
(1) Any failure of rows or columns of residuals, or main effects to sum to

zero is due to rounding of all answers to two decimal places.
(2) Each entry in undissected table is the sum of the corresponding 4 entries

in the 4 dissected portions. 

Example:
(-.86) -  (-.01) + (-.30) + (-.37) + (-.17)

"break" being -.40 +.02, +.39 in place of -.30, +.04, +.33. (This 
may represent either a change in plans or a change in the way 
plans are described.)

(4) The described plans of those less than 1 year with previous 
employer are somewhat more different (show a somewhat greater 
shift against returning) in December than in July, the main effects 
being —.46 (vs. —.05, +.05, +.46) in place of —.37 (vs. —.14, +.06, 
+.47).

(5) The residuals for the middle break show slight trends for both 
groups, —.03, .00, .01, .04 in July and +.03, .00, .00, —.05 in 
December. The residuals for 1 to 2 and 2 to 5 years previous

<1 vear 1-2 vears 2-5 vears >5 vears 1
:

(Undissected values) ■ ' ' 1
-.86 -.59 -.39 -.02
-.62 -.35 -.14 +.30
-.18 +.02 +.20 +.62
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Table 30
Results of dissecting the cumulative anglits 

of Table 28 for December separatees

Duration of previous employment 
<1 year 1-2 years 2-5 years >5 years 

(Undissected values)
-.69
-.20
+.14

-.30
+.18
+.59

-.06
+.28
+.57

+.28
+.64
1.09

(residuals after dissection, bordered 
by main effects and grand mean)

-.04 -.06
f

+.08 -.01
+.03 .00 .00 -.05

.00 +.04 -.08 +.03

-.40
+.02
+.39

-.46 -.05 +.05 +.46 +.21

Explanations:
(1) Any failure of rows or columns of residuals, or main effects to sum to zero 

is due to rounding of all answers to two decimal places.
(2) Each entry in undissected table is the sum of the corresponding 4 entries 

in the 4 dissected portions.

Example:

(-.86) -  (-.01) + (-.30) + (-.37) + (-.17)

employment show trends in December, being -.06, .00, +.04 and 
+.08, .00, —.08, respectively. (Comparison for subgroups of 
separatees according to some other classification would be needed 
to indicate whether these effects deserve attention.)

The point at issue is again not the reality of such appearances, but 
whether or not they can be noticed and made the subject of reflection or 
study. It seems clear that the use of some mode of expression more 
compatible with the data than % was essential in bringing these 
appearances to the surface.
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U2. UNORDERED FRACTIONS: ANOTHER EXAMPLE

Nonclassical modes of expression cannot only be useful in 
situations more complex than those of Sections E5 and E6, they can also 
be useful in still simpler situations. In the examples of Sections E6, E7 
and Ul, each group of units is divided into several fractions, fractions 
which are naturally arranged in an order. Logically simpler, though 
perhaps quantitatively harder to handle, is the situation where there are 
several fractions which do not appear to fall in any natural order.

An example of this revolves around data of Borje Hanssen 
(personal communication) on types of family names among heads of 
households in Strangnas, Sweden. Table 31 shows the raw data, while

Table 31
Distribution of names of heads of households in 
Strangna, Sweden, according to type of name. 

(Data of Borje Hanssen)

Locality or Occupa- First

Date Total
physical

characteristic
tional
names

name
only

"—son"
names

Bourgeois
names

1652 191 16 (8.4%) 63 (33.0%) 7 (3.7%) 93 (48.7%) 12 (6.3%)
1689 236 7 (3.0%) 54 (22.9%) 28 (11.9%) 107 (45.4%) 40 (17.0%)
1727 194 1 (0.5%) 8 (4.1%) 12 (6.2%) 76 (39.2%) 97 (50.0%)
1740 224 ■ — : — 4 (1.8%) 56 (25.0%) 164 (73.2%)
1813 378 — ■ — ■ — 22 (5.8%) 356 (94.2%)

Figures 11 to 13 show these data plotted against time according to
various modes of expression, first as percentages, then as anglits, and 
lastly as logits.

To my eye, at least, the general “run" of the data improves steadily 
as we pass from the percentage mode, through the anglit mode, to the 
logit mode. In logits the curves run quite smoothly, suggesting 
reasonable extrapolation and interpolation, except for the unusually 
rapid conversion of " —son" names to bourgeois names between 1727 
and 1740.

Whether or not such tail-stretching would be of real help in 
analyzing the changes of distribution of name types in Sweden cannot 
be settled by one trial. Only when data for a number of towns is 
available for comparison can we expect to find out.



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 341

100% 1 00 %
; o LOCALITY OR CHARACTERISTIC NAME 
_ •  FIRST NAME ONLY 

□ OCCUPATIONAL NAME .
I I ©O'

4 0 %

1700 1800

Figure 11. Kinds of name expressed in percentages,
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o LOCALITY OR CHARACTERISTIC NAME 
•  NO FAMILY NAME, FIRST NAME ONLY 
□ OCCUPATIONAL NAME 1.0
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18001750

Figure 12. Kinds of name expressed in anglits



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 4 3

O LOCALITY OR CHARACTERISTIC NAMES 
•  FIRST NAME ONLY 
O OCCUPATIONAL NAMES

9 8 %

cvi

6 0 %
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F ig u re  13. K in d s  o f  n am e  expressed in  lo g its
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U3. AN EXAMPLE COMPARING DETAILED 
DISTRIBUTIONS

A companion form of graph paper to those illustrated in Section E5 
is Codex 41,453, 42,453, also designed by Berkson, which has normal 
cumulative probability scales both ways, thus allowing the plotting of 
one fraction against another with both expressed in nonclassical modes. 
In prirciple there could just as well be anglit-anglit paper and logit- 
logit paper as normit-normit paper, but these further kinds are not 
likely to become available until demand increases greatly. But with the 
tables of Sections E3 and D3, conversion of percentages into anglits or 
logits is easy, and the results can be treated by simple arithmetic, as well 
as being plotted against one another.

Chart 1 on page 501 of Volume 4 of Studies in Social Psychology in 
World War II (Stouffer et al. 1950) offers a good illustration of some of 
the possibilities. It presents distributions of summary scores on area 16, 
psychosomatic complaints, for the neurotic patients and Army cross- 
section samples which already appeared in Sections E6, T4 and Ul. 
Three sorts.of summary scores are considered: (i) simple dichotomous 
scores, where two-answer items are scored 0, 1, while three-answer 
items are scored 0, 0, 1 or 0, 1, 1; (ii) simple trichotomous scores where 
the three-answer items are scored 0, 1, 2, the two-answer items being 
treated as before; (iii) differential trichotomous scores where the weights 
are adjusted in terms of apparent predictive power.

Table 32 illustrates the numerical situation. (Note that the %'s 
given were read from a graph, and are undoubtedly full of small errors.) 
When the differences between the two distributions are examined for 
each of the modes of expression, it is clear that differences between 
anglits are badly lumped (low toward the tails) and are not likely to be 
as helpful or insight-generating as either of the other two.

The three weighting schemes are compared in terms of differences 
of logits in Figure 14, and in terms of differences of normits in Figure 
15. The general conclusions to be drawn from either figure are the 
same, namely:

1) The differences between psychoneurotics and the cross-section 
were substantial but not strikingly large (~1.3<r for normits).

2) All three weighting schemes given generally quite similar results, 
as we should have expected.

3) Accordingly it is hard to identify any one weighting scheme as 
better than any other, although there may be a slight preference 
for simple trichotomous weights.
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Table 32
Various presentations of the two frequency distributions 
for "simple dichotomous weights." (Based on top panel 

of Chart 1, page 501, of Stouffer et al., 1950.)

Score Cumulative' Half-logits Differences Between Groups
1 ,■ Psvch* Cross* Psvch* Cross* Half-loeits Normits** Anelits
f 0 5.6 0.0 -1.41
» 1 14.0 0.6 -0.91 - 2.6 1.7 1.14 .69
► 2 23.5 1.3 -.59 -2.15 1.55 1.21 .79
\ ■ ■' 3 35.6 3.1 -.30 -1.72 1.42 1.19 .93if 4 48.9 5.3 -.02 -1.44 1.42 1.28 1.20f , 5 60.4 8.3 .21 - 1.20 1.41 1.32 1.326 68.6 11.9 .39 - 1.00 1.39 1.33 1.247 77.0 16.3 .60 -.82 1.42 1.36 1.31
i► 8 83.9 21.4 .82 -.65 1.47 1.41 1.35
f  : 9 89.4 28.6 1.07 -.46 1.53 1.45 1.3510 93.3 36.2 1.31 -.29 1.60 1.49 1.34i 11 95.5 45.7 1.52 -.09 1.61 1.44 1.23
r 12 97.2 57.3 1.78 +.15 1.63 1.38 1.0913 99.2 71.6 2.41 .47 1.94 1.47 .94f 14 100.0 87.7 oo .47* 15 100.0 100. oo OO

Psych -  563 psychoneurotic patients in Army hospitals 
Cross “  3,501 white enlisted men without overseas service
Special normits with 0.798 ••• multiplier

4) In either normit or logit terms, the differences were greater for the 
end of the distribution (to the right in the plots) corresponding to 
a high psychoneurosis score — one extreme end showing a ratio of 
perhaps 3 to 2 compared to the other.

Contrasting the figures, we also see that:
5) As was inevitable, differences in logits near either end are 

enhanced by comparison with differences of normits and of near
center behavior. The overall impression is concave upward rather 
than nearly straight.
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U4. FURTHER TABLES FOR NONCLASSICAL MODES

Table 10 in Section E6 is a simple table by conventional standards. 
It is entered with a fraction expressed as a percentage, and, frequently 
after some simple interpolation, it provides two-decimal-place values of 
the mode of expression chosen. It may not be easy to see how the 
process can be made simpler.

Tables of logarithms are usually given to 5 or more decimal places, 
sometimes to only 4. If they are to be used for the classical purposes of 
logarithm tables (conversion of multiplication into addition and division

Table 33
Critical table of one-decimal logarithms

Leading nonzero 
digits of argument

(890 • • • ) 

112-  •  •  • 

141- • • • 

177-• • • 

2239 • • ■ 

2819 • • • 

354- 

446- 

562- • • • 

708-•• • 

890- • • •

First decimal 
of logarithm

0

1

2

3

4

5

6

7

8 

9



into subtraction so as to ease the pain of arithmetic without machine 
aid), these precisions are quite natural, and even necessary. But when a 
logarithm table is to be used to change the mode of expression of a 
rather crudely measured quantity, there is need for far less precision. 
And using fewer decimals will ease the arithmetic.

Table 33 contains ten numerical values, one repeated. It is a critical 
table of one-decimal logarithms (to the base 10). Its use may be 
illustrated as follows: Given 33.725; to find its one-decimal logarithm: 
Note first that 33.725 is at least 10, and less than 100, so the integer part 
of the logarithm is 1; referring to Table 33, 33725 falls between 2819. 
and 354-. hence the first decimal is .5 and the whole (one decimal) 
logarithm is 1.5. Similarly, 0.0739, is at least 0.01 and less than 0.1, 
hence the integer part of its logarithm is -2 , while, in Table 33, 739 lies 
between 708 and 890, so that the decimal part is .9 and the whole 
logarithm is —2 -t- 0.9 1.1. Note that no interpolation is ever needed.

Critical tables can always be easily constructed if the results are not 
required to too high precision. A critical table for two-decimal 
logarithms is very useful, but one for three or more decimals would be 
far less convenient. Once we come to a critical table for two-decimal 
logarithms, with its 100 entries, it is no longer desirable to have the 
entries in a single column. Table 34 presents a critical table for two- 
decimal logarithms in a square array. It is to be used by reading down
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Table 34
Two-decimal critical table of common logarithms

00 ■01 .02 .03 .04 05 .06 ,07 .08 ,09
.0 9886 1012 1035 1059 1084 1109 1135 1161 1189 1216 1245 .0
.1 1245 1274 1303 1334 1365 1396 1429 1462 1496 1531 1567 .1
.2 1567 1603 1641 1679 1718 1758 1799 1844 1884 1928 1972 .2
.3 1972 2018 2065 2113 2163 2213 2265 2317 2371 2427 2483 .3
.4 2483 2541 2600 2661 2723 2786 2851 2917 2985 3055 3126 .4
.5 3126 3199 3273 3350 3428 3508 3589 3673 3758 3846 3936 .5
.6 3936 4027 4121 4217 4315 4416 4519 4624 4732 4842 4955 .6
.7 4955 5070 5188 5309 5433 5559 5689 5821 5957 6095 6237 .7
.8 6237 6383 6531 6683 6839 6998 7161 7328 7499 7674 7852 .8
.9 7852 8035 8222 8414 8610 8810 9016 9226 9441 9661 9886 .9

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
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the first column to locate the broad gap in which the given value falls, 
which fixes the first digit, and then reading horizontally (in the line 
above this gap) to locate the narrow gap in which the given value falls, 
thus locating the second digit. If, for example, the number is 3873, we 
find 3126 above 3936 in the left-hand column of the body of the table, 
and then scan the row beginning with 3126 (the row associated with .5) 
to find 3846 followed by 3936. This latter gap is associated with .5 (in 
the line) and .09 (gap between columns), so that the answer is 0.59 plus 
the characteristic, which yields 3.59.

Tables 35, 36 and 37 provide two-decimal critical tables for the 
modes of Section E4; anglits, matched normits and matched logits. As is 
pointed out in Section S3, this precision is adequate for simple random 
samples of several thousand, and, indeed, probably adequate for almost 
all samples actually available.

Theoretical work is sometimes facilitated by additional precision. 
Accordingly, Table 38 gives values of anglits, (unmodified) normits, and 
(unmodified) logits to four decimal places and the round %'s used in 
Table 10.

U5. SOME PROPERTIES OF THE THREE MODES

Not because they are important to our present concerns, but only 
because they may be curiosity-allaying or intuition-increasing, we 
present here a small amount of information about the mathematical 
definitions and statistical properties of anglits, normits and logits. (This 
material is in an appendix in the hope that the less mathematically- 
minded reader will skip it.)

The gentlest in tail-stretching of these three modes is represented 
by the use of anglits, of angles 0 satisfying

sin2 0 (fraction observed).

(Varied choices of unit for 6 are used; degrees or radians are used, the 
values of 0 are sometimes doubled and sometimes not, and a constant 
may or may not be subtracted to make zero the anglit corresponding to 
50%. These choices are not essentially different; almost all further 
analyses will lead to the same results whichever one be used. Danger 
and confusion is only possible when two or more of these choices are 
confused and combined. We have used here the choice corresponding 
to the graph paper which was illustrated (32,452) in which the choices 
are (i) to use radians, (ii) to double, (iii) to subtract the constant.)



This mode (often referred to as the angular transformation or the 
arc-sine transformation) has the following interesting properties:

(1) There are "ends" to the scale: for our choices all anglits will lie 
between —1.571 and +1.571. (The exact ends are at ±  x/2.)

(2) Near these ends, the deviation of the anglit from the end value is 
approximately twice the square root of the smaller observed 
fraction.

(3) In simple random sampling, the variance of the anglit is quite 
closely 1/(total size of sample).

The middle one of the three modes, so far as tail-stretching is 
concerned, is represented by the use of normits or probits, that is, by 
the use of expressions connected with the cumulative normal 
distribution. The use of this mode is sometimes justified by hypotheses 
involving an underlying continuous scale, a threshold point on the 
underlying scale, and normally distributed perturbations which give 
particular situations probability, rather than certainty, of appearing to 
fall on one side of the threshold rather than the other. Such 
justifications can be quite frequently helpful, and are even sometimes 
close to being correct, although it is often very important that other 
plausible structures also lead to the use of normits or probits. The best 
single justification for this mode, as for all others, is empirical. If it 
demonstrably works, fine. If it is demonstrably better than competing 
modes, finer still. The data is the final test.

Gory details of definition need not detain us, but for the record, 
and because some may care, we note that the more usual representatives 
of this mode are normits and probits, where

X ■■ normit of p

means

8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 5 1

r  ~  : k L , " ‘'n  du

and

probit of p ■" 5 + (normit of p).
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Table 38

Values of anglits, normits, and logits corresponding to 
even percents (take sign from head of column used for %)

-I- anglit normit logit* + anglit normit logit

50% 0.0000 0.0000 0.0000 50% 75% 0.5236 0.6745 1.0986 25%
51 0.0200 0.0251 0.0400 49 76 0.5468 0.7063 1.1527 24
52 0.0400 0.0502 0.0800 48 77 0.5704 0.7388 1.2083 23
53 0.0600 0.0753 0.1201 47 78 0.5944 0.7722 1.2657 22
54 0.0801 0.1004 0.1603 46 79 0.6187 0.8064 1.3249 21
55% 0.1002 0.1257 0.2007 45% 80% 0.6435 0.8416 1.3863 20%
56 0.1203 0.1510 0.2412 44 81 0.6687 0.8779 1.4500 19
57 0.1404 0.1764 0.2818 43 82 0.6945 0.9154 1.5164 18
58 0.1606 0.2019 0.3228 42 83 0.7208 0.9542 1.5856 17
59 0.1810 0.2275 0.3640 41 84 0.7478 0.9945 1.6582 16
60% 0.2014 0.2533 0.4055 40% 85% 0.7754 1.0364 1.7346 15%
61 0.2218 0.2793 0.4473 39 86 0.8030 1.0803 1.8153 14
62 0.2424 0.3055 0.4896 38 87 0.8331 1.1264 1.9010 13
63 0.2630 0.3319 0.5322 37 88 0.8633 1.1750 1.9924 12
64 0.2838 0.3585 0.5754 36 89 0.8947 1.2265 2.0907. 11
65% 0.3047 0.3853 0.6190 35 90% 0.9273 1.2816 2.1972 10%
66 0.3258 0.4125 0.6633 34 91 0.9614 1.3408 2.3136 9
67 0.3469 0.4399 0.7082 33 92 0.9973 1.4051 2.4424 8
68 0.3683 0.4677 0.7538 32 93 1.0353 1.4758 2.5867 7
69 0.3898 .0.4959 0.8001 31 94 1.0759 1.5548 2..7415 6
70% 0.4115 0.5244 0.8473 30 95% 1.1198 1.6449 2.9444 5%
71 0.4334 0.5534 0.8954 29 96 1.1681 1.7507 3.1780 4
72 0.4556 0.5828 0.9445 28 97 1.2226 1.8808 3.4761 3
73 0.4780 0.6128 0.9946 27 98 1.2870 2.0537 3.8918 2
74 0.5006 0.6433 1.0460 26 99 1.3705 2.3263 4.5951 1
75% 0.5236 0.6745 . 1.0986 25 100% 1.5708 QO 00 0%

• For more detailed tables see 1953 JASA pp. 568-569.

Note: The difference in overall size is unimportant. (Using, for example, anglit, 4/5 
normit, and 1/2 logit, which all start out alike, would lead to similar 
analyses.) What is important is the difference in stretching of the "taiis".

We have found it convenient to tabulate an adjusted normit for which

z — adjusted normit of p — "(normit of p)

corresponding to

p  -  j  J  c" “Vt du .
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Those concerned with psychological tests and measurement sometimes 
use a f-score (cp. e.g., McCall 1939, pp. 505-508) which is another 
expression of a counted fraction belonging to this same mode.

The principal properties of this mode are:

(1) It has no "ends." Positive or negative values of arbitrarily great
magnitude correspond to percentages arbitrarily close to 100% or 
0%, respectively. '

(2) In its effects it lies between the other two modes.

(3) Because of its relation to the famous normal distribution, very 
extensive tables are available, both of the relation of this mode to 
others, and of auxiliary quantities, as are many specialized 
statistical techniques.

(4) For extreme percentages the normit is rather crudely proportional 
to the square-root of the logarithm of the smaller of the two 
percentages (the % in the cell considered, or the % not in that 
cell). This relation is not very useful.

Although normits, and probits, have been very popular in other 
connections, I would surmise, if forced to commit myself, that the mode 
they represent will not prove to be the most useful of these three modes 
in most behavioral sciences applications.

The tail-stretchingest of the three modes is that represented by 
logits, where a logit is defined as the natural logarithm of the ratio of 
the observed fraction to its complement.

lo g ,,- lo g , -■f ereentaBe - lo g ,  
100—percentage °e

— log, ("odds for")

number of one kind 
number of other kind

We found it convenient to tabulate the "half-logit," whose values are 
just half as large.

The principal properties of this mode are:
(1) It has no "ends." Positive and negative values of arbitrarily great 

magnitude correspond to percentages arbitrarily close to 100% or 
0%, respectively.

(2) For extreme percentages, the magnitude of the logit is quite 
closely proportional to the logarithm (to any base) of the smaller 
fraction (or, equivalently, of the smaller percentage).
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(3) This mode has certain rather esoteric properties as far as certain 
types of further analysis are concerned. (These properties, mainly 
associated with sufficient statistics, are of much greater 
importance to statisticians developing new analytic techniques 
than to those who are analyzing actual data. The latter can, of 
course, make good use of the techniques developed by the 
former.)

(4) The approximate variance of the logit in simple random binomial 
sampling can be expressed as

(total number of instances)
(number of instances of one kind) (number of instances of the other kind)

(5) The approximate variance of the half-logit is one-fourth as large, 
and may be expressed as

(total number of instances)
(2 X number of one kind) (2 x number of instances of the other kind)

(Note that when each class is half the whole, all three numbers in 
parentheses in this last expression are equal and the approximate 
variance is just the reciprocal of the total number of instances.)

(6) Fisher's z-transformation of the correlation coefficient r is exactly 
the logit corresponding to the fraction given by (l+ r)/2.

There are other interesting properties of logits, but these are at most of 
modest intuitive significance in the present context. One of these is the 
relation of logits to the logistic curve, which is the simplest theoretical 
form for population growth under circumstances where the available 
resources set an upper limit on the population. (This relation is entirely 
analogous to that between normits and the cumulative normal 
distribution.)

U6. COVARIANCES FOR NONINTERSECTING SPLITS

Our examples have included many instances where there were at 
least two nonintersecting splittings of a group (splittings that together 
define 3 subgroups rather than 4).

The covariances, or the correlations, between the two fractions, 
however expressed, are sometimes of interest.
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Table 39

Critical table for squared correlation between 
expressions of two nonintersecting splits of 

the same simple random sample.

Square of Difference in Difference 
Correlation half-logits in logits

1.00

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

.45

.40

.35

.30

.25

.2°

.15

.10

.05

. 0 0

.051

.16

.27

.38

.51

.64

.78

.94

1.1

1.3

1.5

1.7 

2.0 

2.2

2.6 

3.0 

3.5

4.2

5.2

7.4

.025

.078

.13

.19

.25

.32

.39

.47

.55

.64

.74

.86

.98

1.1

1.3

1.5

1.7

2.1

2.6

3.7
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The situation can be represented as follows (simple random 
trinomial sampling):

Population fractions Observed numbers

A
B
C

X

y

A+B+C -  1 x+y+z — n

If we repeatedly draw samples of « observations, ti fixed, at random 
from an infinite population with fractions A, B and C, the observed 
numbers x, y and z will not be independent. In particular, * and z 
will be (negatively) correlated. This correlation will be precisely 
determined by the difference between the logits corresponding to the 
two separations, one into A vs. B+C and one into A+B vs. C.

As a result the two fractions

x + y + z

and

X +  V

x + y + z

will be positively correlated. To a reasonable approximation (especially 
in large samples) the correlation between the fractions, between the 
corresponding anglits, between the corresponding normits, or between 
the corresponding logits will all be the same. This correlation 's  always 
positive, its natural logarithm is negative, and the magnitude of this 
logarithm is the difference between the half-logit for the one split and 
the half-logit for the other split. A critical table for the square of this 
correlation is given in Table 39.

V. MODES OF EXPRESSING OTHER 
QUANTITIES

We have given considerable attention to modes of expression of counted 
fractions (fractions, %'s, logits, and the like) in Chapter E and Appendix 
U. It is only fair that we now give a little attention to the results of
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experience with various modes of expression for other sorts of values
(absolute numbers, amounts, signed amounts, etc.).

VI. EXPRESSING COUNTS

The primeval mode of expression of a count is that represented by 
the raw count itself. It is clear to almost all of us that the difference 
between observing 12 instances and observing 13 instances is not as 
large" (in the sense of "not as important" or "not as meaningful") as 

the difference between observing 1 instance and 2 instances. There is a 
place for modes which compress higher counts together, as compared 
with lower counts.

The simple square root of the observed number is a representative 
of a mode of expression which has proved very satisfactory in many 
circumstances. 3

Sometimes a more rigorous compression is needed. (This is the 
case with the number of mites per rat, but not with the number of fleas 
per rat. Cp. A2 above.) The mode of expression represented by the 
logarithm (to any handy base) of the count is useful so long as counts of 
zero are absent. The family of modes of expression represented by

log(count + constant)

where there is a slightly, different mode for each positive value chosen 
as the constant, and where the choice of base of logarithms is 
unimportant, provides further reasonable alternatives.

These suggestions are empirically useful in quite different 
situations. They often work. Theoretical support is not necessary.

Sometimes the counts to be dealt with follow a so-called Poisson 
distribution, to either a close or rough approximation. (The situation 
may or may not involve additional variability beyond that 
corresponding to a Poisson distribution.) Both theoretical and empirical 
justification exists for various modes of expression in such situations. 
(The behavior of the modes suggested below is much more alike than 
their appearances suggest.) Most noteworthy are the modes represented

(f)
(2)
(3)

log(count + constant), with a constant close to the average count; 
square root of count-

sum of the square roots of (a) the count and (b) the count 
increased by unity;
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(4) a convenient tabulated modification of the last previous (for 
which see Tukey NYCl).

Any of these is likely to be quite effective, though careful selection 
among the four in some, rather infrequent, instances, may be 
worthwhile.

The averages and variances of (4) that apply when the count 
precisely follows the Poisson distribution may be found in Tukey NYCl 
as can a discussion of modes of expression useful in comparing observed 
and anticipated numbers.

V2. EXPRESSING NON-NEGATIVE AMOUNTS

The possible numerical values of an observation are frequently 
limited in one direction, but not in the other. By changing the sign of 
all observed values, if necessary, we can arrange for the limitation to lie 
in the negative direction. By adding a constant to all observed or 
modified values, if necessary, we can arrange to have the limitation 
require precisely that all values be non-negative. When we discuss the 
natural and convenient modes of expressing non-negative values, we 
thus cover most, if not all, situations where values are limited on one 
side.

The values of physical quantities, such as weight, length, and 
duration, are naturally limited to the left at zero. We can think of such 
quantities, even though they may be far from typical examples, as 
paradigms for many more quantities limited to one side but not to the 
other.

The modes of expression corresponding to the so-called simple 
family of transformations (Tukey 1957) have proved flexible and useful. 
Together with all modes represented by

(amount + constant)exponent

the simple family includes such limiting forms as

log(amount + constant)

which fits into the family as if it were the case where the exponent were 
equal to zero, and

--(constant*) • (amount)



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 6 9

which fits in as the limiting case where

exponent
constant constant*

with both "exponent" and "constant" becoming arbitrarily large.
The natural ladder of modes of expression often descends as 

follows:

amount

Vamount 
log amount 

1
■v/amount

1
amount

with each successive step appearing to be of about the same size
For further discussion, see Tukey 1957 and Tukey NYCl.

V3. EXPRESSING UNRESTRICTED AMOUNTS

The case where the observed values can be both arbitrarily 
negative and arbitrarily positive has not been studied in any detail, in 
part because the combination of both-way unlimited values and a need 
for a different mode of expression does not seem to occur frequently. If 
a symmetrical mode is desired, those using hyperbolic functions, namely

sinh [(constant) • (amount)]

and

tanh[(constant) • (amount)] 

seem to be plausible candidates.
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V4. EXPRESSING AMOUNTS RESTRICTED FROM BOTH 
SIDES

Multiplication of all values by one constant followed by addition 
of another constant to the result will reduce the general case of amounts 
restricted to lie between two values to the special case of amounts 
restricted to lie between 0 and 1, that is, to the special case of fractions.

Alongside any fraction it is natural to consider the complementary 
fraction (•• one minus the first fraction). Symmetry of behavior of 
fraction and complementary fraction is not guaranteed. But it occurs 
with reasonable frequency. In a symmetrical situation, any data analyst 
(probably guided by the simple family of modes of expression for 
amounts) who thinks of using

(fraction)exponenl

is compelled by symmetry to give equal attention to

(1—fraction)exponenl

and finds this most easily done by combining both of these and 
considering

(fraction)exponen‘ -  (l-fraction)exponent

This is quite useful for symmetrical situations, and can be generalized in 
several ways: (i) by inserting a plus sign followed by a constant inside 
each parenthesis, (ii) by making the two exponents unequal or the two 
constants unequal, or by doing both of these, (iii) by inserting a 
multiplicative constant into either term. All such modes are natural 
generalizations of the modes of the simple family which we saw to be 
appropriate for values limited on one side.

V5. RELATION OF MODES FOR RELATIVE NUMBERS TO 
THOSE JUST DISCUSSED

The usual discussion of anglits, normits, and logits (cp. E4) is likely 
to spend some attention on their behavior for extreme fractions. It is 
easy mathematics to derive limiting form? in which extreme anglits are 
proportional to -Jp, extreme normits to Vlog p and extreme logits to
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l.oor 5% 20% 50% 80%  95%

0.41

0.14

0.00
0.1% 0.5% 1% 10% 90%

ANGLIT

NORM IT

LOGIT
99% 99.5% 99.9%

Figure 16. Comparison of modes of expression for fractions based on 
counts with the very simple symmetric modes for general 
fractions

log P - These results are of little use in practical data analysis. Observed 
fractions below 1% or above 99% are rarely determined from counts with 
sufficient accuracy to make such asymptotic results useful.

Far more guidance can be obtained by relating anglits, normits and 
logits to the very simple symmetrical modes of the last section. 
Empirically we have the approximations

anglit p ~  \pA1 — (1 — p)A1] 
normit p ~  [p u  -  (1 -  p ) 14j 

logit p — log p -  log(l -  p)

which hold over the range 0.01 ^  p ^  0.99 with surprising accuracy. 
(Cp. Tukey 1960) f
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Figure 16 shows the behavior of

constant[pexponent — (1 — p)exponcnt]

for exponents of 1, 1/2, 0.41, 0.14 0.00 (i.e. logarithm), and -  1/2 in 
comparison with suitable multiples of anglits, normits, and logits. (All 
multiplicative constants have been adjusted to bring 1% and 99% to the 
same two values.)

W. INSTRUMENTALITY AND CAUSALITY

The point that empirical evidence alone cannot establish causality was 
made briefly but firmly in Al. This appendix gives additional support to 
the general argument by analyzing in some detail a particular attempt to 
use empirical evidence to establish causality. This seemed worthwhile 
because this particular attempt is relatively novel and may tend to 
attract appreciable attention during the next few years.

A certain amount of structure has to be discussed as a necessary 
preliminary. Fortunately this structure has considerable interest for its 
own sake.

m. REGRESSION

One of the most classical and most powerful techniques of statistics 
is regression. (Yet we must agree with Cochran that it is probably the 
most poorly taught and expounded.) If we have a sample, or even a 
population, of pairs of associated numerical values {x, y), which may be, 
for example, father's height and son's height, or price and sales, or 
rainfall and crop yield, it is natural to ask how to predict the one from 
the other. Given x, about what value can we anticipate for y ? Given y, 
about what value can we anticipate for x ? These are the classical 
questions; others are easily added.

In the simplest situations it is satisfactory to "predict" y from x 
using a linear relation

y a +bx .

Satisfactoriness, of course, does not mean that y will be correctly 
predicted in every instance. Rather it means that no other function of x
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will do much better. And this means that if we collect all (x, y) pairs 
with a given value of x, and examine the distribution of their y-values, 
then ax + b gives a useful typical value for this distribution, or at least 
about as useful a typical value as we know how to compute from our 
limited body of data.

Regression problems are not confined to situations where 
everything is normally distributed. Far from it. But almost everything 
is simplest in such situations which are also sufficiently general to 
illustrate our points. So we shall be unrealistic and confine our 
discussion to cases with much normality.

If the (x, y) pairs follow a bivariate normal distribution, then the 
y's for fixed x follow a univariate normal distribution. Since this 
distribution is symmetrical its natural typical value is its center, which is 
both median and average. Since the distribution is normal its 
description is completed by giving its average and its variance. Thus 
the distributions of y for given x are completely described by a 
combination of normality of shape with two functions of x, the average 
and the variance. It turns out that bivariate normality for (x, y) not 
only implies normality for y given x, but it also implies constant 
variance of y given x, and linear dependence of "average y given x" 
upon X.

Since "bivariate normality for (x, y)" is symmetrical in x and y, 
the same must hold with y and x interchanged. Thus the two simple 
regressions

ave{y given x) -  fl + fcx 
ave{x given y} -  a ' + b'y

are exactly linear. If we plot observed values of (x, y) and the two 
corresponding regression lines, we obtain a picture such as that of 
Figure 17 where the two regression lines do not coincide. When such a 
picture is first seen, it is natural to blame this apparent lack of 
agreement on something which might be altered, perhaps inadequate 
size of sample, perhaps inadequate theory. But such an attitude is quite 
wrong; the disagreement of the simple regression lines is an essential 
feature of regression. We can see that this is so by looking at an 
extreme case.

Suppose X and y are statistically unrelated. To be more specific let 
them have normal distributions with averages ave x -• 3.1, ave y ■■ 5.3 
and variances var x “  1.50 and var y “  0.79. (Their covariance will of 
course be zero.) Since x and y are independent, giving x does not
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Figure 17. Plot of 100 pairs (*, y) showing the two regression lines

affect the average of y, and vice versa, so that the simple regression 
lines are

ave{y given x} ”■ 5.3, 
ave{x given y} ■■■ 3.1

One regression line is horizontal, the other vertical. Yet both are 
conveying the same message "the value of the one quantity tells you 
nothing about the (average) value of the other."
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W2. "ERRORS" AND STRUCTURAL VARIATES

Suppose now that y is "measured with error." That is, what is 
measured is v, where

V -  y + e

where "e" stands for an error or fluctuation. In the simplest case, which 
will suffice to make our points, e is normally distributed, is in fact 
normally distributed with average 0 and some fixed variance, both 
unconditionally and given either or both of x and y . Since the average 
of e given x is zero, the average of v given x is the same as the average 
of y given x . Consequently, the regression of the measurement u on x 
is identical with the regression of the concealed quantity y on x. A 
similar result does not hold for the regression of x on v.

Introduction of error or fluctuation into the measurement of y 
attenuates (weakens) the regression of X on y. If

ave{x given y) -  f l '+ b'y 
ave{x given a" + b"v

then b falls between 0 and b M o r e  precisely

b " -------- varjr------b, _  v a r ^  b,
var y + var e var v

In many instances, errors or fluctuations can occur in the 
measurement of either or both of x and y. In general we should put

tt - X  +  e '
V -  y + e .

where e ' and e both represent errors or fluctuations, and may hopefully 
be assumed independent of both x and y . There are situations where e 
and e' are statistically related. These are usually more difficult 
situations. We shall be wise to restrict our attention here to the case 
where e and e ' are statistically independent.

We saw that the variability of e left the regression of v on x the 
same as that of y on x, while that of x on v was attenuated with respect 
to that of X on y. By symmetry the regression of « on u is the same as 
that of X on v. Thus the regression of u on v is attenuated from that of
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X on y, as it is easy to show, by an amount depending specifically on 
the variance of e. Similarly the regression of o on h is attenuated from 
that of y on x by amount depending specifically on the variance of e 

In such a situation it is reasonable to call u and v the measurable 
variables, and x and y the structure variables. It is easy to estimate the 
simple regressions of each measurable variable on the other, if we have 
a proper supply of observed pairs of values {u, v). It may be of interest 
to estimate the structural regressions, the simple regressions of each 
structural variable on the other. This cannot be done from a simple 
collection of (u,v)  pairs alone. Something more must be added. The 
simplest addition, one not too likely to be available, is adequately 
precise knowledge of both error variances, the variance of e' and the 
variance of e. For if these be known, the amount of the attenuations 
can be calculated, and corrected for. If, in particular, one error is 
absent, one structural regression will coincide with the corresponding 
measurable regression.

W3. WHY MAY STRUCTURAL RELATIONS BE 
INTERESTING?

It is a characteristic of the scientific approach, whether this 
approach be physical, biological, or behavioral, to seek, wherever 
possible, an understanding of mechanisms, of underlying factors rather 
than surface appearances. In many economic situations, for example, it 
is feasible to get overt information such as prices and volumes and to 
seek to penetrate to the underlying economic mechanisms. But little 
thought is required to see that information about the operation of 
simple economic mechanisms is bound to be obscured in the measurable 
variables. Clerical errors and discrepancies among definitions 
(Morgenstern, 1950) undoubtedly provide the final wave of concealing 
fog. But the inevitable differences between the simple mechanisms with 
which we have to begin the study of any situation and the complex 
mechanisms of the true situation are not likely to be negligible. Some 
of these differences will be behavioral, perhaps involving group 
phenomena, perhaps involving the superstitions of someone with a 
great personal effect on the market. Others may be biological, like an 
epidemic of influenza, or physical, like a widespread fog. All contribute 
to differences between the hypothetical and simply-behaving structural 
variables and the actual and complexly-behaving measurable variables.

It is true that we will wish, in due course, to advance from an 
understanding of the simple approximate mechanisms toward an 
understanding of the complex actual mechanisms. But we must begin if
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we are to proceed. We must get hold of the simple approximate 
mechanisms first.

Almost all economic observations are nonexperimental; this is one 
foundation for the importance of assessing structural regressions in 
economics. If we could reach in and change the structural variables 
directly, we could assess the structural regressions in much simpler and 
easier ways.

Many of the results of economics are intended to apply to 
structural change; this is a second foundation for the importance of 
assessing structural regressions in economics. Whether the attempt is to 
infer behavior in quite a different market, or in one differing in 
commodity, in epoch, or in economic system, or whether the attempt is 
to infer the results of specific changes in economic policies or practice, 
the difference between the situation in which the data were gathered 
and the situation to which the conclusions hopefully apply is likely to 
be at least a structural one. /

Measurable regressions are appropriate for predictions to be used 
under exactly the same circumstances as they were obtained. Structural 
regressions are appropriate for predicting the effect of changed 
circumstances.

W4. INSTRUMENTAL VARIATES AND INSTRUMENTAL 
CLASSIFICATIONS

The most effective methods of assessing structural regressions 
revolve around the notion of an instrumental variate, which has 
recently been expanded to the notion of an instrumental classification. 
The notion is simple; the manner in which it succeeds is more subtle; 
the conditions which must hold for it to operate properly are most 
subtle of all.

Suppose that the structural variables x and y are not alone, that 
there is also a structural variable z which is related (at least statistically) 
to X, and to y. (It is quite possible for z to be identical with, or 
precisely determined by, either x or y.) And suppose further that there 
is an observed variable a> which differs from x by errors and 
fluctuations:

w — z + e"

and, most vitally, that these errors and fluctuations are such that both e 
and c' are statistically independent of both z and e". Thus w can be used
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to tell something about x, something about y, but nothing about either 
e' or e. This is the simple concept.

Now let the values of w be quantitative. (These may perfectly well 
be simple quantitative scores applied to the classes of an ordered 
classification.) It is then appropriate to consider regressions on w, in 
particular the regressions of v on a; and of « on w. These will be 
attenuated forms of the regressions of y on z and of x on z. In both 
instances, the attenuation will come from the variance of e". It is easy 
to show that both attenuations are by the same ratio. Consequently, 
under the basic independence-of-error assumption.

slope of V on z 
slope of z on z

slope p on w 
slope u on w

so that the left-hand ratio of slopes can be estimated.
If now the dependence of y on z can he considered as all passing 

through X, we will have attained one of our goals. Indeed, a necessary 
condition for that sort of dependence is

, slope of V on zslope of V on z ■■ ■. r---- , ------ -slope of z on z

so that one of the structural regression coefficients, the slope of y on z , 
can be estimated by the ratio of any estimates of two of the measurable 
regression coefficients, the slopes of y and z on z .

When will it be reasonable to assume that the dependence of y on 
z can be considered to pass through z? If y were exactly and linearly 
determined by z , this would be the case. If z were identical with z , or, 
more generally, if z were exactly and linearly determined by z, this 
would also be the case. These situations appear special. But they are 
exactly the situations which may appear in a wide variety of problems. 
Thus, in a supply-demand situation, the simplest approximate model 
relates demand to price exactly. This amounts to making y an exact 
function of z . Even more frequent is the case where z is equal to, or a 
function of z, where w and v are measures of the same thing, one being 
perhaps a much cruder measure than the other.

This last situation brings us to the most subtle point; why does the 
technique ever work in practice? For we may take z z , yet we dare 
not take w — And w can be a quite crude measure of z, but we dare 
not let w equal u plus additional fluctuations and errors. The root of 
the matter lies in the assumption of independence of errors, in the 
failure of z, e" or w to reveal anything at all about e' or e. This
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assumption is not to be proved by empirical observation or analysis of 
data. It can only be a result of insight or theoretical argument.

Indeed it is usually true that when instrumental variates are used 
to obtain structural regressions, the instrumental variate serves to define 
the structural variables themselves, to define them as those variables for 
which "observed variable minus structural variable," now to be called 
"error," is independent of instrumental variable. If the instrumental, 
variables are chosen wisely and carefully, and not in desperation, are 
chosen to estimate what is really desired, and not anything at all except 
the simple regressions, then their role in defining the structural variable 
is usually helpful and desirable, rather than dangerous or unpleasant.

W5. INSTRUMENTAL CLASSIFICATIONS AND THE 
WORKING-WOLD ANALYSIS

Some instrumental variables are not quantitative; quantitative 
instrumental variables are sometimes used qualitatively. In either case 
we speak of an instrumental classification. In either case the formula 
w — z + e" and the distinction between u; and z become irrelevant at 
best. And the independence-of-error assumption reduces to the 
independence of both c and e from w. To grasp the structural 
regression we still need to assume that the whole of the connection 
between w and y passes through x.

Sorting out observed pairs according to values of to can serve some 
of the purposes of experimentation. The basic argument is simple. The 
classifying instrumental variable is independent of e' and e. Thus if we 
sort out observed pairs because of the corresponding values of to, and 
for no other reason, we shall have sorted in terms of the values of x and 
y alone. This is a way of reaching in and grasping the structural 
variables. If the relationships of x and y to 2 are weak, the grasp may 
be feeble, but it is there, and it allows us to do some of the things
which would be easy if experimentation were possible.

It is now relatively easy to inquire whether either structural 
regression is identical with the corresponding measurable regression. 
The slope of y on x will be the same as the slope of u on « if and only 
if the error e' in x vanishes. If there is no error e' in x for the whole 
population, there is no error in x for any subpopulation. In particular, 
there is none for any subpopulation sorted out in terms of the values of 
w. If we sort out several subpopulations and find the slope of t> on « 
substantially the same within each, this is evidence, not conclusive but 
well worth attention, that the structural regression of y on x is the same 
as the simple regression of v on u. If, on the contrary, we find the
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slope of V on « changing substantially from one sorted-out 
subpopulation to another, we conclude that the structural regression is 
definitely different (and hence stronger) than the simple regression of v
on u.

What subpopulations shall we sort out, and how shall we examine 
the corresponding slopes? At least two choices are worth description.

One approach was pioneered by Holbrook Working (Working 
1933, Working 1934) and has recently been taken up by Wold (Wold 
1961). In this approach a number of nonoverlapping, moderately small 
subpopulations are sorted out, the slope of v on u estimated for each, 
and the result summarized by a measure of variability of these slopes, 
perhaps the ratio of the standard deviation (between sorted-out 
subpopulations) of the estimated slopes to their mean.

The attenuation due to error in * is by the factor

_______________ (mean square deviation of x's)______ _ _ _ _ _
(mean square deviation of x's) + (mean square deviation of errors)

which depends only upon

(mean square deviation of x's)
(mean square deviation of errors)

and it is upon changes in this latter ratio that the whole instrumental 
classification rests. If the assumed independence of error from w holds 
completely, then the mean square deviation of errors will not depend 
upon w and the denominator of the last ratio will be the same for every 
sorted-out subpopulation. In such circumstances, if the sorted-out 
subpopulations all have very similar values of the mean square 
deviation of x, the ratios will be nearly the same for all sorted-out 
subpopulations, as will the slopes. Thus the Working-Wold approach 
will not be effective if errors are truly independent of the sorting 
variable, and the sorted-out subpopulations have similar dispersions for 
X, or for «.

There is, however, some compensation for this weakness. For 
effective use of the instrumental device, it is only necessary that w tell 
us nothing about e' in a linear way. It is sufficient to require absence of 
(Pearsonian) correlation in place of absence of dependence. And this 
can hold while the mean square deviation of e1 in the various sorted-out 
subpopulations vary among themselves. If now the mean square 
deviations of * in the sorted-out subpopulations are all about the same, 
the ratios will differ, and evidence that the simple regression is not the 
structural regression can be gathered.
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m . ANOTHER APPROACH, AND THE ANALYSIS OF 
RECIPROCAL SLOPE

When the mean square deviation within sorted-out subpopulations 
is constant, in particular when e' is completely, and not merely linearly, 
statistically independent of w, another approach is possible, and seems 
likely to be more sensitive. The actual slope of v on u will be 
proportional to the factor by which the slope of y on x has been 
attenuated. Passing to the reciprocals;

1 MSP{y} + MSP (e')
slope of V on u MSD {x} 

ocl + MSP{c) 1
MSD{x]

where "MSD" stands for the mean square deviation. 
If we plot

1
slope of V on u

against

mean square deviation of x's

for various sorted-out subpopulations, we should expect to find a 
roughly linear relationship, and should be able to take the ratio of slope 
to vertical intercept of this line as an estimate of the mean square 
deviation of the e's. To make this process effective, we wish to choose 
the sorted-out subpopulations so that:

(1) the estimates of slope of v on « are stable;

(2) the mean square deviation of x varies substantially, or as is often 
equivalent, the mean square deviation of « varies substantially.

To do this we will be wise to accept overlapping subpopulations of 
different sizes, and to consider seriously making a number of dissections 
of the population into subpopulations, with the sizes of the mean square 
deviation for u about the same for the subpopulations of an individual 
dissection, but quite different from dissection to dissection. More 
detailed discussion of this approach should await further trial on actual 
data.
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It would not be right to close this discussion, however, without 
pointing out that many instrumental approaches can be regarded as 
various instances of looking to see if the sum of squares of x follows the 
sum of cross-products of x and y quantitatively, just as the little lamb 
followed Mary qualitatively.

m . STRUCTURAL INFORMATION IS NOT CAUSAL 
INFORMATION

We have seen a little of the possibilities and difficulties of the 
search for information about structural regressions; we must deal now 
with its greatest temptation. It is at least interesting, and sometimes 
very important, to know which structural variable has been measured 
with error or fluctuation, and which, if one there be, has been measured 
cleanly. This information can sometimes be combined with theoretical 
insight into the subject-matter to throw light on questions of causality. 
The danger and the temptation is to try to establish causality by using 
such empirical evidence alone.

In this section we try to reveal this danger by example. Consider 
first a farm on which there are a number of piles of stones of varying 
weight. The weights vary within each pile. And the average weight of 
a stone varies substantially (i.e., more than would correspond to random 
choice) from pile to pile. Strangely enough, each stone is clearly and 
ineffaceably labeled with a serial number. An investigator of stone 
weights is coming to weigh these stones. He is so careful that he insists 
in weighing each stone twice, once on each of two weighing machines. 
And in order to keep subjective errors to a minimum he insists on 
weighing all the stones on one weighing machine before beginning to 
weigh on the other.

Suppose further that one weighing machine is very precise, while 
the other is subject to considerable random error. The change in true 
weight of any stone between the two weighings is negligible. Both 
structural variables are the same, the true weight of the stone. One 
observed variable, the observed weight with the precise weighing 
machine, is very closely the same as the corresponding structural 
variable. The other observed variable, measured with the imprecise 
weighing machine, is not closely the same as the corresponding 
structural variable. Any sensible analysis of the data, for example, one 
using "pile" as an instrumental classification, or one using "mean 
weight of other stones in the same pile for both weighings" as an 
instrumental variate, will discover that the measurable regression of 
imprecise weighing on precise weighing may possibly be a structural



regression but that the measurable regression of precise weighing on 
imprecise weighing cannot be structural.

Such a result gives no information at all about causality. If the 
investigator uses the precise weighing machine first, the first weighing 
will appear to give the structural answer. If, on the other hand, he uses 
the imprecise one first, the second weighing will give the structural 
answer. But the order of use of weighing machines can have nothing at 
all to do with the direction of causality, with the nature of the causal 
relations among weights.

If causality makes any sense here, the earlier weight is surely the 
cause of the later weight. And we have seen that either structural result 
can be obtained.

This example may perhaps be objected to because it is felt that 
causality is not a valid concept in this particular situation. It is easy to 
modify it slightly to avoid this difficulty, but it may be more helpful 
and illuminating to modify it substantially. Let us replace stones by 
men and the earliest born of their male children to reach the age of 18. 
We can replace the piles of stones by groups of men living in ethnically 
different parts of the world. We suppose the male parents to be 
weighed when they are 18, while the male children are weighed some 
decades later, when they are themselves 18. Again, one measurement is 
made with an imprecise weighing machine and one with a precise one. 
Again, whichever measurement, of parents, or of children, is made with 
the precise weighing machine will turn out to be possibly structural. 
Here the direction of causality is unequivocal; the weights of children to 
come cannot cause the weight of the father at age 18.

Structural information cannot be directly converted into causal 
information.
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X. REFINING ADJUSTMENT FOR BROAD 
CATEGORIES

In Section D3 we showed how the use of broad classes may not suffice 
to eliminate the effect of some variable, although it is usually very 
helpful. It is natural to ask how we can do better. This appendix 
attempts to provide one way to do better, a way which is novel, and 
which will require considerable trial before we can be sure of its 
efficacy, but one whose apparent efficacy is considerable.
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XL THE APPROACH

As in so many approaches to a new technique, we are going to 
proceed as if there were an underlying quantitative variable which has a 
normal distribution. Notice that it has not been said that we assume the 
existence of a normally-distributed underlying quantitative variable. It 
is important that we have not said this. To say it would be to take a 
narrow, purely mathematical approach to a broad problem whose 
essentials are not mathematical. (But in whose solution we look to 
mathematics for aid.)

A physical example may illuminate the situation. How does one 
begin to treat the motion of the planets around the sun? One begins by 
treating each object, planet or sun, as if it were a "point-mass." This 
does not mean that the physicist or astronomer is assuming that all the 
mass of the sun is concentrated at a point. Far from it. He is, instead, 
treating first as simple a case as seems likely to provide the essentials of 
the answer. To his point-mass solution (if he can solve the problem of 
n bodies!) he has an obligation to add consideration of how well this 
solution is likely to provide all the essentials. Part of this consideration 
should come from his own professional understanding of the situation, 
specifically of what is likely to be how important; another part may 
come from trial solutions of slightly more complex situations, from a 
study of perturbations, or from comparison with experiment. But there 
will be no substitute for a combination of a solution (of a problem that is, 
in almost every instance, much simpler than the real situation) and a 
consideration of the likelihood of adequate applicability to the real 
situation of this solution (and not of the hypotheses from which it was 
derived).

Data analysis is not different from physical science in this respect; 
procedures of data analysis are usually found be seeking something 
which is reasonable in a very special case, and then validating it (as 
much a s , may be appropriate) by both professional appraisal of the 
likelihood of its adequacy as a working approximation and trial in 
diverse practical circumstances.

The very simple circumstances which are so often our initial 
concern are not assumptions, but rather guides, guides on trial rather 
than guides fully accepted. It is most important, not only in this 
instance, but throughout data analysis, to understand this fact, and to 
approach the synthesis and appraisal of data-analytical techniques with 
corresponding attitudes and tools.



8. DATA ANALYSIS AND BEHAVIORAL SCIENCE 3 8 5

X2. THE STRUCTURE

If we are to correct more effectively for the effects of a variable 
which is known only in terms of broad classes, we must do something 
better than treating the mean behavior of all instances which fall into a 
broad class as though they fell at the center of the broad class. We must 
treat the mean behavior as falling at an appropriate point and then 
allow for the fact that this point is not the mid-class point.

If we know that the interest of 1194 men in a forthcoming election 
divided 449, 789, and 56 between great, moderate, and none, we can 
assign percentage positions to the breaks and then, using tables of the 
standard normal cumulative, we can assign normit values to the breaks. 
For the broad class between the two breaks ("moderate interest") we can 
easily determine a mid-class normit as the arithmetic mean of the 
adjacent break normits. The other two classes are open-ended, and have 
no mid-class point. We want standard points for these classes also.

We have little choice but to fix these outer standard points at a 
prescribed distance outside the extreme breaks. It is convenient to 
choose this distance as one-quarter the mean width of the classes 
between the extreme breaks.

All this computation goes forward in normits, and is applicable to 
the specific group treated. Once we can replace actual mean behavior 
for broad classes by mean behavior adjusted to the standard points, we 
will be in shape to make comparisons from one group to another. In 
doing this we need pay no further attention to the normit values, which 
have served their purpose by allowing us to make adjustment.

Several points deserve stress. First, there is no necessary 
connection between the normit scales used to adjust the different 
groups. Second, the adjustments should be small, and are reasonably 
made by linear interpolation. Third, the whole procedure assumes that 
it is reasonable to think of a single underlying continuous variable, with 
smooth, singly-humped distribution. (It might not be wise to use such 
an adjustment when the broad classes are, for example, "working class," 
"middle class," "upper class," since the breaks between these classes 
might be so well defined that a reasonable underlying continuous 
vairiable would have to have dips in its density of distribution near each 
break.)

The first of these three points is emphasized in Table 40, which 
illustrates the construction of normit scales and standard points, for 
reported interest in a forthcoming election, for 1294 men and 1418 
women. (Data of Lazarsfeld, Berelson, and Gaudet 1948, as reported by 
Hyman 1955, page 297, Table 27. This example is also discussed in 
Section E9.)
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Table 40

Construction of normit scales and location of 
standard points for two groups, one of 1294 

men, the other of 1418 women.

V, '' ; : '____ Breaks in

Reported Number Std.
interested of cases % normits points

------- ...----- — ......------1294 m en--------------------------------

Great 449 0.93
65.4%/34.6% 0.40

Moderate 789 —0.66
4.3%/95.7% -1.72

None 56 -2.25
--------------------- ---- —1418 women---------------------- -—  -----

Great 328 1.16
76.8%/23.2% 0.74

Moderate 852 —0.11
16.8%/83.2% ; -0.96

None 238 -1.38

-0.66 -  j  [(0.40)+(—1.72)], -0.11 -  j  [(0.74)+(-0.96)j,

0.53-  -i-[(0.40)-(-1.72)], 0.42 - [(0.74)-(-0.96j,
4 4

0.93 -  0.40 + 0.53 , -2.25 -  -1.72 -  0.53 ,

1.16 -  0.74 + 0.42 , -1.38 -  -.96 -  0.42 ,

X3 THE APPROPRIATE POINTS

To lay out our norm it scales, and to establish the corresponding 
standard points we needed only tables relating deviation to break (to 
cumulative fraction) for the standard normal distribution (the one w ith 
average zero and variance one). Such tables are to be found in almost 
every statistics book.

To determ ine appropriate points at which we may think of the 
cases in a broad class as concentrated, we need, essentially, a table of 
centers of gravity of segments of the standard un it normal. A table of 
this latter sort has been given by Leverett (1947). For our present 
purposes, a modification of Leverett's table, giving the displacement of 
the appropriate point from the class m idpoint (for extreme classes, from
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the class boundary) is even simpler to use. Such a table is given as 
Table 41.

Table 41
Deviation of means of segments of the standard normal distribution 

from means of class boundaries (from the class boundary 
when there is but one). (Units determined so that o — 1.0.)

Open-ended classes
Deviation inward from mean of class 

boundaries for interval classes

Prob.

Deviation beyond 
class boundary 

(outward)
One
tail 5%, 10%,

The other tail 
20%, 40%, 70%,

1% .34 1% .26 .36 •41 .43 .32
2 .37 2 .15 .24 .31
3 .39 3 .08 .18 .24 .27
4 .40 4 ’ .02 .13 .20
5 .42 5 .00 .10 .17 .18 .11
6% .43 6% .03* •07 .14
8 .45 8 .07* .03 .10
10 .47 10 .10 .00 .07 .09 .04
12 .49 12 .12 .02* .05
15 .52 15 .14 .05 .03 .05 .02

‘Interpolated as though there were a change in sign.
(to be cont'd and modified)

Applying this table to the example already begun, we find

(1) that the "appropriate point" for the 449 men with "great interest" 
is 0.67 normit beyond the break, and hence falls at 
0.40 -b 0.67 •- 1.07 normits, and

(2) that the "appropriate point" for the 789 men with "moderate 
interest" falls about 0.21 normit from the mid-class point, namely 
at -(0.66-0.21) -  -0.45.

Continuing, we find the results shown in Table 42. Table 43 sets out 
the original and adjusted comparisons.

The effects of adjustment are not large (recall that Table 11 found 
the standard errors of the differences to be ±.31, ±.14 and ±.19, 
respectively), but they are not negligible. (The shift in weighted
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average, 0.19, is almost twice the standard error, 0.11, of the unadjusted 
difference.) Interestingly enough, the differences for the three classes of 
reported interest are more consistent after adjustment.

As noted earlier, this method of adjustment is on trial. One test 
means little, but this one is at least encouraging.

Table 42
Mean responses, appropriate points, standard points, 

and adjusted mean responses for 1294 men and 1418 woman.

Reported Response (half- Appropriate Standard Interpolated
interest logit voting) point point response'

-1294 men------
Great 2.30 1.07 0.93 2.27
Moderate 1.95 -0.45 -0.66 !.81
None 0.79 -2.13 -2.25 0.71

----  — ...------- 1418 women-----

Great 1.95 1.33 1.16 1.83
Moderate 0.95 -0.08 -0.11 0.93
None -0.12 -1.50 -1.38 -0.03

*2.27 -  2.30 - 1.07 -  0.93 (2.30-1.95)1.07 -  (-0.45)

1.81 -  1.95 - -0.66 -  (-0.45) 
-2.13 -  (-0.45) (1.95-0.79)

0.71 -  0.79 - -2.25 -  (-2.13) 
-2.13 -  (-0.45) (1.95-0.79)

and so on.
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Table 43
Effect of adjustment upon comparison of men and 

women as to voting fraction. (All values in half-logits.)

Reported
interest

Great
Moderate
None
(weighted*)

Great
Moderate
None
(weighted*)

Male
response

Female
response

-unadjusted responses • 
2.30 1.95
1.95 0.95
0.79 -0.12

--adjusted responses — 
2.27 1.83
1.81 0.93
0.71 -0.03

Difference

0.35
1.00
0.91

(0.90)

0.44
0.88
0.68

(0.71)

* With weights 2, 10 and 5, respectively, which are sufficiently closely 
proportional to the reciprocals of estimated variances.




