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CHANCE, THE EVER-PRESENT

RIVAL CONJECTURE

. .. the probability that this coincidence is a mere work of chance is,
therefore, considerably less than (1/2)%0 . .. Hence this coincidence must
be produced by some cause, and a cause can be assigned which affords a
perfect explanation of the observed facts.—G. KIRCHHOFF!

1. Random mass phenomena. Everyday speech uses the words
“probable,” “likely,” “plausible,” and ‘““credible” in meanings which are
not sharply distinguished. Now, we single out the word “‘probable” and we
shall learn to use this word in a specific meaning, as a technical term of a
branch of science which is called the “Theory of Probability.”2

This theory has a great variety of applications and aspects and, therefore,
it can be conceived and introduced in various ways. Some authors regard
it as a purely mathematical theory, others as a kind or branch of logic, and
still others as a part of the study of nature. These various points of view
may or may not be incompatible. We have to start by studying one of them,
but we should not commit ourselves to any of them. We shall change our
position somewhat in the next chapter, but in the present chapter we choose
the viewpoint which is the most convenient in the great majority of applica-
tions and which the beginner can master most quickly. We regard here the
theory of probability as a part of the study of nature, as the theory of certain
observable phenomena, the random mass phenomena® We can understand
pretty clearly what this term means if we compare a few familiar examples
of such phenomena.

L Abhandlungen der k. Akademie der Wissenschafien, Berlin, 1861, p. 79.

¢ In the foregoing, the words ‘‘probable” and “probability” have been sometimes used in
a non-technical sense, but this will be carefully avoided in the present chapter and the next.
The words ‘likely” and “likelihood” will be introduced as technical terms later in this
chapter.

8 In this essential point, and in several other points, the present exposition follows the
views of Richard von Mises although it deviates from his definition of mathematical proba-
bility; cf. his book Probability, Statistics, and Truth.
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(1} Rainfall. Rainfall is a mass phenomenon. Tt consists of a very great
number of single events, of the fall of a very great number of raindrops.
These raindrops, although very similar to each other, differ in various
respects: in size, in the place where they strike the ground, etc. There is
something in the behavior of the raindrops that we properly describe as
“random.” In order to understand clearly the meaning of this term let us
imagine an experiment.

Let us observe the first drops on the pavement as the rain starts falling.
We observe the pavement in the middle of some large public square,
sufficiently far from buildings or trees or anything that could obstruct the
rain. We focus our attention on two stones which we call the “‘right-hand
stone” and the “left-hand stone.”” We observe the drops falling on these
stones and we note the order in which they strike. The first drop falls on
the lefi-hand stone, the second drop on the right, the third again right, the
fourth left, and so on, without apparent regularity as

LRRLLLRLRLRRLRR

(R for right, L for left). There is no regularity in this succession of the rain-
drops. In fact, having observed a certain number of drops, we cannot
reasonably predict which way the next drop will fall. We have noted
above fifteen entries. Looking at them, can we predict what the sixteenth
entry will be, R or L? Obviously, we cannot. On the other hand, there is
some sort of regularity in the succession of the raindrops. In fact, we can
confidently predict that at the end of the rain the two stones will be equally
wet. That is, the number of drops striking each stone will be very nearly
proportional to the area of its free horizontal surface. Nobody doubts that
this is so, and the meteorologists certainly assume that this is so in con-
structing their rain-gauges. Yet there is something paradoxical. We can
foresee what will happen in the long run, but we cannot foresee the details.
The rainfall is a typical random mass phenomenon, unprediciable in certain
details, predictable in certain numerical proportions of the whole.

(2) Bays among the newborn. Inahospital, the newborn babies are registered
in order as they are born. Boys and girls (B and G) follow each other
without apparent regularity as

GBBGBGBBGGBBBGG

Although we cannot predict the details of this random succession, we can
well predict an important feature of the final result obtained by summing up
all such registtations in the United States during a year: the number of the
boys will be greater than the number of the girls and, in fact, the ratio of
these two numbers will be little different from the ratio 51.5 : 48.5. The
number of births in the United States is about 3 millions per year. We
have here a random mass phenomenon of considerable dimensions.
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(3) A game of chance. We toss a penny repeatedly, noting each time which
side it shows, ‘‘heads” or “tails” (H or T). We obtain so a succession
without apparent regularity as

THHHTHTHHTHTHTT

If we have the patience to toss the penny a few hundred times, a definite
ratio of heads to tails emerges, which does not change much if we prolong
our experiment still further. If our penny is “unbiased,” the ratio 50 : 50
of heads to tails should appear in the long run. If the penny is biased, some
other ratio will come into view. At any rate we see again the characteristic
features of a random mass phenomenon. Constant proportions emerge in
the long run, although the details are unpredictable. There is a certain
aggregate regularity, in spite of the irregularity of the individual happenings.

2. The concept of probability. In the year 1943 the number of
births in the United States, male, female, and total, was

1,506,959 1,427,901 2,934,860,
respectively. We call

1,506,959 the frequency of the male births,

1,427,901 the frequency of the female births.
We call

1,506,959

7534 560 = *31%

the relative frequency of the male births and

1,427,901

5 534860 = 4869

the relative frequency of the female births. In general, if an event of a
certain kind occurs in m cases out of n, we call m the frequency of occurrence of
that kind of event and mj/n its relative frequency.

Let us imagine that, throughout the whole year, the births are successively
registered in the whole United States (as in the hospital that we have men-
tioned in the foregoing section). If we look at the succession of male and
female births, we have before us an extremely long series of almost three
nillion entries beginning like

GBBGBGBBGGBBBGG.

As the mass phenomenon unfolds, we have, at each stage of the observation,
a certain frequency of male births and also a certain relative frequency. Let
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us note, after 1, 2, 3, ... observations, the frequencies and the relative
frequencies found up to that point:

Observations ~ Event  Frequency of B Relative frequency

I G 0 0/1 == 0.000
9 B 1 1/2 = 0.500
3 B 2 2/3 = 0.667
4 G 9 2/4 = 0.500
5 B 3 3/5 = 0.600
6 G 3 3/6 = 0.500
7 B 4 4/7 = 0.571
8 B 5 5/8 = 0.625
9 G 5 5/9 = 0.556
10 G 5 5/10 = 0.500
11 B 6 6/11 = 0.545
12 B 7 7/12 = 0.583
13 B 8 8/13 = 0.615
14 & 8 8/14 = 0.571
15 G 8 8/15 = 0.533

As far as we have tabulated it, the relative frequency oscillates pretty strongly
(between the limits 0.000 and 0.667). Yet we have here only a very small
number of observations. Aswe go further and further, the oscillations of the
relative frequency will become less and less violent, and we can confidently
expect that in the end it will oscillate very little about its final value 0.5135.
As the number of observations increases, the relative frequency appears to settle down to a
stable final value, in spite of all the unpredictable irregularities of detail. Such
behavior, the emergence of a stable relative frequency in the long run, is
typical of random mass phenomena.

An important aim of any theory of such phenomena must be to predict
the final stable relative frequency or long range relative frequency. We have to
consider the theoretical value of long range relative frequency and we shall call this
theoretical value probability.

We wish to clarify this concept of probability. Naturally, we begin with
the study of mass phenomena for which we can predict the long range
relative frequency with some degree of reasonable confidence.

(1) Balls in a bag. A bag contains p balls of various colors among which
there are exactly f white balls. We use this simple apparatus to produce
a random mass phenomenon. We draw a ball, we look at its color and we
write W if the ball is white, but we write D if it is of a different color. We
put back the ball just drawn into the bag, we shuffle the balls in the bag, then
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we draw again one and note the color of this second ball, Wor D. In pro-
ceeding so, we obtain a random sequence similar to those considered in
sect. |:

WDDDWDDWWDDDWWD.

What is the long range relative frequency of the white balls?

Let us discuss the circumstances in which we can predict the desired
frequency with reasonable confidence. Let us assume that the balls are
homogeneous and exactly spherical, made of the same material and having
the same radius. Their surfaces are equally smooth, and their different
coloration influences only negligibly their mechanical behavior, if it has any
influence at all. The person who draws the balls is blindfolded or prevented
in some other manner from seeing the balls. The position of the balls in
the bag varies from one drawing to the other, is unpredictable, beyond our
control. Yet the permanent circumstances are well under control: the
balls are all the same shape, size, and weight; they are undistinguishable by
the person who draws them.

Under such circumstances we see no reason why one ball should be
preferred to another and we naturally expect that, in the long run, each ball
will be drawn approximately equally often. Let us say that we have the
patience to make 10,000 drawings. Then we should expect that each of the
p balls will appear about

10,000 .
times,

There are f white balls. Therefore, in 10,000 drawings, we expect to get
white

10,000 I
S ——— = 10,000 = times;
p ?

this is the expected frequency of the white balls. To obtain the relative
frequency, we have to divide the frequency by the number of observations,
or drawings, that is, by 10,000. And so we are led to the statement: the
long range relative frequency, or probability, of the white balls is f]p.

The letters fand p are chosen to conform to the traditional mode of expres-
sion. As we have to draw one of the p balls, we have to choose one of p
possible cases. 'We have good reasons (equal condition of the p balls) not to
prefer any of these p possible cases to any other. If we wish that a white ball
should be drawn (for example, if we are betting on white), the £ white balls
appear to us as favorable cases. Hence we can describe the probability
flp as the ratio of the number of favorable cases to the number of possible cases.

Pulling a ball from a bag, putting the ball back into the bag, shaking the
bag, pulling another ball, and repeating this n times seems to be a pretty
silly occupation. Do we waste our time in studying such a primitive game?
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I do not think so. The bag and the balls, handled in the described manner,
generate a random mass phenomenon which is particularly simple and
accessible. Generalization naturally starts from the simplest, the most
transparent particular case. The science of dynamics was born when Galileo
began studying the fall of heavy bodies. The science of probability was
born when Fermat and Pascal began studying games of chance which depend
on casting a die, or drawing a card from a pack, or drawing a ball from a
bag. The fundamental concepts and laws of dynamics can be extracted
from the simple phenomenon of falling bodies. We use the bag and the
balls to understand the fundamental concept of probability.

P

Fig. 14.1. Probability defined by rainfall.

(2) Rainfall. We return to the consideration of the random mass pheno-
menon from which we started in sect. . The area of a horizontal surface
is P and the area of a certain portion of this surface is F; see fig. 14.1. We
observe the raindrops falling on this area P and we are interested in the
frequency of the raindrops falling on the subarea F. We are inclined to
predict without hesitation the long range relative frequency: the fraction of
the total rain over the area that falls on the subarea will be very nearly
F/P if the rain consists of more than a few drops. In other words, the proba-
bility that a raindrop striking the surface of area P should strike the portion
of area F is F/P. If we idealize the rainfall and consider a raindrop as a
geometric point, we can also say: the probability that a point falling in the
area P should fall in the subarea F is F/P.

In the last statement we consider each point of the area P as a possible case
and each point of the subarea F as a favorable case. The number of favor-
able cases as that of the possible cases is infinite, and it would not make sense
to talk about the ratio of infinite numbers. We can consider, however, the
area of a surface as the measure of the points contained in the surface. Using
this term, we can describe the probability F/P as the ratio of the measure of
JSavorable cases to the measure of possible cases.

3. Using the bag and the balls. In deriving the fundamental principle
of statics, Lagrange replaced an arbitrary system of forces by a suitable
system of pulleys. In the light of this Lagrangeian argument (the details
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of which are not needed here?) any case of equilibrium appears as a suitable
combination of correctly balanced pulleys. The Calculus of Probability can
be viewed in a similar manner; in fact, such a view is suggested by the early
history of thisscience. Seen from this standpoint, any problem of probability
appears comparable to a suitable problem about bags containing balls,
and any random mass phenomenon appears as similar in certain essential
respects to successive drawings of balls from a system of suitably combined
bags. Let us illustrate this by a few stmple examples.

(1) Instead of tossing a fair penny, we can draw a ball from a bag contain-
ing just two balls, one of which is marked with an A and the other with a T'
(heads and tails). Instead of casting an unbiased die, we can draw a ball
from a bag containing exactly six balls, marked with 1, 2, 3, 4, 5, or 6 spots,
respectively. Instead of drawing a card from a pack of cards, we can draw
a ball from a bag containing 52 balls, suitably marked. It seems to be
intuitively clear that substituting a bag with balls for pennies, dice, cards,
and other similar contrivances in a suitable way, we do not change the odds
in the usual games of chance. At least, we do not change the chances in
that idealized version of these games in which the contrivances used (pennies,
dice, etc.) are supposed to be perfectly symmetrical and, correspondingly,
certain fundamental chances perfectly equal.

(2) Wishing to study the randomness in the distribution of boys and
girls among the newborn, we may substitute for the actual mass phenomenon
successive drawings from a bag containing 1,000 balls, 515 marked with B
and 485 marked with G. This substitution is, of course, theoretical and,
as every theory is bound to be, it is tentative and approximative. Yet the
point is that the bag and the balls enable us to formulate a theory.

(3) A meteorologist registers the succession of rainy and rainless days in
a certain locality. His observations seem to show that, on the whole, each
day tends to resemble the foregoing day: rainless days seem to follow
rainless days more easily than rainy days and, similarly, rainy days seem to
follow rainy days more easily than rainless days. Of course, a dependable
regularity appears only in a long series of observations; the details are
irregular, seem to be random.

The meteorologist may wish to express more clearly his impressions
that we have just sketched. If he wishes to formulate a theory in terms of
probability, he may consider three bags. Each bag contains the same
number of balls, let us say 1,000 balls. Some of the balls are white, the
others are black (white for rainless, black for rainy). Yet there are important
differences between the bags. Each bag bears an inscription, easily visible
to the person who draws the balls. One bag is inscribed “sTART,” another
“AFTER WHITE,” and the third ‘““ArTER BLACK.”” The ratio of balls of different
color is different in different bags. In each bag the ratio of white balls to

4 See E. Mach, Die Mechanik, p. 59-62.
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black balls approximates the observable ratio of rainless days to rainy days,
but in different circumstances. In the bag ‘“‘sTART” the ratio is that of
rainless days to rainy days throughout the year, in the bag “AFTER WHITE”
the ratio is that of rainless days to rainy days following a rainless day, and
in the bag ‘““AFTER BLACK” the ratio is that of rainless days to rainy days
following a rainy day. Therefore, the bag “AFTER WHITE” contains more
white balls than the bag “AFTER BLACK.”” The balls are drawn successively
and each ball drawn, when its color has been noticed, is replaced into the
bag from which it was drawn. The bag “sTART” is used but once, for the
first ball. If the first ball is white, we use the bag “ArTErR wHITE” for the
second ball, but if the first ball is black, the second ball is drawn from the
bag ‘““AFTER BLACK.”” And so on, the color of the ball just drawn determines
the bag from which the next ball should be drawn.

It is just a theory that the succession of white and black balls drawn under
the described circumstances imitates the succession of rainless and rainy
days with a reasonable approximation. Yet, on the face of it, this theory
does not seem to be out of place. At any rate, this theory, or some similar
theory, could deserve to be confronted with the observations.

(4) Take any English text (from Shakespeare, if you prefer) and replace
each of the letters a, ¢, , 0, #, and y by V and each of the remaining twenty
letters by C. (¥ means vowel and C means consonant.) You obtain a
pattern as

cvecvvccveccecvevcece.

This irregular sequence is in some way opposite to that discussed in the
foregoing subsection (3): each day tends to be like the foregoing day, but each
letter tends to be unlike the foregoing letter. Still, we could imitate the
succession of vowels and consonants by a succession of white and black balls
drawn from three bags bearing the same inscriptions as before (in subsection
(3)), yet the ratio of white balls to black balls should not be the same as
before. To imitate realistically the succession of vowels and consonants the
bag “AFTER wHITE” should contain less white balls than the bag {*AFTER
BLACK.”’

(5) There are two bags. The first bag contains p balls among which
there are f white balls. The second bag contains P chips among which
there are F white chips. Using both hands, I draw from both bags at the
same time, a ball with the left hand and a chip with the right hand. Whatis
the probability that both the ball and the chip turn out to be white?

We could, of course, repeat this primitive experiment sufficiently often,
perhaps a thousand times, and so obtain an approximate value for the desired
probability. Yet we can also try to guess it, and that is more interesting.

The result of the two simultaneous drawings is a ‘““couple,” consisting
of a ball and a chip. There are p balls and P chips. As any ball can be
coupled with any chip, there are pP possible couples; they are shown in
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fig. 14.2 where p =5, f= 2, P =4, F= 3. There is no reason to prefer
any of the p balls to any other ball, ¢r any of the P chips to any other chip.
There seems to be no reason to prefer any of the pP couples to any other couple. In
fact, in performing the experiment with the two bags, I am supposed to
proceed blindly, at random, so that each hand draws independently of the
other. ‘“‘Let not thy left hand know what thy right hand doeth.”” It seems
incredible that the chances of the ball that I draw with my left hand should
be influenced by the chip that I draw with my right hand. Why should
ball no. | be any more attracted by chip no. | than it is by chip no. 2?
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Fig. 14.2. Independent events,

And so we can imagine a bag, containing pP mechanically indistinguish-
able objects (each object is a couple, a ball attached to a chip); one drawing
from this one bag appears eguivalent to the two simultaneous drawings from
the two bags described at the outset. We have so pP possible cases; it
remains to find the number of favorable cases. A glance at fig. 14.2 shows
that there are fF couples consisting of a white ball and a white chip. Andso
we obtain the value of the desired probability: it is

F_LE

pP p’P
the product of two probabilities. In fact, f/p is the probability of drawing a
white ball from the first bag, and F/P the probability of drawing a white
chip from the second bag.

The essential point about the ball and the chip is that the drawing of one
does not influence the chances of the other. In the usual terminology
of the calculus of probability, such events are called independent of each other;
the joint happening of both events is viewed as a compound event. The
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foregoing consideration motivates the rule: The probability of a compound event
15 the product of the probabilities of the constituent events, provided that these constituent
events are mutually independent.

4- The calculus of probability. Statistical hypotheses. The
theory of probability, as we see it, is a part of the study of nature, the theory
of random mass phenomena.

The most striking achievement of the physical sciences is prediction.
The astronomers predict with precision the eclipses of the sun and the moon,
the position of the planets, and the return of comets which evade observation
for several years. A great astronomer (Leverrier) succeeded even in pre-
dicting the position of a planet (Neptune), the very existence of which was
not known before. The theory of probability predicts the frequencies in
certain mass phenomena with some amount of success.

The astronomers base their predictions on former observations, on the laws
of mechanics, the law of gravitation, and long difficult computations. Any
branch of physical science bases its predictions on some theory or, we cansay,
on some conjecture, since no theory is certain and so every theory is a more
or less reasonable, more or less well-supported, conjecture. In trying to
predict the frequencies in a certain random mass phenomenon from the
theory of probability we have to make some theoretical assumption about
the phenomenon. Such an assumption, which has to be expressed in terms
of probability concepts, is called a statistical hypothesis.

When we apply the rheory of probability we have to compute probabilities
{which are theoretical, approximate values of relative frequencies). When we
try to find a probability, we have a problem to solve. The unknown of this
problem is the desired probability.  Yet, in order to determine this unknown,
we need data and conditions in our problem. The data are usually proba-
bilities and the conditions, on which the relation of the unknown probability
to the given probabilities depends, constitute a statistical hypothesis.

As in the applications of the theory of probability the computation of
probabilities plays a prominent role, this theory is usually called the calculus
of probability. Thus, the aim of the calculus of probability is to compute new
probabilities on the basis of given probabilities and given statistical hypotheses.

The reader who wishes to peruse the remaining part of this chapter must
either know the elements of the calculus of probability, or he must take for
granted certain results derived from these elements. Most of the time, the
text will state the results without derivation; derivations will be given
subsequently, in the First Part of the Exercises and Comments following
this chapter, and in the corresponding Solutions. Yet even if the reader
does not check the derivation of the results, he ought to have some insight
into the underlying theoretical assumptions. We can make such assump-
tions intuitively understandable: we compare the random mass phenomenon
that we examine to drawings from suitably filled bags under suitable
conditions, as in the foregoing sect. 3.
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The applications of the calculus of probability are of unending variety.
The following sections of this chapter attempt to illustrate the principal types
of applications by suitable elementary examples. Stress will be laid on the
motivation of these applications, that is, on such preliminary considerations
as make the choice of procedure plausible.

5. Straightforward prediction of frequencies. At the beginning of
its history the calculus of probability was essentially a theory of certain games
of chance. Yet the predictions of this theory were not tested experimentally
on a large scale until modern times. We begin by discussing an experiment
of this kind.

(1) W. F. R. Weldon cast 12 dice 26,306 times, noting each time how
many of these 12 dice have shown more than four spots.® The results of his
observations are listed in column (4) of Table I; column (1) shows the number
of the dice among the 12 that have turned up five or six spots. Thus, in
26,306 trials it never happened that all twelve dice showed more than four
spots. The most frequent case was that in which four out of the twelve dice
showed five or six spots; this happened 6,114 times.

Table I

(n @ (3) (4) (3 (6)
Nr.of 5or6 ExcessI Predicted] Observed Predicted II Excess II

0 + 18 203 185 187 + 2
I + 67 1216 1149 1146 - 3
2 + 80 3345 3265 3215 — 50
3 + 101 5576 3475 5465 - 10
4 + 159 6273 6114 6269 + 155
5 — 176 5018 5194 5115 - 79
6 — 140 2927 3067 3043 — 24
7 — 76 1255 1331 1330 - 1
8 11 392 403 424 + 21
9 — 18 87 105 96 - 9
10 — 1 13 14 15 + 1
11 - 3 1 4 1 - 3
12 0 0 0 0 0
Total 0 26,306 26,306 26,306 0

How can the theory predict the observed numbers listed in column (4)
of Table I? If we assume that the dice are fair” and that the trials with
different dice, or with the same die at different times, are independent of

S Philosophical Magazine, ser. 5, vol. 50, 1900, p. 167-169; in a paper by Karl Pearson.
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each other, we can compute the relevant probabilities. Under our assump-
tion (which is properly termed a “statistical hypothesis™) the probability
that exactly 4 dice out of 12 should show 5 or 6 spots is

1\4 2)8 126,720
P = - Z) = LA
495 (3) (3 531,441

Now, by definition, the probability is the theoretical value of long range
relative frequency. If the event with probability P shows itself m times in n
trials, we expect that

T_p approximately
n

or
m = Pn approximately.

Therefore, we should expect that exactly 4 dice will show five or six spots
out of the 12 dice cast in about

126,720

n = 26,306 = 6,273
531,441

cases out of n = 26,306 trials. (Observe that we can compute this number
6,273 before the trials start.) Now, this predicted value 6,273 does not seem
to be “very different” from the observed number 6,114, and so our first
impression about the practical applicability of the theory of probability may
be quite good.

The number 6,273 is listed in column (3) of Table I at the proper place,
in the same row as the number 4 in column (1).  All the numbers in column
(3) are similarly computed. In order to compare more conveniently the
predicted values in column (3) with the observed numbers in column (4), we
list the differences (predicted less observed) in column (2). With their
meaning in mind, we survey the columns (2), (3), and (4). Is the agreement
between experience and theory satisfactory? Are the observed numbers
sufficiently close to the predicted values?

There is, obviously, some agreement between the columns (3) and (4).
Both columns of numbers have the same general aspect: the maximum is
attained at the same point (in the same row) and the numbers first increase
to the maximum and then decrease steadily to 0 in very much the same
fashion in both columns. The deviation of the observed number from the
predicted value appears relatively small in most cases; the agreement, at a
first glance, looks quite good. On the other hand, however, the number of
trials, 26,306, appears pretty large. Are the deviations sufficiently small in
view of the large number of trials?

This seems to be the right question. Yet we cannot answer it off-hand;
we had better postpone it till we know a little more; see sect. 7 (3). Yet
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without any special knowledge, just with a little common sense, we can draw
quite a sharp conclusion from Table I. A physicist would easily notice the
following point about the columns (3) and (4). The differences are listed
in column (2). Some of these differences are positive, others negative. If
these differences were randomly distributed, the 4 and — signs should be
intermingled in some disorderly fashion. In fact, however, the + and —
signs are sharply separated: the theoretical values are too large up to a
certain point, and too small from that point onward. In such a case, the
physicist speaks of a systematic deviation of the theory from the experiment,
and he regards such a systematic deviation as a grave objection against the
theory.

And so the agreement between the theory of probability and Weldon’s
observations, which looked quite good at first, begins to look much less good.

(2) Yet who is responsible for that systematic deviation? The theoretical
values have been computed according to the rules of the calculus of proba-
bility on the basis of a certain assumption, a “statistical hypothesis.” We
need not blame the rules of the calculus; the fault may be with the statistical
hypothesis. In fact, this statistical hypothesis has a weak point: we assumed
that the dice used in the experiment were “fair.’” When gentlemen play
a game of dice, they should assume that the dice are fair, but for a naturalist
such an assumption is unwarranted.

In fact, let us look at the example of the physicist. Galileo discovered the
law of falling bodies that we write today in the usual notation as an equation:

s = gt?2;

s stands for space (distance), ¢ for time. More exactly, Galileo discovered
the form of the dependence of s on ¢: the distance is proportional to the square
of the time &. Yet he made no theoretical prediction about the constant g
that enters into this proportionality; the suitable value of g has to be found
by experiments. In this respect, as in many other respects, natural science
followed the example of Galileo; in countless cases the theory yielded the
general form of a natural law, and the experiment had to determine the
numerical values of the constants that enter into the mathematical expres-
sion of the law. And this procedure works in our example, too.

If a die is ““fair,” none of the six faces is preferable to the others, and so
the probability for casting 5 or 6 spots is

2 1

6 3

Even if the die is not fair, there is a certain probability p for casting 5 or 6
spots; # may be different from 1/3. (Yet not very different in an ordinary
die, otherwise we would consider the die as ‘““loaded.”) We take p as a
constant that has to be determined by experiment. And now, we modify
our original statistical hypothesis: we assume that all twelve dice used have
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the same probability p for showing 5 or 6 spots. (This is a simple assumption
but, of course, pretty arbitrary. We cannot believe that it is exactly true;
we can only hope that it is not very far from the truth. There is virtually
no chance that the dice are exactly equal, but they may be only slightly
different.) We keep unchanged the other part of our former statistical
hypothesis (different dice and different trials are considered as independent).

On the basis of this new statistical hypothesis we can again assign theoretical
values corresponding to the observations listed in column (4) of Table I.
For example, the theoretical value corresponding to the observed value
6,114 is

495 pt (1 — p)® 26,306;

it depends on p, and also the theoretical values corresponding to the other
numbers in column (4) depend on p.

It remains to determine p from the experiments that we are examining.
We cannot hope to determine p from experiments exactly, only in some
reasonable approximation. If we change our standpoint for a moment and
consider the casting of a single die as a trial,

12 x 26,306 = 315,672

trials have been performed; this is a very large number. The frequency of
the event “five or six spots” can be easily derived from the column (4) of
Table I. We find as the value of the relative frequency

106,602
315,672

we take this relative frequency, resulting from a very large number of trials,
for the value of p. (We assume so for p a value slightly higher than 1/3.)

Once p is chosen, we can compute theoretical values corresponding to the
observed frequencies. These theoretical values are tabulated in column (5)
of Table I. Thus the columns (3) and (5) give theoretical values correspond-
ing to the same observed numbers, but computed under different statistical
hypotheses. In fact, the two statistical hypotheses differ only in the value
of p; column (3) uses p = 1/3, column (5) uses the slightly higher value
derived from the observations. (Column (3) can be computed before the
observations, but column (5) cannot.) The differences between correspond-
ing items of columns (5) and (4) are listed in column (6).

Thereis little doubt that the theoretical values in column (5) fit the observa-
tions much better than those in column (3). In absolute value, the
differences in column (6) are, with just one exception, less than, or equal to,
the differences in column (2) (equal in just three cases, much less in most
cases). In opposition to column (2), the signs + and — are intermingled
in column (6), so that they yield no ground to suspect a systematic deviation
of the theoretical values in column (5) from the experimental data in
column (4).

= 0.3376986;
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(3) Judged by the foregoing example, the theory of probability seems to be
quite suitable for describing mass phenomena generated by such gambling
devices as dice.  If it were not suitable for anything else, it would not deserve
too much attention. Let us, therefore, consider one more example.

As reported by the careful official Swiss statistical service, there were
exactly 300 deliveries of triplets in Switzerland in the 30 years from 1871 to
1900. (That is, 900 triplets were born. In talking of deliveries, we count
the mothers, not the babies.) The number of all deliveries (some of triplets,
some of twins, most of them, of course, of just one child) during the same
period in the same geographical unit was 2,612,246. Thus, we have here a
mass phenomenon of considerable proportions, but the event considered,
the birth of triplets, is a rare eent. The average number of deliveries per
year is

2,612,246/30 = 87,075,

the average number of deliveries of triplets only
300/30 = 10.
Of course, the event happened more often in some years, in others less often

than the average 10, and in some years exactly 10 times. Table II gives

Table II
Triplets born in Switzerland 1871-1900.

(0 (2) (3) 4 (5)

Deliveries  Years obs. Years theor. (2) cumul.  (3) cumul.
0 0 0.00 0 0.00
I 0 0.00 0 0.00
2 0 0.09 0 0.09
3 I 0.21 I 0.30
4 0 0.57 I 0.87
5 1 1.14 2 2.01
6 I 1.89 3 3.90
7 5 2.70 8 6.60
8 I 3.39 9 9.99
9 4 3.75 13 13.74

10 4 3.75 17 17.49
11 4 3.42 21 2091
12 3 2.85 24 23.76
13 2 2.16 26 25.92
14 I 1.59 27 27.51
15 2 1.02 29 28.53
16 0 0.66 29 29.19
17 1 0.39 30 29.58
18 0 0.21 30 29.79
19 0 0.12 30 29.91
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the relevant details in column (2). We see there (in the row that has 10
in the first column) that there were in the period considered exactly 4 years
in which exactly 10 deliveries of triplets took place. As the same column (2)
shows, no year in the period had less than 3 such deliveries, none had more
than 17, and each of these extreme numbers, 3 and 17, turned up in just one
year.

The numbers of column (2) seem to be dispersed in some haphazard
manner. Itis interesting to note that the calculus of probability is able to
match the irregular looking observed numbers in column (2) by theoretical
numbers following a simple law; see column (3). The agreement of columns
(2) and (3), judged by inspection, does not seem to be bad; the difference
between the two numbers, the observed and the theoretical, is less than 1
in absolute value, except in two cases. Yet in these two cases (the rows with
7 and 8 in the first column) the difference is greater than 2 in absolute value.

There is a device that allows us to judge a little better the agreement of the
two series of numbers. The column (4) of Table II contains the numbers of
column (2) “cumulatively.” For example, consider the row that has 7 in
column (1); it has 5 in column (2) and 8 in column (4). Now

8=04+0+04+1+0+1+41+5;

that is, 8 is the sum, or the “accumulation”, of all numbers in column (2)
up to the number 5, inclusively, in the respective row. (In other words, 8 is the
number of those years of the period in which the number of deliveries of
triplets did not exceed 7.) Column (5) contains the numbers of column (3)
“cumulatively”, and so the columns (4) and (5) are analogously derived
from the observed numbers in column (2) and the theoretical numbers in
column (3), respectively. The agreement between columns (4) and (5)
looks excellent; the difference is less than | in absolute value except in
just one case, where it is still less than 2.

6. Explanation of phenomena. Ideas connected with the concept of
probability play a réole in the explanation of phenomena, and that is true
of phenomena dealt with by any science, from physics to the social sciences.
We consider two examples.

(1) Gregor Mendel (1822-1884), experimenting with the cross-breeding
of plants, became the founder of a new science, genetics. Mendel was, by
the way, an abbot in Moravia, and carried out his experiments in the garden
of his monastery. His discovery, although very important, is very simple.
To understand it we need only the description of one experiment and an
intuitive notion of probability. To make things still easier, we shall not
discuss one of Mendel’s own experiments, but an experiment carried out by
one of his followers.%

Of two closely related plants (different species of the same genus) one has

8 By Correns; see W, Johannsen, Elemente der exakten Erblichkeitslehre, Jena 1909, p. 371.
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white flowers and the other rather dark red flowers. The two plants are
so closely related that they can fertilize each other. The seeds resulting
from such crossing develop into hybrid plants which have an intermediate
character: the hybrids have pink flowers, (In fig. 14.3 red is indicated by
more, pink by less, shading.) If the hybrid plants are allowed to become
self-fertilized, the resulting seeds develop into a third generation of plants in
which all three kinds are represented: there are plants with white, plants
with pink, and plants with red flowers. Fig. 14.3 represents schematically
the relations between the three subsequent generations.

7
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Fig. 14.3. Three generations in a Mendelian experiment.

Yet the most striking feature of the phenomenon is the numerical propor-
tion in which the three different kinds of plants of the third generation are
produced. In the experiment described, 564 plants of the third generation
have been observed. Among them, those two kinds of plants that resemble
one or the other grandparental plant were about equally numerous: there
were 141 plants with white flowers and 132 plants with red flowers in the
third generation. Yet the plants resembling the hybrid parental plants
were more numerous: there were 291 plants with pink flowers in the third
generation. We can conveniently survey these numbers in fig. 14.3. We
easily notice that these numbers given by the experiment are approximately
in a simple proportion:

141 : 291 : 132 almost as | : 2 : 1.

This simple proportion invites a simple explanation.
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Let us begin at the beginning. The experiment began with the crossing
of two different kinds of plants. Any flowering plant arises from the union
of two reproductive cells (an ovule and a grain of pollen). The pink-
flowering hybrids of the second generation arose from two reproductive
cells of different extraction. As the pink-flowering plants of the third
generation are similar to those of the second generation, it is natural to
assume that they were similarly produced, by two reproductive cells of
different kinds. This leads us to suppose that the pink-flowering hybrids
of the second generation have two different kinds of reproductive cells,
Supposing this, however, we may perceive a possibility of explaining the
mixed offspring. In fact, let us see more clearly what would happen if the
pink-flowering hybrids of the second generation actually fad two different
kinds of reproductive cells, which we may call “white” and “red” cells.
When two such cells are combined, the combination can be white with white,
or red with red, or one color with the other, and these three different
combinations could explain the three different kinds of plants in the third
generation; see fig. 14.3.

After this remark, it should not be difficult to explain the numerical
proportions. The deviation of the actually observed proportion
141 : 291 : 132 from the simple proportion 1 :2 : 1 appears as random.
That is, it looks like the deviation of observed frequencies from underlying
probabilities. This leads us to wondering what the probabilities of the two
kinds of cells are, or in which proportion the “white’” and *“red” cells are
produced. As there are about as many white-flowering as red-flowering
plants in the third generation, we can hardly refrain from trying the simplest
thing: let us assume that the “white” and ‘“‘red” reproductive cells are
produced in equal numbers by the pink-flowering plants. Finally, we are
almost driven to compare the random encounter of two reproductive cells
with the random drawing of two balls, and so we arrive at the following
simple problem.

There are two bags containing white and red balls, and no balls of any other
color. Each bag contains just as many white balls as red balls. With both
hands, I draw from both bags, one ball from each. Find the probability
for drawing two white balls, two balls of different colors, and two red balls.

As it is easily seen (cf. sect. 3 (5)), the required probabilities are

1 2 1
Z: Z; Z’
respectively. We perceive now a simple reason for the proportion 1 : 2 : 1
that seems to underlie the observed numbers, and so doing we come very
close to Mendel’s essential concepts.

(2) The concept of random mass phenomena plays an important réle in
physics. In order to illustrate this réle, we consider the velocity of chemical
reactions.
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Relatively crude observations are sufficient to suggest that the speed of
a chemical change depends on the concentration of the reacting substances.
(By concentration of a substance we mean its amount in unit volume.) This
dependence of the chemical reaction velocity on the concentration of the
reactants was soon recognized, but the discovery of the mathematical form
of the dependence came much later. An important particular case was
noticed by Wilhelmy in 1850, and the general law was discovered by two
Norweglan chemists, Guldberg and Waage, in 1867. We now outline, in a
particular case and as simply as we can, some of the considerations that led
Guldberg and Waage to their discovery.

We consider a bimolecular reaction. That is, two different substances,
A and B, participate in the reaction which consists in the combination of one
molecule of the first substance 4 with one molecule of the second substance B.
The substances 4 and B are dissolved in water, and the chemical change
takes place in this solution. The substances resulting from the reaction do
not participate further in the chemical action; they are inactive in one way
or another. For example, they may be insoluble in water and deposited in
solid form.

The solution in which the reaction takes place consists of a very great
number of molecules. According to the ideas of the physicists (the kinetic
theory of matter) these molecules are in violent motion, traveling at various
speeds, some at very high speed, and colliding now and then. Ifa molecule
A collides with a molecule B, the two may get so involved that they exchange
some of their atoms: the chemical reaction in which we are interested
consists of such an exchange, we imagine. Perhaps it is necessary for such
an exchange that the molecules should collide at a very high speed, or that
they should be disposed in a favorable position with respect to each other in
the moment of their collision. At any rate, the more often it happens that a
molecule 4 collides with a molecule B, the more chance there is for the
chemical combination of two such molecules, and the higher the velocity of
the chemical reaction will be. And so we are led to the conjecture: the
reaction velocity is proporticnal to the number of collisions between molecules A and
maolecules B.

We could not predict exactly the number of such collisions. We have
before us a random mass phenomenon like rainfall. Remember fig. 14.2;
there, too, we could not predict exactly how many raindrops would strike
the subarea F. Yet we could predict that the number of raindrops striking
the subarea F would be proportional to the number of raindrops falling on the
whole area P. (The proportionality is approximate, and the factor of
proportionality is F/P, as discussed toward the end of sect. 2.) Similarly, we
can predict that the number of collisions in which we are interested (between
any molecule 4 and any molecule B) will be proportional to the number of
the molecules 4. Of course, it will also be proportional to the number of
the molecules B, and so finally proportional to the product of these two
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numbers. Yet the number of the molecules of a substance is proportional
to the concentration of that substance, and so our conjecture leads us to
the following statement: the reaction velocity is proportional to the product of
the concentrations.

We arrived at a particular case of the general law of chemical mass
action discovered by Guldberg and Waage. This is the particular case
appropriate for the particular circumstances considered. On the basis of
the law of mass action it is possible to compute the concentration of the re-
acting substances at any given moment and to predict the whole course of
the reaction.

7. Judging statistical hypotheses. We start from an anecdote.?

(1) “One day in Naples the reverend Galiani saw a man from the
Basilicata who, shaking three dice in a cup, wagered to throw three sixes;
and, in fact, he got three sixes right away. Such luck is possible, you say.
Yet the man succeeded a second time, and the bet was repeated. He put
back the dice in the cup, three, four, five times, and each time he produced
threesixes. ‘Sangue di Bacco,’ exclaimed the reverend, ‘the dice are loaded !’
And they were. Yet why did the reverend use profane language ?”’

The reverend Galiani drew a plausible conclusion of a very important
type. If he discovered for himself this important type of plausible inference
on the spur of the moment, his excitement is quite understandable and I,
personally, would not reproach him for his mildly profane language.

The correct thing is to treat everybody as a gentleman until there is
some definite evidence to the contrary. Quite similarly, the correct thing is
to engage in a game of chance under the assumption that it is fairly played.
I do not doubt that the reverend did the correct thing and assumed in the
beginning that that man from the Basilicata had fair dice and used them
fairly. Such an assumption, correctly stated in terms of probability, is a
statistical hypothesis. A statistical hypothesis generally assumes the values
of certain probabilities. Thus, the reverend assumed in the beginning, more
or less explicitly, that any of the dice involved will show six spots with the
probability 1/6. (We have here exactly the same statistical hypothesis as in
sect. 5 (1).)

The calculus of probability enables us to compute desired probabilities
from given probabilities, on the basis of a given statistical hypothesis. Thus,
on the basis of the statistical hypothesis adopted by the reverend at the begin-
ning, we can compute the probability for casting three sixes with three dice;
it is

(1/6)% = 1/216,

a pretty small probability. The probability for repeating this feat twice,

? J. Bertrand, Calcul des probabilités, p. VII-VIII.
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that is, casting three sixes at a first trial, and casting them again at the next
trial, is

(1)216)2 = (1/6)¢ = 1/46,656,

a very small probability indeed. Yet that man from the Basilicata kept on
repeating the same extraordinary thing five times. Let us list the
corresponding probabilities:

Repetitions Probability
| 1/63 = 1/216
2 1/68 = 1/46,656
3 1/6¢ = 1/10,077,69
4 1/612 = 1/2,176,782,336
5 1615 = 1/470,184,984,576.

Perhaps, the reverend adopted his initial assumption out of mere politeness;
locking at the man from the Basilicata, he may have had his doubts about
the fairness of the dice. The reverend remained silent after the three sixes
turned up twice in succession, an event that under the initial assumption
should happen not much more frequently than once in fifty thousand
trials. He remained silent even longer. Yet, as the events became more
and more improbable, attained and perhaps surpassed that degree of
improbability that people regard as miraculous, the reverend lost patience,
drew his conclusion, rejected his initial polite assumption, and spoke out
forcibly.

(2) The anecdote that we have just discussed is interesting in just one
aspect: it is typical. It shows clearly the circumstances under which we
can reasonably reject a statistical hypothesis. We draw consequences from
the proposed statistical hypothesis. Of special interest are consequences
concerned with some event that appears very improbable from the standpoint
of our statistical hypothesis; I mean an event the probability of which,
computed on the basis of the statistical hypothesis, is very small. Now,
we appeal to experience: we observe a trial that can produce that allegedly
improbable event. If the event, in spite of its computed low probability,
actually happens, it yields a strong argument against the proposed statistical
hypothesis. In fact, we find it hard to believe that anything so extremely
improbable could happen. Yet, undeniably, the thing did happen. Then
we realize that any probability is computed on the basis of some statistical
hypothesis and start doubting the basis for the computation of that small
probability. And so there arises the argument against the underlying
statistical hypothesis.

(3) As the reverend Galiani, we also felt obliged to reject the hypothesis of
fair dice when we examined the extensive observations related in sect. 5 (1);
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our reasons to reject it, however, were not quite as sharp as his. Could we
find better reasons in the light of the foregoing discussion ?

Here are the facts: 315,672 attempts to cast five or six spots with a dice
produced 106,602 successes; see sect. 5 (2). If all dice cast were fair, the,
probability of a success would be 1/3. Therefore, we should expect about

315,672/3 = 105,224

successes in 315,672 trials. Thus, the observed number deviates from the

expected number
106,602 — 105,224 = 1,378

units. Does such a deviation speak for or against the hypothesis of fair dice?
Should we regard the deviation 1,378 as small or large? Is the probability
of such a deviation high or low?

The last question seems to be the sensible question. Yet we still need a
sensible interpretation of the short, but important, word ‘“‘such.” We shall
reject the statistical hypothesis if the probability that we are about to compute
turns out to be low. Yet the probability that the deviation should be exactly
equal to 1,378 units is very small anyhow—even the probability of a devia-
tion exactly equal to 0 would be very small. Therefore, we have to take into
account all the deviations of the same absolute value as, or of larger absolute value
than, the observed deviation 1,378. And so our judgment depends on the solution
of the following problem:  Given that the probability of a success is 1)3 and that the
trials are independent, find the probability that in 315,672 trials the number of successes
should be either more than 106,601 or less than 103,847,

With a little knowledge of the calculus of probability we find that the
required probability is approximately

0.0000001983;

this means less than two chances in ten million. That is, an event has
occurred that looks extremely improbable, if the statistical hypothesis is
accepted that underlies the computation of probability. We find it hard to
believe that such an improbable event actually occurred, and so the under-
lying hypothesis of fair dice appears extremely unlikely. Alreadyinsect.5 (1)
we saw a good reason to reject the hypothesis of fair dice, but now we see a
still better, more distinct, reason to reject it.

(4) The actual occurrence of an event to which a certain statistical
hypothesis attributes a small probability is an argument against that hypo-
thesis, and the smaller the probability, the stronger is the argument.

In order to visualize this essential point, let us consider the sequence

1 1 1 1

100 100° 1,000° 10,000’

A statistical hypothesis iraplies that the probability of a certain event is 1/10.
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The event happens. Should we reject the hypothesis? Under usual
circumstances, most of us would not feel entitled to reject it; the argument
against the hypothesis does not appear yet strong enough. If another event
happens to which the statistical hypothesis attributes the probability 1/100,
the urge to reject the hypothesis becomes stronger.  If the alleged probability
is 1/1,000, yet the event happens nevertheless the case against the hypothesis
is still stronger.  If the statistical hypothesis attributes the probability

|
1,000,000,000

to the event, or one chance in a billion, yet the event happens nevertheless,
almost everybody would regard the hypothesis as hopelessly discredited,
although there is no logical necessity to reject the hypothesis just at this
point. If, however, the sequence proceeds without interruption so that
events happen one after the other to which the statistical hypothesis attributes
probabilities steadily decreasing to 0, for each reasonable person arrives
sooner or later the critical moment in which he feels justified in rejecting the
hypothesis, rendered untenable by its increasingly improbable consequences.
And just this point is neatly suggested by the story of the reverend Galiani.
The probability of the first throw of three sixes was 1/216; of the sequence of
five throws of three sixes each, 1/470,184,984,576.

The foregoing discussion is of special importance for us if we adopt the
standpoint that the theory of probability is a part of the study of nature.
Any natural science must recur to observations. Therefore it must adopt
rules that specify somehow the circumstances under which its statements
are confirmed or confuted by experience. We have done just this for the
theory of probability. We described certain circumstances under which
we can reasonably consider a statistical hypothesis as practically refuted by
the observations. On the other hand, if a statistical hypothesis survives
several opportunities of refutation, we may consider it as corroborated to a
certain extent.

(5) Probability, as defined in sect. 2, is the theoretical value of long range
relative frequency. The foregoing gave us an opportunity to realize a few
things. First, such a theoretical value depends, of course, on our theory,
on our initial assumptions, on the statistical hypothesis adopted. Second,
such a theoretical value may be very different from the actual value.

A suitable notation may help us to clarify our ideas. Let P be the proba-
bility of an event E computed on the basis of a certain statistical hypothesis
H. Then P depends both on £ and on . (In fact, we could use, instead
of P, the more explicit symbol P(E, H) that emphasizes the dependence of P
on E and H.)

In some of the foregoing applications we took the hypothesis H for granted
(at least for the moment) and, computing P on the basis of H, we tried to
predict the observable frequency of the event E.  Yet, in the present section,
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we proceeded in another direction. Having observed the event E, we
computed P on the basis of the statistical hypothesis H and, in view of the
value of P obtained, we tried to judge the reliability of the hypothesis H.
We perceive here a new aspect of P. The smaller P is, the more we feel '
inclined to reject the hypothesis H, and the more unlikely the hypothesis
appears to us: P indicates the likelihood of the hypothesis H. We shall say
henceforward that P is the likelihood of the statistical hypothesis H, judged in view
of the fact that the event E has been observed.

This terminology, which agrees essentially with the usage of statisticians,
empbhasizes a certain aspect of the dependence of P on the event £ and the
statistical hypothesis H. Qur original terminology lays the stress on the
complementary aspect of the same dependence: P is the probability of the
event E, computed on the basis of the statistical hypothesis H.

Some practice in the use of this double terminology is needed to convince
us that its advantages sufficiently outweigh its dangers.

8. Choosing between statistical hypotheses. The following example
may provide a first orientation to the applications of the theory of probability
in statistical research.

(1) A consumer buys a certain article from the producer in large lots.
The consumer is a big consumer, a large merchandizing or industrial firm,
or a government agency. The producer is also big and manufactures the
article in question on a large scale. The article can be a nail, or a knob, or
anything manufactured; an interesting example is a fuze, used for firing
explosives in ammunition or in blasting operations. The article has to
meet certain specifications. For example, the nail should not be longer than
2.04 inches nor shorter than 1.96 inches, its thickness is similarly specified,
and perhaps also its minimum breaking strength; the burning time of the
fuze is specified, and so on. An article that does not meet the specifications
is considered as defective. Even the most carefully manufactured lot may
contain a small fraction of defectives. Therefore the lot has to be inspected
before it passes from the producer to the consumer. The lot may be fully
inspected, that is, each article in the lot may be tested whether it meets the
agreed specifications. Such a full inspection would be impractical for a lot
of 10,000 nails and it would be preposterous for a lot of fuzes even if the lot
is small; in order to measure its burning time, you have to destroy the fuze
and there is not much point in destroying the whole lot by inspecting it.
Therefore in many cases instead of inspecting the whole lot before acceptance,
only a relatively small sample is taken from the lot. A simple procedure of
such acceptance sampling is characterized by the following rule.

“Take a random sample of r articles from the submitted lot of N articles.
Test each article in the sample. If the number of defectives in the sample
does not exceed a certain agreed number ¢, the so-called accepiance number, the
consumer accepts the lot, but he rejects it, and the producer takes it back, if
there are more defectives than ¢ in the sample.”
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The results obtained by this rule depend on chance. By chance, the frac-
tion of defectives in the sample can be much lower or much higher than in
the whole lot.  If the sample turns out to be better than the lot, chance works
against the consumer, and it works against the producer if the sample turns
out to be worse than the lot. In spite of these risks, some such procedure
appears necessary, and the rule formulated may be quite reasonable. We
have to find out how the procedure works, how its result depends on the
quality of the submitted lot. And so we are led to formulate the following
problem: Given p, the probability that an article chosen at random in the submitted
lot is defective, find a, the probability that the lot will be accepted.

#

Fercentage of Jots accepted, a

N

Percentage of defectives in lot, P g

Fig. 14.4. Operating characteristic of an acceptance sampling procedure,

In the most important practical cases N, the size of the lot, is large even
in comparison with #, the size of the sample. In such cases we may assume
that N is infinite; we lose little in precision and gain much in simplicity.
Assuming N = 00, we easily find that

n

a=U—¢V+(9Ml—mW“+@ﬁWL—mf“

+.u+(gfu—m“ﬁ

We take this expression of a, the probability of acceptance, for granted and
we concentrate on discussing some of its practical implications.

We graph z as function of p; see fig. 14.4. If we graphed 100z as function
of 100p, the form of the curve would be the same. Now, 100 is the percent-
age of defective articles in the lot submitted. On the other hand, if several
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lots with the same percentage of defectives were subjected to the same
inspection procedure, the relative frequency of acceptance, that is, the ratio
of accepted lots to submitted lots, would be close to a. Therefore, in the long
run, 100z will be the percentage of the lots accepted among the lots submitted.
This explains the labeling of the axes in fig. 14.4. The curve in fig. 14.4
allows us to survey how the procedure operates on lots of various quality,
and so it is appropriately called the operaiing characteristic.

Judged by its effects, does the procedure appear reasonable? This is the
question that we wish to consider.

If there are no defectives in the lot, there should be no chance for rejecting
it. In fact, if p = 0 our formula yields 2 = 1, as it should. If there are
only defectives in the lot, there should be no chance for accepting it. In
fact, if p = 1 our formula yields @ = 0, as it should. Both extreme points of
the operating characteristic curve are obviously reasonable.

If the number of defectives increases, the chances of acceptance should
diminish. In fact, differentiating with a little skill, we easily find the
surprisingly simple expression

Z—; = —(n—¢) (Z)tf(l —pr

which is always negative. Therefore, the operating characteristic is neces-
sarily a falling curve, as represented in fig. 14.4, which is again as it
should be.

The absolute value of the derivative, or —da/dp, has also a certain practical
significance. The change dp of the abscissa represents a change in the quality
of the lot. The change da of the ordinate represents a change in the chances
of acceptance, due to the change in quality. The larger is the ratio of these
chances dz/dp in absolute value, the sharper is the distinction made by the
procedure between two slightly different lots. Especially, the point at
which da/dp attains its maximum absolute value may be appropriately called
the “point of sharpest discrimination.”” This point is easily recognized in
the graph: it is the point of inflexion, if there is one, and otherwise the left-
hand extremity of the curve. (Its abscissais p =c¢f/(n — 1).)

(2) The rule appears sensible also from another standpoint. It has a
certain flexibility. By choosing n, the size of the sample, and ¢, the accept-
ance number, we can adapt the rule to concrete requirements. Both the
consumer and the producer require protection against the risks inherent in
sampling. A bad lot may sometimes yield a good sample and a good lot a
bad sample, and so there are two kinds of risks: the sampling procedure may
accept a bad lot or reject a good lot.  The consumer is against accepting bad
lots and the producer is against rejecting good lots, Still, both kinds of
undesirable decisions are bound to happen now and then and the only thing
that we can reasonably demand is that they should not happen too often.
This demand leads to concrete problems such as the following.
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“Determine the sample size and the acceptance number so that there should
be less than once chance in ten that a lot with 5%, defectives is accepted and
there should be less than five chances in a hundred that a lot with only 2%,
defectives is rejected.”

In this problem, there are two unknowns, the sample size n and the accept-
ance number ¢. The condition of the problem requires the following
two inequalities:

a > 0.95 when p = 0.02,

a << 0.1 when p=0.05.

It is possible to satisfy these two simultaneous conditions, but it takes consider-
able numerical work to find the lowest sample size n and the corresponding
acceptance number ¢ for which the required inequalities hold.

We shall not discuss the numerical work. We are much more concerned
here with visualizing the problem than with solving it. Let us therefore look
a little further into its background. As we said already, both the acceptance
of a bad lot and the rejection of a good lot are undesirable, the first from the
consumer’s viewpoint and the second from the producer’s viewpoint. Yet
the two undesirable possibilities may not be equally undesirable and the
interests of consumer and producer may be not quite so sharply opposed.
The acceptance of a bad lot is not quite in the interest of the producer; it may
damage his reputation. Yet the rejection of a good lot may be very much
against the interests of the consumer; he may need the articles urgently and
the rejection may cause considerable delay. Moreover, repeated rejection
of good lots, or even the danger of such rejection, may raise the price. If
the interests of both parties are taken into account, the rejection of a good lot
may be still less desirable than the acceptance of a bad lot. Seen against
this background, it appears understandable that the conditions of our problem
afford more protection against the rejection of the better quality than against
the acceptance of the worse quality. (Only 5 chances in a hundred are
allowed for the first undesirable event, but 10 chances in a hundred for the
second.)

(3) The problem discussed under (2) admits another, somewhat different,
interpretation.

The producer’s lawyer affirms that there are no more than 29, defectives
in the lot. Yet the consumer’s lawyer contends that there are at least 5%,
defectives in the lot. For some reason (it may be a lot of fuzes) a full inspec-
tion is out of the question; therefore some sampling procedure has to decide
between the two contentions. For this purpose the procedure outlined
under (1) with the numerical data given in (2) can be appropriately used.

In fact, the conflicting contentions of the two lawyers suggest a fiction.
We may pretend that there are exactly two possibilities with respect to the
lot: the percentage of defectives in the lot is either exactly 29, or exactly
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59%,. Of course, nobody believes such a fiction, but the statistician may find
it convenient: it restricts his task to a decision between two clear and simple
alternatives. If the parties agree that the rejection of a lot with 29
defectives is less desirable than the acceptance of a lot with 59, defectives,
the statistician may reasonably adopt the procedure outlined in (1) with the
numerical data prescribed in (2). Whether the statistician’s choice will
satisfy the lawyers or the philosophers, I do not venture to say, butit certainly
has a clear relation to the facts of the case. The statistician’s rule, applied
to a great number of analogous cases, accepts a good lot (with 29, defectives)
about 950 times out of 1,000 and rejects it only about 50 times, but the rule
rejects a bad lot (with 5%, defectives) about 900 times out of 1,000 and accepts
it only about 100 times. That is, the statistician’s rule, which is based on
sampling, cannot be expected to give the right decision each time, but it
can reasonably be expected to give the right decision in an assignable
percentage of cases in the long run.

(4) To give an adequate idea of what the statisticians are doing on the
basis of just one example is, of course, a hopeless undertaking. Yet on the
basis of the foregoing example we can obtain an idea of the statistician’s
task which, although very incomplete, is not very much distorted : the statisti-
cian designs rules of the same nature as the rule of acceptance sampling
procedure outlined in (1) and considered in relation to numerical data in (2).
We may understand the statistician’s task if we have understood the nature
of the rules he designs. Therefore, we have to formulate in general terms
what seems to be essential in our particular rule; I mean the rule discussed
in the foregoing sub-sections (1), (2), and (3).

Our rule prescribes a choice between two courses of action, acceptance
and rejection. Yet the aspect of the problem considered under (3) is more
suitable for generalization. There we considered a choice between two
statistical fypotheses. (They were “this random sample is taken from a large
lot with 29 defectives” and ‘‘this random sample is taken from a large lot
with 59, defectives.””) Any reasonable choice should be made with due
regard to past experience and future consequences. In fact, our rule is
designed with regard to both.

According to our rule, the choice depends upon a set of clearly specified
observations (the testing of n articles and the number of defectives detected
among the n articles tested). These observations constitute the relevant
experience on which the choice is based. As our rule prefers a hypothesis to
another on the basis of observations, it can claim to be named an inductive
rule.

Qur rule is designed with a view to probable consequences. The
statistician cannot predict the consequences of any single application of the
rule. He forecasts merely how the rule will work in the long run. If the
choice prescribed by the rule is tried many times in such and such circum-
stances, it will lead to such and such result in such and such percentage of



CHANCE, THE EVER-PRESENT RIVAL CONJECTURE 83

the trials, in the long run. OQur rule is designed with a view to long range
consequences.

To sum up, our rule is designed to choose between statistical hypotheses, is based
on a specified set of observations, and aims at long range consequences. If we may
regard our rule as sufficiently typical, we have an idea what the statisticians
are doing: they are designing rules of this kind.

(In fact, they try to devise “best” rules of this kind. For example, they
wish to render the chances of such and such undesirable effect 2 minimum,
being given the size of the sample, on which the work and expense of the
observations depend.)

(5) Taking a random sample from a lot is an important operation in
statistical research. There is another problem about this operation that we
have to discuss here. 'We keep our foregoing notation in stating the problem.

In a very large lot, 100p percent of the articles is defective. In order to obtain some
information about p, we take a sample of n articles from the lot, among which we find m
defective articles. On the basis of this observation, which value should we reasonably
attribute to p?

There is an obvious answer, suggested by the definition of probability
itself. Yet the problem is important and deserves to be examined from
various angles.

Our observation yields some information about p. Especially, if m
happens to be different from 0, we conclude that p is different from 0.
Similarly, if m is less than n, we conclude that p is less than 1. Yet in any
case p remains unknown and all values between 0 and 1 are eligible for p.
If we attribute one of these values to p, we make a guess, we adopt a conjecture,
we choose a statistical hypothesis.

Let us think of the consequences of our choice before we choose. If we
have a value for p, we can compute the probability of the event the observa-
tion of which is our essential datum. I mean the probability for finding
exactly m defective articles in a random sample of » articles. Let us call
this probability . Then

n m n—m
p= (") —pr

The value of P depends on p, varies with g, can be greater or less. If,
however, this probability P of an observed event is very small, we should
reject the underlying statistical hypothesis. It would be silly to choose such
an unlikely hypothesis that has to be rejected right away. Therefore let us
choose the least unlikely hypothesis, the one for which the danger of rejection
isleast. Thatis, let us choose the value of p for which P is as great as possible.

Now, if P is a maximum, log P is also a maximum and, therefore,

dlogP? m n—m

=0.
dp p 1—p
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This equation yields

m
p _ =

n

And so, after some consideration, we made the choice that we were tempted
to make from the outset: as a reasonable approximation to p, the underlying
probability, we choose m/n, the observed relative frequency.

Yet our consideration was not a mere detour. We can learn a lot from
this consideration.

Let us begin by examining the réle of P. This P is the probability of a
certain observed event E (m defectives in a sample of size n). This proba-
bility is computed on the basis of the statistical hypothesis H, that 100p is
the percentage of defectives in the lot. The probability P varies with the
hypothesis I, (with the value of p). The smaller P, the less acceptable, the
less likely appears H,. Thus we are led to consider P as indicating the
likelihood of the hypothesis /. This term “‘likelihood” has been introduced
before (in sect. 7 (5)), in the same meaning, but now we may see the reasons
for its introduction more clearly.

Let us emphasize that we choose among the various admissible statistical
hypotheses H, (with 0 < p < 1) the one for which P, the likelihood of H, is
as great as possible. Behind this choice there is a principle, appropriately
called the principle of maximum likelihood, that guides the statistician also in
other cases, less obvious than our case.

9. Judging non-statistical conjectures. We consider several examples
in order to illustrate the same fundamental situation from several angles.

(1) The other day I made the acquaintance of a certain Mr. Morgenstern.
‘This name is not very usual, but not unknown to me. There was a German
author Morgenstern for whose nonsense poetry I have a great liking. And,
Oh yes, my cousin who lives in Atlanta, Georgia, recently began work in the
offices of Mark Morgenstern & Co., consulting engineers.

At the beginning I had no thoughts about Mr. Morgenstern. After a
while, however, I hear that he is in the engineering business. Then other
pieces of information leaked out. I hear that the first name of my new
acquaintance is Mark, and that his place of business is Atlanta, Georgia.
At this stage it is very difficult not to believe that this Mr. Morgenstern is
the employer of my cousin. I ask Mr. Morgenstern directly and find that it
is so.

This trivial little story is quite instructive. (It is based, by the way, on
actual experience, but the names are changed, of course, and also some
irrelevant circumstances.) That two different persons should have exactly
the same last name is not improbable, provided that the name is very common
such as Jones or Smith. It is more improbable that two different persons
have the same first and last name, especially, when it is an uncommon name,
such as Mark Morgenstern. That two different persons have the same
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profession, or the same large town as residence, is not improbable. Yet it
is very improbable that two different persons taken at random should have
the same unusual name, the same home town, and the same occupation.
A chance coincidence was hard to believe and so my conjecture about my
recent acquaintance Mr. Morgenstern was quite reasonable. It turned out
to be correct, but this has really little to do with the merits of the case. My
conjecture was reasonable, defensible, justifiable on the basis of the proba-
bilities considered. Even if my conjecture had turned out incorrect, I
would have no reason to be ashamed of it.

In this example, no numerical value was given for the probability
decisively connected with the problem, but a rough estimate for it could be
obtained with some trouble.

(2) Two friends who met unexpectedly decided to write a postcard to a
third friend. Yet they were not quite sure about the address. Both
remembered the city (it was Paris) and the street (it was Boulevard Raspail)
but they were both uncertain about the number. ‘“Wait,” said one of the
friends, “‘let us think about the number without talking, and each of us will
write down the number when he thinks that he has got it.”” This proposal
was accepted and it turned out that both remembered the same number:
79 Boulevard Raspail. They put this address on the postcard which
eventually reached the third friend. The address was correct.

Yet what was the reason for adopting the number 79? By not talking
to each other, the two friends made their memories work independently.
They both knew that Boulevard Raspail is long enough to have buildings
numbered at least up to 100. Therefore, it seems reasonable to assume that
the probability for a chance coincidence of the two numbers is not superior
to 1/100. Yet this probability is small, and so the hypothesis of a chance
coincidence appears unlikely. Hence the confidence in the number 79.

(3) According to the statement of the bank, the balance of my checking
account was $331.49 at the end of the past month. I compute mybalance
for the same date on the basis of my notes and find the same amount. After
this agreement of the two computations I am satisfied that the amount in
which they both agree is correct. Isthiscertain? By nomeans. Although
both computations arrived at the same result, the result could be wrongand
the agreement may be due to chance. Is that likely?

The amount, expressed in cents, is a number with five digits. If the last
digit was chosen at random, it could just as wellbe Qor lor 2,.. .0or8as 9,
and so the probability that the last digit should be 9 is just 1/10. The same
is true for each of the other figures. In fact, if all figurcs were chosen at
random, the number could be any one of the following:

000.00, 000.01, 000.02, . .. 999.99

I have here obviously 100,000 numbers. If that assemblage of five figures,
33149, was produced in some purely random way, all such assemblages
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could equally well arise. And, as there are 100,000 such assemblages, the
probability that any one given in advance should be produced is

1 1Y? s
—— =|=) =10
100,000 ~ \10

Now, 10-5 = 0.00001 is a very small probability. If, trying to produce
an effect with such a small probability, somebody manages to succeed at the
very first trial, the outcome may easily appear as miraculous. I am,
however, not inclined to believe that there is anything miraculous about
my modest bank account. A chance coincidence is hard to believe and so I
am driven to the conclusion that the agreement of the two computations is
due to the correctness of the result. Ordinary normal people generally
think so in similar circumstances and after the foregoing considerations this
kind of belief appears rather reasonable.

(4) To which language is English more closely related, to Hungarian or
to Polish?  Very little linguistic knowledge is enough to answer this question,
but it is certainly more fun to obtain the answer by your own means than to
accept it on the authority of some book. Here is 2 common sense access to
the answer.

Both the form and the meaning of the words change in the course of
history. We can understand the changes of form if we realize that the same
language is differently pronounced in different regions, and we can understand
the changes of meaning if we realize that the meaning of words is not rigidly
fixed, but shifting, and changes with the context. In the second respect,
however, there is one conspicuous exception: the meaning of the numerals
one, two, three, . . . certainly cannot shift by imperceptible degrees. This
is a good reason to suspect that the numerals do not change their meaning
in the course of linguistic history. Let us, therefore, base a first comparison
of the languages in question on the numerals alone. Table III lists the
first ten numerals in English, Polish, Hungarian, and seven other modern
European languages. Only languages that use the Roman alphabet are
considered (this accounts for the absence of Russian and modern Greek).
Certain diacritical marks (accents, cedillas) which are unknown in English
are omitted (in Swedish, German, Polish, and Hungarian).

Looking at Table III and observing how the same numeral is spelled in
different languages, we readily perceive various similarities and coincidences.
The first five languages (English, Swedish, Danish, Dutch, and German)
seemn to be pretty similar to each other, and the next three languages (French,
Spanish, and Italian) appear to be in even closer agreement; so we have two
groups, one consisting of five languages, the other of three. Yet even these
two groups appear to be somehow related; observe the coinciding spelling
of 3 in Swedish, Danish and Italian, or that of 6 in English and French.
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Table ITI. Numerals in ten languages.

English Swedish Danish Dutch German French Spanish Italian Polish Hungarian

one en en een ein un uno uno jedem  egy
two  tva to twee  zwel deux dos due dwa ketto
three tre tre drie  drei trois tres tre trzy harom
four fyra fire vier  vier quatre cuatro quattro cztery negy
five fem fem vijf funf cing cinco  cinque piec ot

six sex seks zes sechs six seis sei SZesc hat
seven  sju syv zeven sieben sept siete sette siedem  het
eight atta otte acht  acht huit ocho otto osiem  nyolc
nine nio ni negen neun neuf nueve nove dziewiec kilenc
ten tio t tien zehn dix diez dieci dziesiec tiz

Polish seems to be closer to one group in some respects, and to the other in
other respects; compare 2 in Swedish and Polish, 7 in Spanish and Polish.
Yet Hungarian shows no such coincidences with any of the nine other
languages. These observations lead to the impression that Hungarian has
little relation to the other nine languages which are all in some way related
to each other. Especially, and this is the answer to our initial question,
English seems to be definitely closer related to Polish than to Hungarian.
Yet there are several objections. A first objection is that ‘“‘similarity”
and ‘‘agreement” are vague words; we should say more precisely what we
mean. This objection points in the right direction. Following its sugges-
tion, we sacrifice a part of our evidence in order to render the remaining
part more precise. We consider only the inifials of the numerals listed in
Table ITII. We compare two numerals expressing the same number in two
different languages; we call them ‘‘concordant” if they have the same
initial, and ‘“‘discordant” if the initials are different. Table I'V contains the
number of concordant cases for each pair of languages. For instance, the

Table IV, Concordant initials of numerals in ten languages.

E 8 8 3 4 4 4 4 39
Sw 9 5 6 45
Da 4 5 46
Du 5 22
G 32
38
41
41
30
8

w

oL — b
0 L = U P

Sp

- LW W — 1
WO N O W
Tocoo —=NRN —

number 7, in the same row as the letters *“Sp”” and in the same column as the
letter “P”* indicates that Spanish and Polish have exactly seven concordant
numerals out of the possible 10 cases. The reader should check this and a
few other entries of Table IV. The last column of Table IV shows how
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many concordant cases each language has with the other nine languages
altogether. This last column shows pretty clearly the isolated position of
Hungarian: it has only 8 concordant cases altogether whereas the number of
concordant cases varies between 22 and 46 for the other nine languages.

Yet, perhaps, any definite conclusion from such data is rash: those’
coincidences of initials may be due to chance. This objection is easy to
raise, but not so easy to answer. Chance could enter the picture through
various channels. There may be an element of chance due to the fact that
the correspondence between letters and pronunciation is by no means rigid.
This is true even of a single language (especially of English). A jfortiori,
the same letter is often pretty differently pronounced in different languages
and, on the other hand, different letters are sometimes very similarly
pronounced. We have to admit that the coincidences observed are not free
from some random clement. Yet the question is: Is it probable that such
coincidences as we have observed are due to mere chance?

If we wish to answer this question precisely, numerically, we have to
adopt some precise, numerically definite statistical hypothesis and draw
consequences from it which can be confronted with the observations. Yet
the choice of a suitable hypothesis is not too obvious. We consider here
two different statistical hypotheses.

I. There are two bags. Each bag contains 26 balls, each ball is marked
with a letter of the alphabet, and different balls in the same bag are differently
marked. With both hands, I draw simultaneously from both bags, one ball
from each. The two letters so drawn may coincide or not; their coincidence
is likened to the coincidence of the initials of the same numeral written in
two different languages (and non-coincidence is likened to non-coincidence).
The probability of a coincidence is 1/26.

II. The coincidence of the initials of the same numeral written in two
different languages is again likened to the coincidence of two letters drawn
simultaneously from two different bags and, again, both bags are filled in the
same way with balls marked with letters. Yet now each of the bags contains
100 balls and each letter of the alphabet is used to mark as many different
balls in the bag as there are numerals in Table IIT having that letter as
initial. The probability of a coincidence is found to be 0.0948.

On both hypotheses, the comparison of the ten first numerals is likened to
ten independent drawings of the same nature.

We can compare both hypotheses with the observations if we compute
suitable probabilities. Tables V and VI contain the relevant material.

Table V compares the relative frequencies actually found with the proba-
bilities computed. Columns (2) and (3) of Table V refer to all 45 pairs of
languages considered in Table IV. Columns (4) and (5) of Table V refer
only to 9 pairs, formed by Hungarian matched with the remaining nine
languages. For the sake of concreteness, let us focus on the line that deals
with 6 or more coincidences (rn = 6). Such coincidences turned up in
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Table V. Absolute and relative frequencies, and probabilities, for n or more
coincidences of initials

(N (2) (3) ) (3 (6) (7

Frequencies Probabilities
n 10 languages 9 lang. v. Hu. Hyp. IT Hyp. I
0 45 1.000 9 1.000 1.000000 1.000000
1 40 0.889 5 0.556 0.630644 0.324436
2 35 0.778 3 0.333 0.243824 0.054210
3 31 0.689 0 0 000 0.061524 0.005569
4 25 0.556 0 0.000 0.010612 0.000381
5 15 0.333 0 0.000 0.001281 0.000018
6 9 0.200 0 0.000 0.000108 0.000001
7 7 0.156 0 0.000 0.000006 0.000000

9 out of 45 cases as column (2) shows. Therefore, the observed relative
frequency of 6 or more coincidences is 9/45 = 0.2, whereas this many
coincidences have only a little more than one chance in ten thousand to
happen on hypothesis II, and only one chance in a million on hypothesis I;
see columns (6) and (7), respectively. Similar remarks apply to the other
lines of Table V: what has been actually observed appears as extremely
improbable on either hypothesis, so there are strong grounds to reject both
hypatheses.  Yet columns (4) and (5) present a different picture: the coinci-
dences observed are somewhat improbable on hypothesis I, but they appear
as quite usual and normal from the standpoint of hypothesis II. The

Table VI. Total number of coincidences, observed and theoretical
(Hypothesis II).

Coincidences Deviations
Observed Expected Actual Standard
10 languages 171 42.66 128.34 7.60
9 lang. v. Hu. 8 8.53 — 0.53 2.78

impression gained from Table V is corroborated by Table VI: if we con-
sider all 45 pairs of languages, the actually observed total number of coinci-
dences exceeds tremendously what we have to expect on the basis of hypothesis
I1, yet the expected and observed numbers agree closely if we consider only
the 9 pairs in which Hungarian is matched with the other 9 languages. (On
hypothesis I, we have considerably stronger disagreement in both cases.)

In short there is no obvious interpretation of “‘chance” that would permit
us to make chance responsible for all the coincidences observable in Table ITI;
there are too many of them. Yet we can quite reasonably make chance
responsible for the coincidences between Hungarian and the other languages.
The explanation that Hungarian is unrelated to the other languages which
are all related to each other has been vindicated.
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The point is that this explanation has been vindicated, thanks to the con-
sideration of probabilities, by so few observations. The explanation itself is
supported by an overwhelming array of philological evidence.

(5) From appropriate observations (with telescope and spectroscope) we
can conclude that certain elements found in the crust of our globe are also
presentin the sun and in certainstars. This conclusion is based on a physical
law discovered by G. Kirchhoff almost a century ago (which says roughly
that a luminous vapor absorbs precisely the same kind of light that it emits).
Yet the conclusion appeals also to probabilities, and this is the point with
which we are concerned here; we shall reduce the physical part of the argu-
ment to a schematic outline.

Sun Sun

[f'Oﬂ .[l‘Oﬂ

Fig. 14.5. Coincidences.

Using suitable apparatus (a prism or a diffraction grating) we can detect
a sequence of lines in the light of the sun (in the solar spectrum). We can
detect a sequence of lines also in the light emitted by certain substances,
such as iron, vaporized at high temperature in the laboratory. (In fact, the
lines in the spectrum of the sun, the Fraunhofer lines, are dark, and the lines
in the spectrum of iron are bright.) Kirchhoff examined 60 iron lines and
found that each of these lines coincides with some solar line. (See the
rough schematic fig. 14.5 or Encyclopaedia Britannica, 14th edition, vol. 21,
fig. 3 on plate I facing p. 560.) These coincidences are fully understandable
if we assume that there is iron in the sun. (More exactly, these coincidences
follow from Kirchhoff’s law on emission and absorption if we assume that in
the atmosphere of the sun there is iron vapor that absorbs some of the light
emitted by the central part of the sun glowing at some still higher tempera-
ture.) Yet, perhaps (here is again that ever-present objection) these
coincidences are due to chance.

The objection deserves serious consideration. In fact, no physical observa-
tion 1s absolutely precise. Two lines which we regard as coincident could be
different in reality and just by chance so close to each other that, with the
limited precision of our observations, we might fail to recognize their
difference. We have to concede that any observed coincidence may be only
an apparent coincidence and there may be, in fact, a small difference.
Yet let us ask a question: Is it probable that each of the 60 coincidences
observed springs from a random difference so small that it failed to be detected
by the means of observation employed ?
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Kirchhoff, who registered the observed lines on an (arbitrary) centimeter
scale, estimated that he could not have failed to recognize a difference that
exceeded 1/2 millimeter on his scale, On this scale the average distance
between two adjacent lines of the solar spectrum was about 2 millimeters,
If the 60 lines of iron were thrown into this picture at random, independently
from each other, what would be the probability that each falls closer to
some solar line than 1/2 millimeter?

a b c d e

Fig. 14.6. Equidistant lines.

We bring this question nearer to its solution by formulating an equivalent
question in a more familiar domain. Parallel lines are drawn on the floor;
the average distance between two adjacent lines is 2 inches. We throw a
coin on the floor 60 times, If the diameter of the coin is | inch, what is
the probability that the coin covers a line each time?

In this last formulation, the question is easy to answer. Assume first that
the lines on the floor are equidistant (as in fig. 14.6) so that the distance from
each line to the next is 2 inches. If the coin covers a line, the center of the
coin is at most at 1/2 inch distance from the line and, therefore, this center
lies somewhere in a strip | inch wide that is bisected by the line (shaded in

a b c d e

Fig. 14.7. Lines at irregular distances.

fig. 14.6). Obviously, the probability that the coin cast on the floor should
cover a line is 1/2. The probability that the coin, cast on the floor 60 times,
should cover some line each time, is (1/2)80.

Assume now that the lines on the floor are not equidistant; the average
distance between two adjacent lines is still supposed to be 2 inches. We
imagine that the lines, which were equidistant originally, came into their
present position by being shifted successively. Ifaline (asline b in fig. 14.7)
is shifted so that its distance from its next neighbor remains more than 1 inch,
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the chances of the coin for covering some line remain unchanged. If,
however; the line is so shifted (as line din fig. 14.7) that its distance from the
next line becomes less than 1 inch, the two (shaded) attached strips overlap
and the chances of the coin to cover a line are diminished. Therefore, the
required probability is less than (1/2)80,

To sum up, if the iron lines were thrown by blind chance into the solar
spectrum, the probability of the 60 coincidences observed by Kirchhoff
would be less than 2740 and so less than 10718 or

1
1,000,000,000,000,000,000

“This probability’” says Kirchhoff, whom we quoted already in the
motto prefixed to this chapter “is rendered still smaller by the fact that
the brighter a given iron line is seen to be, the darker, as a rule, does the
corresponding solar line appear. Hence this coincidence must be produ- =d
by some cause, and a cause can be assigned which affords a perfect explanati:n
of the observed facts.”

(6) The following example is not based on actual observation, but it
illustrates a frequently arising, typically important situation.

An extremely dangerous disease has been treated in the same locality by
two different methods which we shall distinguish as the “old treatment” and
the “new treatment.” Of the 9 patients who have been given the old treat-
ment 6 died and only 3 survived, whereas of the 11 patients who received the
new treatment only 2 died and 9 survived. The twenty cases are clearly
displayed in Table VII.

Table VII. Four Place Correlation Table.

Patients Died Survived Total
Old treatment 6 3 9
New treatment 2 9 11
Total 8 12 20

A first glance at this table may give us the impression that the observations
listed speak strongly in favor of the new treatment. The relative frequency
of fatal cases is

6/9 or 67%, with the old treatment,

2/11 or 189, with the new treatment.

On second thoughts, however, we may wonder whether the observed
numbers are large enough to give us any reasonable degree of confidence in
the percentages just computed, 67%, and 189%,. Still, the fact remains that
the number of fatal cases was much lower with the new treatment. Such a
low mortality, however, could be due to chance. How easily can chance
broduce such a result?
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This last question seems to be the right question. Yet, at any rate, the
question must be put more precisely before it can be answered. We have to
explain the precise meaning in which we used the words ““chance” and
“such.” The word “chance” will be explained if we assimilate the present
case to some suitable game of chance. A fair interpretation of the words
“such a result’’ seems to be the following: we consider all outcomes in which
the number of fatalities with the second treatment is not higher than that
actually observed. Thus, we may be led eventually to the following formulation.

There are two players, Mr. Oldman and Mr. Newman, and 20 cards, of which 8
are black and 12 are red.  The cards are dealt so that Mr. Oldman receives 9 cards and
Mr. Newman recetves 11 cards. What is the probability that Mr. Newman receives
2 or less black cards?

This formulation expresses as simply and as sharply as possible the conten-
tion that we have to examine: the difference between the old and the new
treatment does not really matter, does not really influence the mortality,
and the observed outcome is due to mere chance.

The required probability turns out to be

335
8398

That is, an outcome that appears to be as favorable to the new treatment, as
the observed outcome, or even more favorable, will be produced by chance
about once in 25 trials. And so the numerical evidence for the superiority
of the new treatment above the old cannot be simply dismissed, but is

1
= 0.0399 ~ —
25

certainly not very strong.

In order to see clearly in these maiters, let us give a moment’s considera-
tion to a situation in which the numerical data would lead us to a probability
1/10,000 instead of 1/25. Such data would make very hard to believe that
the observed difference in mortality is due to mere chance but, of course,
they would not prove right away the superiority of the new treatment. The
data would furnish a pretty strong argument for the existence of some non-
random difference between the two kinds of cases. What the nature of this
difference actually is, the numbers cannot say. If only young or vigorous
people received the new treatment, and only elderly or weak people the old
treatment, the argument in favor of the medical superiority of one treatment
above the other would be extremely weak.

(7) T think that the reader has noticed a certain parallelism between the
six preceding examples of this section. Now this parallelism may be ripe
to be brought into the open and formulated in general terms. Yet let us
follow as far as possible the example of the naturalist who carefully compares
the relevant details, rather than the example of those philosophers who rely
mainly on words. We went into considerable detail in discussing our
examples; if we do not take into account the relevant particulars carefully,
our labor is lost.
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In each example there is a coincidence and an explanation. (Name, surname,
occupation and home town of a person I met coincide with those of a person
I heard of. Explanation: the two persons are identical..—Two numbers,
remembered or computed by two different persons, coincide. Explanation:
the number, arrived at by two persons working independently, is correct.—
The initials of several couples of numerals, designating the same number in
two different languages, coincide. Explanation: the two languages are
related.—The bright lines in the spectrum of iron, observed in laboratory
experiments, coincide with certain dark lines in the spectrum of the sun.
Explanation: there is iron vapor in the atmosphere of the sun.—A new
treatment of a disease coincides with lower mortality. Explanation: the
new treatment is more effective.)

Contrasting with these specific explanations, the nature of which varies
with the nature of the example, there is another explanation which can be
stated in the same terms in all examples: the observed coincidences are due
to chance.

The specific explanations are not groundless, some of them are reasonably
convincing, but none of them is logically necessary or rigidly proven.
Therefore the situation is fundamentally the same in each example: there
are two rival conjectures, a specific conjecture, and the ““universally applic-
able” hypothesis of ‘“‘randomness” which attributes the coincidences to
chance.

Yet, if we look at it more closely, we perceive that the “hypothesis of
randomness’’ is vague. The statement ‘‘this effect is due to chance” is
ambiguous, since chance can operate according to different schemes. If we
wish to obtain some more definite indication from it, we have to make the
hypothesis of randomness more precise, more specific, express it in terms of
probability, in short, we have to raise it to the rank of a statistical
hypothests.

In everyday matters we usually do not take the trouble to state a statistical
hypothesis with precision or to compute its likelihood numerically. Yet we
may take a first step in this direction (as in example (1)) or go even a little
further (as in examples (2) or (3)). In scientific questions, however, we
should clearly formulate the statistical hypothesis involved and follow it up
to a numerical estimate of its likelihood, as in examples (5) and (6).

In the transition from the general and therefore somewhat diffuse idea of
randomness to a specific statistical hypothesis we have to make a choice.
There are cases in which we scarcely notice this choice, since we can perceive
just onestatistical hypothesis that is simple enough and fits the case reasonably
well; in such a case the hypothesis chosen appears “natural” (as in examples
(3), (5) and (6)). In other cases the choice is quite noticeable; we do not
see immediately a statistical hypothesis that would be simple enough and fit
the case somewhat “realistically,” so we choose after more or less hesitation
(as in example (4)).
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Eventually there are two rival conjectures facing each other: a non-
statistical, let us say “physical,” conjecture Pk and a statistical hypothesis St.
Now, a certain event E has been observed. This event E is related both to
Ph and to St and is so related that its happening could influence our choice
between the two rival conjectures Pk and St.  If the physical conjecture Ph is
true, E appears as easily explicable, its happening is easily understandable.
In the clearest cases (as in example (5)) E is implied by Ph, is a consequence
of Ph.  On the other hand, from the standpoint of the statistical hypothesis St,
the event K appears as a “coincidence” the probability p of which can be
computed on the basis of the hypothesis §t.  If the probability p of E turns
out to be low, the happening of the event E is not easily explicable by
“chance,” thatis by the statistical hypothesis §¢; this weakens our confidence
in St and, accordingly, strengthens our confidence in P4, On the other hand,
if the probability p of the observed event E is high, E may appear as explicable
by chance, that is, by the statistical hypothesis 8¢; this strengthens somewhat
our confidence in St and accordingly weakens our confidence in Ph.

It should be noticed that the foregoing is in agreement with what we said
about rival conjectures in sect. 13.12 and adds some precision to the pattern
of plausible reasoning discussed in sect. 12.3.

The omnipresent hypothesis of randomness is an alternative to any other
kind of explanation. This seems to be deeply rooted in human nature.
“Was it intention or accident?” ‘‘Is there an assignable cause or merely
chance coincidence?” Some question of this kind occurs in almost every
debate or deliberation, in trivial gossip and in the law courts, in everyday
matters and in science.

10. Judging mathematical conjectures. We compare some examples
treated in foregoing chapters with each other and with those treated in the
foregoing section.

(1) Let us remember the story of a remarkable discovery told in sect. 2.6.
Euler investigated the infinite series

1 I 1 l | 1
+Z+§+E+2_5+“'+n2+“' .
First he found various transformations of this series. Then, using one of
these transformations, he obtained an approximate numerical value for the
sum of the series, the value 1.644934. Finally, by a novel and daring
procedure, he guessed that the sum of the series is #2/6. Euler felt himself
that his procedure was daring, even objectionable, yet he had a good
reason to trust his discovery: the value found by numerical computation,

1.644934, coincided, as far as it went, with the value guessed

2
k2

5= 1.64493406 . .. .

And so Euler was confident. Yet was this confidence reasonable? Such a
coincidence may be due to chance.
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In fact, it is not outright impossible that such a coincidence is due to
chance, yet there is just one chance in ten million for such a coincidence to
happen: the probability that chance, interpreted in a simple manner,
should produce such a coincidence of seven decimals is 10-7; cf. sect. 9 (3)
and ex. 1. And so we should not blame Euler that he rejected the explana-
tion by chance coincidence and stuck to his guess #2/6. He proved his
guess ultimately. Yet we need not insist here on the fact that it has been
proved: with or without confirmation, Euler’s guess was, in itself, not only
brilliant but also reasonable.

(2) Let us look again at sect. 3.1 and especially at fig. 3.1 which displays
nine polyhedra. For each of these polyhedra we determined F, V, and E,
that is, the number of faces, vertices, and edges, respectively, and listed the
numbers found in a table (Vol. I, p. 36). Then we observed a regularity:
throughout the table

F4V=E+2.

It seemed to us improbable that such a persistent regularity should be mere
coincidence, and so we were led to conjecture that the relation observed in
nine cases is generally true.

There is a point in this reasoning that could be made more precise:
what is the probability of such a coincidence? To answer this question,
we have to propose a definite statistical hypothesis. I was not able to think
of one that fits the case perfectly, but there is one that has some bearing on
the situation. Let me state itinsetting F— 1l =X, V-1 =7, E=Z,
With this change of notation, the conjectural relation obtains the form
X+Y=272

We have three bags, each of which contains n balls, numbered 1, 2, 3, ... 7.
We draw one ball from each bag and let X, ¥, and Z denote the number
from the first, the second, and the third bag, respectively. What is the
probability that we should find the relation

X+Y=2

between the three numbers X, ¥, and Z, produced by chance?

It is understood that the three drawings are mutually independent.
With this proviso the probability required is determined and we easily find
that it is equal to

n—1

o0t

Let us apply this to our example. Let us focus on the moment when we
succeed in verifying the hypothetical relation for a new polyhedron. For
example, after the nine polyhedra that we examined initially (in sect. 3.1)
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we took up the case of the icosahedron (in sect. 3.2). For the icosahedron,
as we found, F = 20, ¥V = 12, £ = 30, and so, in fact

(F—1) - (V—1) =19 4 11 =30 = E.

Is this merely a random coincidence? We apply our formula, taking n = 30
(we certainly could not make n less than 30) and find that such an event
has the probability

29 29

— = _—_. =0.016111;
2 x 302 1800 ’

that is, it has a little less prospect than 1 chance in 60. We may hesitate
whether we should, or should not, ascribe the verification of the conjectured
relation to mere chance. Yet if we succeed in verifying it for another
polyhedron, with F, V, E about as large as for the icosahedron, and we are
inclined to regard the two verifications as mutually independent, we face an
event (the joint verification in both cases) with a probability less than
(1/60)2; this event has less chance to happen than | in 3600 and is, therefore,
even harder to explain by chance. If the verifications continue without
interruption, there comes a moment, sooner or later, when we feel obliged
to reject the explanation by chance.

(3) In the foregoing example we should not stress too much the numerical
values of the probabilities that we computed. To realize that the probability
steadily decreases as verification follows verification may be more helpful
in guiding our judgment than the numerical values computed. At any
rate, there are cases in which it would be hard to offer a fitting statistical
hypothesis and so it is not possible to compute the probabilities involved
numerically, yet the calculus of probability still yields helpful suggestions.

In sect. 4.8 we compared two conjectures concerning the sum of four
squares. Let us call them conjecture 4 and conjecture B, respectively.
Conjecture 4 (that we have discovered at the end of sect. 4.6) asserts a
remarkable rule that precisely determines in how many ways an integer of a
certain form can be represented as a sum of four odd squares. Conjecture
B (Bachet’s conjecture) asserts that any integer can be represented as the
sum of four squares in one or more ways. Each of the two conjectures
offers a prediction about the sum of four squares, but the prediction offered
by A is more precise than that offered by B. Just to stress this point, let us
consider for a moment a quite unbelievable assumption. Let us assume that
we know from some (mysterious) source that, in a certain case, the number of
representations has an equal chance to have any one of the r 4 1 values
0,1,2 ...r and cannot have a value exceeding r, which is a quite large
number (and this should hold both under the circumstances specified in 4
and under those specified in B—a rather preposterous assumption). Now,
A predicts that the number of representations has a definite value; B
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predicts that it is greater than 0. Therefore, the probability that 4 turns
out to be true in that assumed case is 1/(r 4+ 1), whereas the probability
that B turns out to be true is r/(r + 1). In fact, both 4 and B turn out to
be true in that case, both conjectures are verified, and the question arises
which verification yields the stronger evidence. In view of what we have
Just discussed, it is much more difficult to attribute the verification of 4 to
chance, than the verification of B. By virtue of this circumstance (in
accordance with all similar examples discussed in this chapter) the verifica-
tion of the more precise prediction A should carry more weight than the
verification of the less precise prediction B. In sect. 4.8 we arrived at the
same view without any explicit consideration of probabilities.

EXAMPLES AND COMMENTS ON CHAPTER XIV
First Part

Each example in this first part begins with a reference to some section or
subsection of this chapter and supplies formulas or derivations omitted in
the text. The solutions require some knowledge of the calculus of probability.

x. [Sect. 3 (3)] Accept the scheme of sect. 3 (3) for representing the
succession of rainy and rainless days. Say “sunny” instead of “rainless,”
for the sake of convenience, and let r,, s, r,, and s, denote probabilities,

r, for a rainy day after a rainy day,

5, for a sunny day after a rainy day,

r, for a rainy day after a sunny day, and

s, for a sunny day after a sunny day.

(a) Show thatr, —r, =35, — 5,.

(b) It was said that “‘a rainy day follows a rainy day more easily than a
rainless day.” What does this mean precisely ?

2. [Sect. 3 (4)] It was said that “each letter tends to be unlike the fore-
going letter.” What does this mean precisely ?

3. [Sect.5 (1)] Find the general expression for the numbers in column (3)
of Table 1.

4. [Sect. 5 (2)] Find the general expression for the numbers in column
(5) of Table 1.

5- [Sect. 5 (3)] (a) Find the general expression for numbers in column
(3) of Table II.  (b) In order to detect a systematic deviation, if there is one,
examine the differences of corresponding entries (on the same row) of
columns (4) and (5); list the signs.

6. [Sect. 7 (1)] If a trial consists in casting three fair dice and a success
consists in casting six spots with each dice, what is the probability of 2
successes in z trials?
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7. [Sect. 7 (2)] Among the various events reported in the story of the
Reverend Galiani told in sect. 7 (1), which one constitutes the strongest
argument against the hypothesis of fair dice?

8. [Sect. 7 (3)] (a) Write down the formula that leads to the numerical
value 1.983 - 107,

(b) The probability of a success is 1/3. Find the probability that 315672
trials yield precisely 315672/3 successes.

9. [Sect. 8 (1)] The expression given for  is a sum. Each term of this
sum is, in fact, a probability: for what?

x0. [Sect. 8 (1)] Find the abscissa of the point of inflection of the curve
represented by fig. 14.4.

xx. [Sect. 9 (3)] Given a number of n figures. A sequence of z figures
is produced at random, perhaps by a monkey playing with the keys of an
adding machine. What is the probability that the sequence so produced
should coincide with the given number? [Is the answer mathematically
determined ?]

x2. [Sect. 9 (4)] Explain the computation of the probability 0.0948.

13. [Sect. 9 (4)] Find the general expression for the numbers (a) in
column (6), (b) in column (7), of Table V.

14. [Sect. 9 (4)] Explain the computation of the expected numbers of
coincidences in Table VI: (a) 42.66, (b) 8.53.

15. [Sect. 9 (4)] Explain the computation of the standard deviation 2.78
in the last row and last column of Table VI,

16. [Sect. 9 (5)] Why (1/2)60?

17. [Sect. 9 (6)] Explain the computation of the probability 0.0399.
[Generalize.]

18. [Sect. 10 (2)] Derive the expression (n — 1)/2n? for the required
probability.

Second Part

xg. On the concept of probability. Sect. 2 does not define what probability
“Is,” it merely tries to explain what probability aims at describing: the
“‘long range’ relative frequency, the “final stable” relative frequency, or the
relative frequency in a “very long” series of ohservations. How long such
a series is supposed to be, was not stated. This is an omission.

Yet such omissions are not infrequent in the sciences. Take the oldest
physical science, mechanics, and the definition of velocity in non-uniform,
rectilinear motion: velocity is the space described by the moving pointin a
certain interval of time, divided by the length of that interval, provided that
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the interval is “‘very short.”” How short such an interval is supposed to be is
not stated.

Practically, you take the interval of time measured as short, or the statistical
series observed as long, as your means of observation allow you. Theoreticallx
you may pass to the limit. The physicists, in defining velocity, let the interval
of time tend to zero. R. von Mises, in defining probability, lets the length of
the statistical series tend to infinity.

20. How not to interpret the frequency concept of probability. The D. Tel. shook
his head as he finished examining the patient. (D. Tel. means doctor of
teleopathy; although strenuously opposed by the medical profession, the
practice of teleopathy has been legally recognized in the fifty-third state of
the union.) “You have a very serious disease,” said the D. Tel. “Of ten
people who have got this disease only one survives.”” As the patient was
sufficiently scared by this information, the D. Tel. went on. ‘““But you are
lucky. You will survive, because you came to me. I have already had
nine patients who all died of it.”

Perhaps the D. Tel. meant it. His grandfather was a sailor whose ship
was hit by a shell in a naval engagement. The sailor stuck his head through
the hole torn by the shell in the hull of the ship and felt protected ‘“‘because,”
he reasoned, ‘it is very improbable that a shell will hit the same spot twice.”

21. An official, charged to supervise an election in a certain locality,
found 30 fake registrations among the 38 that he examined the first morning.
A daily paper declares that at least 999, of the registrations in that locality
are correct and above suspicion. How does the daily’s assertion stand up in
the light of the official’s observation?

22. In the window of a watchmaker’s shop there are four cuckoo clocks,
all going. Three clocks out of the four are less than two minutes apart:
can you rely on the time that they show? There is a natural conjecture:
the clocks were originally set on time, but they are not very precise (they are
Jjust cuckoo clocks) and one is out of order. If this is so, you could rely on
the time shown by three. Yet there is a rival conjecture, of course: those
three clocks agree by mere chance. What is the probability of such an
event?

23. If a, b, ¢, d, ¢, and f are integers chosen at random, not exceeding in
absolute value a given positive integer n, what is the probability that the
system

ax + by =c¢
ot dy=f
of two equations with two unknowns has just one solution?

24. Probability and the solution of problems. In a crossword puzzle one
unknown word with 5 letters is crossed by two unknown words with four
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letters each. You guess that the unknown 5 letter word is ToweR and then
g
you h: .. the situation indicated by tiic follown. g uingram:

—
TIOW|E

[ |

R]

In order to test your guess, you would like to find one or the other four letter
word crossing the conjectural Tower. One of the crossing words could
verify the o, the other the E. Which verification would carry more weight?
And why?

25. Regular and Irregular. Compare the two columns of numbers:

I II
1005 1004
1033 1038
1075 1072
1106 1106
1132 1139
1179 1173
1205 1206
1231 1239
1274 1271
1301 1303

One of these two columns is “regular,” the other “irregular.” The regular
column contains ten successive mantissas from a four-place table of common
logarithms. The numbers of the irregular column agree with the corres-
ponding numbers of the regular column in the first three digits, yet the fourth
digits could be the work of an unreliable computer: they have been chosen
“at random.” Which is which? [Point out an orderly procedure to
distinguish the regular from the irregular.]

26. The fundamental rules of the Calculus of Probability. In computing
probabilities we may visualize the set of possible cases and see intuitively
that none is privileged among them, or we may proceed according to rules.
It is important for the beginner to realize that he can arrive at the same
result by these two different paths. The rules are particularly important
when we regard the theory of probability as a purely mathematical theory.
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The rules will be important in the next chapter. For all these reasons, let
us introduce here the fundamental rules of the calculus of probability, using
the bag and the balls;® cf. sect. 3.

The bag contains p balls. Some of the balls are marked with an 4, others
with a B, some with both letters, some are not marked at all. (There are p
possible cases and two “‘properties,” or ‘‘events,” 4 and B.) Let us write 4
for the absence of 4 or “non-4.” (We take — as the sign of negation, but
place this sign on the top of the letter, not before it.) There are four
possibilities, four categories of balls.

The ball has 4, but has not B. We denote this category by AB and the
number of such balls by a.

The ball has B, but has not 4. We denote this category by AB and the
number of such balls by 5.

The ball has both 4 and B. We denote this category by 4B and the
number of such balls (common to 4 and B) by c.

The ball has neither 4 nor B. We denote this category by 4B and the
number of such balls (different from those having 4 or B) by 4.

Therefore, obviously,

at+b+cH+d=p

We let Pr{4} stand as abbreviation for the probability of 4, and Pr{B}
for that of B. With this notation, we have obviously

Pr{d} = ° j © =2t

Let Pr{4B} stand for the “‘probability of 4 and B,” that is, the probability
for the joint appearance of 4 and B. Obviously

Pr{4B} = ;.

Let Pr{4 or B} stand for the probability of obtaining 4, or B, or both 4
and B.? Obviously

at+ b4¢

Pr{d4 or B} = P

8 We follow H. Poincaré, Calcul des probabilités, p. 35-39.

$ The little word ““or’ has two meanings, which are not sufficiently distinguished by the
English language, or by the other modern European languages. (They are, however,
somewhat distinguished in Latin.) We may usé “or” “‘exclusively” or “inclusively.” *“You
may go to the beach or to the movies” (not to both) is exclusive ‘“‘or” (in Latin *‘aut”). “You
may go the beach or have a lot of candy” is inclusive “‘or” if you mean “one or the other or
both.” In legal or financial documents inclusive “or” is rendered as ‘‘andfor’® (in Latin
“vel”’). In Pr{4 or B} we mean the irclusive “or.”
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We readily see that

Pr{d} + Pr{B} = Pr{AB} + Pr{4 or B}
and hence follows our first fundamental rule (the “or’” rule):
(1 Pr{4 or B} = Pr{4} + Pr{B} — Pr{4B}.

We wish now to define the conditional probability Pr{4/B}, in words:
probability of 4 if B (granted B, posito B, on the condition B, on the hypo-
thesis B, ... ). Also this probability is intended to represent a long range
relative frequency. We draw from the bag, repeatedly, one ball each time,
replacing the ball drawn before drawing the next, as described at length in
sect. 2 (1).  Yet we take into account only the balls having a B. If among the
first n such balls drawn, there are m balls that also have an 4, m/n is the
relative frequency that should be approximately, when n is sufficiently
large, equal to Pr{4/B}. It appears rather obvious that

Pr{4/B} = b—-f——f

In fact, there are ¢ balls having 4 among the 4 + ¢ balls having B; also the
reasoning of sect. 2 (1) may be repeated; from a certain viewpoint, we could
regard the expression of Pr{4/B} also as a definition. At any rate, we easily
find, comparing the expressions of the probabilities involved, that

Pr{4/B} = Pr{AB}/Pr(B}.

Interchanging 4 and B, we find the second fundamental rule (the “and”
rule):

2) Pr{4B} = Pr{4} Pr{B|4} = Pr{B} Pr{4/B}.
We can derive many other rules from (1) and (2). Observing that
Pr{dor 4} =1, Pr{44} =0,
we obtain from (1), by substituting 4 for B, that
(3) Pr{4} + Pr{d} = 1,
what we could see also directly, of course. Similarly, since
Pr{4B or AB} = Pr{B},  Pr{(4B)(4B)} =0,
we obtain from (1), by substituting 4B for 4 and 4B for B, that
(4) Pr{B} = Pr{AB} + Pr{4B}.
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We note here the following generalization of (2):
(5) Pr{4AB|H} = Pr{A|H} Pr{B|HA} = Pr{B|H} Pr{4/HB}.
We can also visualize (5) by using the bag and the balls.

27. Independence. We call two events independent of each other, if the
happening (or not happening) of one has no influence on the chances of
the other. Disregard, however, for the moment this informal definition and
consider the two following formal definitions.

(1) A4 is called independent of B if
Pr{A4/B} = Pr{A/B}.
(IT) A and B are called mutually independent if
Pr{A/B} = Pr{A4|B} = Pr{4},  Pr{B/4} = Pr(B|4} = Pr(B}.

N N
(1) B (my B

A A

M M

Fig. 14.8. Two systems of roads from the city M to the city N, with an
essential difference.

Obviously, if 4 and B are mutually independent, 4 is independent of B.
Using the rules of ex. 26, prove the theorem: If none of the probabilities
Pr{A4}, Pr(B}, Pr{d}, Pr{B} vanishes and any one of the two events A and B is
independent of the other, they are mutually independent.

28. Compare sect. 3 (5) with ex. 27.

2g. A car traveling from the city M to the city N may pass through the
town 4 and also through the town B. This is true of both systems of roads,
(I) and (II), shown in fig. 14.8. Answer the following questions (a), (b),
and (¢) first in assuming that (I) represents the full system of roads between
M and N, then in assuming the same thing about (II).

(a) Let A stand for the event that a car traveling from M to N passes
through the town 4, and B for the event that it passes through B. Assume
(for both systems, (I) and (II)) that the three roads starting from M are



CHANCE, THE EVER-PRESENT RIVAL CONJECTURE 105

equally well frequented (have the same probability) and also that the roads
ending in N (there are 2 in (I), 6 in (II)) are equally well frequented. Find

the probabilities Pr{4}, Pr{4/B}, Pr{4/B}, Pr{B}, Pr{B/A}, Pr{B/A}.
(b) Find Pr{4B} using the rule (2) of ex. 26.
(c) Verify that
Pr{4} = Pr{B} Pr{4/B} + Pr{B} Pr{4/B},
Pr{B} = Pr{4} Pr{B/A} + Pr{4} Pr{B/4}.
(d) What do you regard as the most important difference between (I)
and (II)?
30. Permutations from probability. To decide the order in which the =
participants should show their skill in an athletic contest, the name of each is
written on a slip of paper, and then the n slips are drawn from a hat, one after

the other, at random. What is the probability that the n names should
appear in alphabetical order?

We present two solutions, and draw a conclusion from comparing them.

(1) Call E; the event that the slip drawn first is also alphabetically the
first, E, the event that the slip drawn in the second place is also alphabetically
the second, and so forth. The desired probability is

Pr{E, E, Ey...E} =
= Pr{E,} Pr{E,/E,} Pr{Ey|E\Ey} . .. Pr{E,|E, . .. E,_}}
1 I 1 1

n n—1 "n—2 1

In fact, we obtain the first transformation by applying the rules (2) and
(5) of ex. 26, and the second transformation by observing that there are n
possible cases for E;, n — 1 for E, after E,, n — 2 for E; after E; and E,, and
so forth, whereas, for each of these events, there is just one favorable case.

(2) Call P, the number of all the possible orderings (permutations,
linear arrangements, . . .) of z distinct objects. The n names can come out
from the hat in P, ways, no one of these P, possible cases appears as more
privileged than the others, and among these P, cases just one is favorable
(the alphabetical order). Therefore, the desired probability is 1/P,.

(3) The results derived under (1) and (2) must be equal. Equating them,
we evaluate P,:

P,=1-2-3...n=nl

31. Combinations from probability. Mrs. Smith bought n eggs, not realizing
that r of these eggs are rotten.  She needs r eggs, and chooses as many among
her n eggs at random. What is the probability that all r eggs chosen are
rotten ?
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As in ex. 30 we present two solutions, and draw a conclusion from
comparing them.

(1) Call E| the event that the first egg opened by Mrs. Smith is rotten,
E, the event that the second egg is rotten, and so forth. The desired proba-
bility is

Pr{E1 E,E,...E}
= Pr{El} Pr{Ez/El} Pr{Es/ElEz} ... Pr{E,,/E1 e E,._l}
r r—1 r—2 1

7 on—1 n=2 " n—r+41

The first transformation is obtained by rules (2) and (5) of ex. 26, the second
from the consideration of possible and favorable cases for E), for E, after E;,
and so on.

(2) We have a set of n distinct objects. Any r objects chosen among these
n objects form a subset of size r of the given set of size n: call C} the number
of all such subsets. (Usually C}' is called the number of “combinations’ of 7
things selected from among » things.) In the case of Mrs. Smith’s eggs,
there are CJ possible cases, no one more privileged than the others, and
among these Cj cases just one is favorable (if getting rotten eggs is “favorable”).
Hence the desired probability is 1/CF.

(3) Comparing (1) and (2), we evaluate CJ':
Cn_n(n—l)...(n—r—l—l)__ n! _(n)

! 1-2 ... r rin—r)! )

32. The choice of a rival statistical conjecture: an example. One person with-
drew $875 from his savings account on a certain date, and another person
received $875 two days later. The coincidence of these two amounts, one
withdrawn, the other received, may be regarded as circumstantial evidence,
as an indication that a crime has been committed; cf. ex. 13.6. If the jury
finds it too hard to believe that this coincidence is due to mere chance, a
conviction may result. Hence the problem: what is the probability of such
acoincidence? The less the probability is, the more difficult it is to attribute
the coincidence to chance, and the stronger is the case against the defendants.

Yet we cannot compute a probability numerically without assuming some
definite statistical hypothesis. Which hypothesis should we assume? Ina
serious case we should give serious thought to such a question. Let us
survey a few possibilities.

(1) As the number 875 has three digits, we may regard the positive
integers with not more than three digits as admissible, and we may regard
them as equally admissible. The probability that two such integers, chosen
at random, independently from each other, should coincide, is obviously
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1/999. This probability is pretty small—but is the assumption that underlies
its computation reasonable?

(2) As 875 has less than five digits, we could regard all positive integers
with less than five digits as equally admissible. This leads to the probability
1/9999 for the coincidence. This probability is very small indeed, but our
assumption is far-fetched, even frivolous.

(3) If the point appears as important, the court can order inspection of
the books of the bank or summon one of its competent officials to testify.
And so it has been ascertained that immediately before the withdrawal of
that sum $875 the amount $2581.48 was deposited on the account. In
possession of this relevant information we may regard as possible and equally
admissible cases the sums 1, 2, 3, . .. 2581 that could have been withdrawn
from the account. Just one of these cases, 875, has to be termed favorable
and so we are led to the probability 1/2581 for the coincidence. This is a
small probability, but our assumption may seem reasonably realistic.

(4) We could have considered not only withdrawals in dollars, but also
withdrawals in dollars and cents, such as $875.31. If we consider all such
cases as equally admissible, the probability for a coincidence becomes
1/258148. This is a very small probability, but our assumption may appear
less realistic: withdrawals in dollars and cents such as $875.31 are more
usual from a checking account than from a savings account.

(5) On the contrary, one could argue that the amounts withdrawn from
a savings account are usually “round” amounts, divisible by 100, or 50, or 25,
Now, 875 is divisible by 25. If we regard only multiples of 25 as admissible,
and equally admissible, the probability in question becomes 1/103.

Of course, we could imagine still other and more complicated ways to
compute the probability, but we should not insist unduly on such a trans-
parent example. The example served its purpose if the reader can see by
now the following two points.

(a) Although some of the five assumptions discussed may seem more
acceptable than others, no one is conspicuously superior to the others, and
there is little hope to find an assumption that would be satisfactory in every
respect and could be regarded as the best.

(b) Each of the five assumptions considered attributes a rather small
probability to the coincidence actually observed, and so, on the whole, our
consideration upholds the common sense view: ‘“It is hard to believe that
this coincidence is due to mere chance.”

33. The choice of a rival statistical conjecture: general remarks. Lect us try to
learn something more general from the particular example considered
(ex. 32). Let us reconsider the general situation discussed in sect. 14.9 (7).
An event E has occurred and has been observed. Concerning this event,
there are two rival conjectures facing each other: a ‘“‘physical” conjecture P,
and a statistical hypothesis H. If we accept the physical conjecture P, E is
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easily and not unreasonably explicable. If we accept the statistical hypo-
thesis H, we can compute the probability p for the happening of such an
event as E. If p is “small,” we may be induced to reject the statistical
hypothesis H. At any rate, the smallness of p weakens our confidence in
H and therefore strengthens somewhat our confidence in the rival con-
jecture P.

Yet ex. 32 makes us aware that the quality of the statistical hypothesis H
plays a role in the described reasoning. The statistical hypothesis H may
appear as unnatural, inappropriate, far-fetched, frivolous, cheap, unreliable
from the start. Or H may appear as natural, appropriate, realistic,
reasonable, reliable in 1tself.

Now p, the probability of the event E computed on the basis of the hypo-
thesis H, may be so small that we reject A: a rival of P drops out of the race.
This increases the prospects of P—but it may increase them a lot or only a
little: this depends on the quality of the rival. If the statistical hypothesis A
appeared to us originally as appropriate and reliable, /H was a dangerous
rival and its fall strengthens P appreciably. If, however, H appeared to us
as inappropriate and unreliable from the start, H was a weak rival; its fall
is not surprising and strengthens P very little.

Being given a clear statistical hypothesis f, the probability g of the event E
is determined, and the statistician can compute it. Yet the statistician’s
customer, who may be a biologist, or a psychologist, or a businessman, or
any other non-statistician, has to decide what this numerical value of p
means in his case. He has to decide how small a p is enough to reject or
weaken the statistical hypothesis H. Yet the customer is usually not even
directly interested in the statistical hypothesis f/: he is primarily concerned
with the rival “physical” conjecture P. And he has to decide how much
weight the rejection or weakening of H has in strengthening P. This
latter decision obviously cannot depend on the numerical value of p alone:
it certainly depends on the choice of H.

I am afraid that the statistician’s customer who wishes to make use of the
numerical value p furnished by the statistician, without realizing the import
of the statistical hypothesis H for his problem, just deceives himself. He
can scarcely realize the import of H if he does not realize that his physical
conjecture P could be also confronted with statistical hypotheses different
from H. Cf.ex. 15.5.



